CN111900229A - 一种基于β-Ga2O3薄膜的柔性日盲区深紫外光电探测器及其制备方法和应用 - Google Patents

一种基于β-Ga2O3薄膜的柔性日盲区深紫外光电探测器及其制备方法和应用 Download PDF

Info

Publication number
CN111900229A
CN111900229A CN202010449057.5A CN202010449057A CN111900229A CN 111900229 A CN111900229 A CN 111900229A CN 202010449057 A CN202010449057 A CN 202010449057A CN 111900229 A CN111900229 A CN 111900229A
Authority
CN
China
Prior art keywords
beta
film
flexible
preparation
blind area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010449057.5A
Other languages
English (en)
Inventor
陆旭兵
郭敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhaoqing South China Normal University Optoelectronics Industry Research Institute
Original Assignee
Zhaoqing South China Normal University Optoelectronics Industry Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhaoqing South China Normal University Optoelectronics Industry Research Institute filed Critical Zhaoqing South China Normal University Optoelectronics Industry Research Institute
Priority to CN202010449057.5A priority Critical patent/CN111900229A/zh
Publication of CN111900229A publication Critical patent/CN111900229A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN heterojunction type
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明属于光电探测技术领域,具体涉及一种柔性日盲区深紫外光电探测器及其制备方法和应用,本发明提供一种β‑Ga2O3柔性薄膜制备方法,以柔性材料为衬底,并在柔性衬底上采用脉冲激光沉积法沉积生长β‑Ga2O3薄膜,应用于柔性日盲区深紫外光电探测器领域,本发明制备光电探测器工艺简单,易于产业化生产,质量十分轻薄,且具有良好的日盲区光电响应特性和十分优异的耐疲劳特性,同时弯曲状态对器件性能影响较小,配合生长透明的电极可以制备全透明电子器件。

Description

一种基于β-Ga2O3薄膜的柔性日盲区深紫外光电探测器及其制 备方法和应用
技术领域
本发明涉及光电探测技术领域,特别涉及一种柔性日盲区深紫外光电探测器及其制备方法和应用。
背景技术
由于臭氧层的存在,太阳光谱中波长小于280nm的光波会被臭氧层吸收而无法到达地面,因而把波长低于(包括)280nm的紫外波段称之为“日盲区”紫外光。这种波长特殊的日盲区紫外光波具有抗干扰能力强、高的灵敏度、低背景噪音等优点。这些先天优势使得日盲区深紫外光波技术在新一代短距离信息交流领域具有潜在的应用,此外,在导弹示警、明火监测、生物医疗分析、刑事侦查等领域也得到了广泛运用。依据日盲区深紫外光探测技术,人们已经制备出了稳定性高、功耗低、重量轻的日盲区深紫外光探测器。
传统的半导体Si、Ge、AlxGa1-xN、MgxZn1-xO和金刚石等半导体虽然可以作为日盲区深紫外光电探测器材料,但是都有各自的一些缺点,如:禁带宽度窄、难以制备、难以调节禁带宽度以及价格昂贵等。Ga2O3是一种直接带隙的宽禁带半导体,它有5种不同结构的同分异构体,其中以单斜晶系的β-Ga2O3是室温下最稳定的结构。β-Ga2O3是一种十分契合日盲区紫外光电探测器的材料。第一,氧化镓禁带宽度在4.8-5.1eV,对应的吸收波长为280nm-240nm,可以很好地满足日盲区深紫外波段需求,不需要通过其他掺杂等手段去调节其禁带宽度。第二,可用于制备β-Ga2O3材料的技术种类繁多,包括脉冲激光沉积技术、磁控溅射、分子束外延、金属氧化物化学气相沉积、原子层沉积技术等。第三,β-Ga2O3这种材料本身就是一种具有优异光学性质、稳定性和高机械强度的物质。诸如上述优势,使得基于β-Ga2O3薄膜(纳米线、纳米带)的日盲区深紫外光电探测器层出不穷。
近年来,随着柔性电子领域的兴起,人们对光电探测器也提出了更高的要求,希望光电器件能够具有柔性、便携性以及可穿戴性。于是,各类基于窄禁带宽度半导体的柔性可见光范围内的光电探测器逐渐兴起。但是关于柔性日盲区深紫外光电探测器的研究却鲜有报道,主要有两方面:一是受限于材料的种类,可用于制备深紫外光电探测器的半导体材料需要较大的禁带宽度,而AlxGa1-xN、MgxZn1-xO等材料在刚性衬底上生长本身就已经比较困难,至于将其进一步制备成柔性器件就更加困难;二是一般柔性电子器件的衬底是基于柔性聚合物材料,由于一般聚合物衬底都难以耐受400℃以上的高温,而用于制备日盲区深紫外光电器件的半导体材料制备温度都在600℃以上。以上两个因素制约了日盲区光电探测器在柔性电子领域的发展。
发明内容
为了克服上述现有技术的不足,本发明的首要目的是提供一种β-Ga2O3柔性薄膜。
本发明的第二个目的是提供一种β-Ga2O3柔性薄膜的制备方法。
本发明的第三个目的是含有β-Ga2O3柔性薄膜的光电检测器。
本发明的第四个目的是提供一种β-Ga2O3柔性薄膜的光电检测器的制备方法。
为了实现上述目的,本发明提供以下技术方案:
本发明提供一种β-Ga2O3柔性薄膜,所述β-Ga2O3柔性薄膜以柔性材料为衬底。
优选的,所述柔性材料的厚度为10-100μm;以保证制备得到的薄膜具备一定的柔性。
为了满足人们对光电检测器的日益高要求,制备柔性材料为衬底的光电检测器以便于人们实现光电器件的可穿戴性和便携性,另外,传统的柔性衬底虽然也有用于制备光电检测器,但其耐高温性能不足,因此,本发明中,所述柔性材料还需要保证其耐高温(600℃以上)。
优选的,所述柔性材料为云母,本发明中,选用云母作为其中一种可实现的柔性衬底,其中由于商业云母表面粗糙度比较高、比较厚,需要用刀片将其剥薄至厚度10~100μm左右,同时表面尽可能少分层以保证原子级表面粗糙度;此外云母熔点为1100-1300K左右,远远高于β-Ga2O3薄膜的生长温度,适用于生长β-Ga2O3薄膜。
另外,云母在可见光谱范围内透过率超过80%,配合生长透明电极薄膜有希望制备全透明柔性光电探测器。
针对柔性日盲区光电探测器中现有技术缺陷,寻找合适的半导体及衬底材料及制备工艺是研究的主要内容。本发明采用脉冲激光沉积技术在柔性衬底上制备β-Ga2O3薄膜而成熟的镀膜工艺可以和产业化半导体工艺兼容,从而能够更有效更简单更高效率的实现期间的微型化和集成化,易于产业化生产,所制备的异质结构简单,质量十分轻薄,且具有良好的日盲区光电响应特性。
本发明还提供一种β-Ga2O3柔性薄膜的制备方法,所述β-Ga2O3薄膜在柔性材料衬底上的沉积条件为:温度600~700℃,腔体氧气分压10-4~30Pa,频率3~5Hz,激光能流密度2.5~3.0 Jcm-2
本发明还提供一种含有上述β-Ga2O3柔性薄膜的光电检测器。使得制备得到的光电检测器具备柔性,和较高的透明度。
优选的,所述光电检测器以金属或金属氧化物薄膜为生长电极。
优选的,所述生长电极为金属叉状电极薄膜、金属网状电极薄膜、ITO薄膜或AZO薄膜中的至少一种。
当制备金属叉状电极时,本发明还提供一种β-Ga2O3柔性薄膜的光电检测器的制备方法,该方法除了β-Ga2O3柔性薄膜的制备,还包括以下步骤:选取金属或金属氧化物作为靶材,采用脉冲激光沉积法在β-Ga2O3柔性薄膜上沉积生长电极薄膜。
优选的,沉积生长电极薄膜的生长条件为:温度为25~50℃,腔体氧分压为 5.0×10-5~5.0×10-4Pa,频率为5~8Hz,激光能流密度为1.0~2.5J cm-2,厚度为50~150nm。
与现有技术相比,本发明的有益效果:
本发明首先想到制备一种β-Ga2O3柔性薄膜,通过脉冲激光沉积技术制备柔性日盲区深紫外光电探测器的制备工艺简单,克服半导体材料在衬底上生长困难的问题,而成熟的镀膜工艺可以和产业化半导体工艺兼容,从而能够更有效更简单更高效率的实现期间的微型化和集成化,易于产业化生产;另外,通过在柔性衬底上生长β-Ga2O3薄膜并沉积电极薄膜,所制备的器件结构简单,质量十分轻薄,且具有良好的日盲区光电响应特性。基于β-Ga2O3/柔性衬底的平面MSM结构的柔性深紫外光电探测器具有十分优异的耐疲劳特性,且弯曲状态对器件性能影响较小;本发明的β-Ga2O3柔性薄膜采用柔性衬底,保证柔性衬底在可见光谱范围内透过率超过80%,配合生长透明的电极(例如ITO、AZO、Ag纳米网、SnO2)还可以制备全透明电子器件。
附图说明
图1为本发明实施例1的β-Ga2O3/Mica异质结构的TEM图;
图2为本发明实施例2制备光电探测器的结构示意图;
图3为不同氧分压下制备的β-Ga2O3薄膜的XRD图;
图4为云母衬底以及β-Ga2O3/Mica薄膜透过率图(a为云母衬底以及β-Ga2O3/Mica薄膜的照片;b为云母衬底以及不同氧分压下制备β-Ga2O3/Mica薄膜的透过率图);
图5为不同氧分压下器件光暗电流的I-V图;
图6为不同氧分压对器件光电响应的影响图(a为不同氧分压下器件I-t图;b为光电流大小以及响应速率随氧分压的变化图);
图7为不同弯曲半径下器件的光暗电流图(a为不同弯曲半径下器件的光电流I-V图;b 为不同弯曲半径下器件的暗电流I-V图);
图8为器件的疲劳测试图(a为不同弯曲次数之后光电流的I-V图;b为不同弯曲次数之后暗电流的I-V图)。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1
一种β-Ga2O3柔性薄膜的光电检测器的制备方法,包括以下步骤:
(1)选取云母作为柔性衬底,并用刀片将其剥薄。
在本实施例中柔性材料的厚度具体为10μm,同时表面尽可能少分层以保证原子级表面粗糙度。
(2)选取1英寸的商业Ga2O3陶瓷靶材,在柔性衬底上采用脉冲激光沉积法沉积生长β-Ga2O3薄膜,β-Ga2O3薄膜在柔性材料衬底上的沉积条件为:温度600℃,腔体氧气分压 10- 4Pa,频率3Hz,激光能流密度2.5J cm-2
(3)选取金属Pt作为靶材,采用脉冲激光沉积法在β-Ga2O3柔性薄膜上沉积生长叉状电极薄膜。
在本实施例中,沉积生长电极薄膜的生长条件为:温度为25℃,腔体氧分压为5.0×10-5Pa,频率为5Hz,激光能流密度为1.0J cm-2,厚度为50nm。
将实施例1所述制备方法制得的器件,用透射电镜显微镜观察其β-Ga2O3/Mica异质结构得到如图1所示的β-Ga2O3/Mica异质结构图,由图1可以看出β-Ga2O3薄膜的厚度为250nm。从局部放大图中可以看到β-Ga2O3薄膜紧紧的依附于Mica衬底表面,界面十分清晰,而且也可以清楚观察到β-Ga2O3和Mica的晶体结构,表明β-Ga2O3薄膜在Mica衬底上具有比较好的结晶质量,且不存在界面的元素扩散,稳定性强。
实施例2
一种β-Ga2O3柔性薄膜的光电检测器的制备方法,包括以下步骤:
(1)选取云母作为柔性衬底,并用刀片将其剥薄。
在本实施例中柔性材料的厚度具体为50μm,同时表面尽可能少分层以保证原子级表面粗糙度。
(2)选取1英寸的商业Ga2O3陶瓷靶材,在柔性衬底上采用脉冲激光沉积法沉积生长β-Ga2O3薄膜,β-Ga2O3薄膜在柔性材料衬底上的沉积条件为:温度680℃,腔体氧气分压10Pa,频率4Hz,激光能流密度2.8J cm-2
(3)选取金属Pt作为靶材,采用脉冲激光沉积法在β-Ga2O3柔性薄膜上沉积生长叉状电极薄膜。
在本实施例中,沉积生长电极薄膜的生长条件为:温度为40℃,腔体氧分压为4.0×10-4Pa,频率为7Hz,激光能流密度为2.0J cm-2,厚度为100nm。
按照实施例2所述方法得到在氧分压为10Pa的条件下制备的含β-Ga2O3薄膜的光电器件。将器件制成MSM平面结构全透明日盲区深紫外光电探测器,其结构如图2所示,其中相邻叉状电极之间的距离是50μm。
实施例3
一种β-Ga2O3柔性薄膜的光电检测器的制备方法,包括以下步骤:
(1)选取云母作为柔性衬底,并用刀片将其剥薄。
在本实施例中柔性材料的厚度具体为100μm,同时表面尽可能少分层以保证原子级表面粗糙度。
(2)选取1英寸的商业Ga2O3陶瓷靶材,在柔性衬底上采用脉冲激光沉积法沉积生长β-Ga2O3薄膜,β-Ga2O3薄膜在柔性材料衬底上的沉积条件为:温度700℃,腔体氧气分压30Pa,频率5Hz,激光能流密度3.0J cm-2
(3)选取金属Pt作为靶材,采用脉冲激光沉积法在β-Ga2O3柔性薄膜上沉积生长叉状电极薄膜。
在本实施例中,沉积生长电极薄膜的生长条件为:温度为50℃,腔体氧分压为5.0×10-4Pa,频率为8Hz,激光能流密度为2.5J cm-2,厚度为150nm。
对比例1
一种β-Ga2O3柔性薄膜的光电检测器的制备方法,基本同实施例2,唯一不同的是:步骤 (2)按照以下操作:选取1英寸的商业Ga2O3陶瓷靶材,在柔性衬底上采用脉冲激光沉积法沉积生长β-Ga2O3薄膜,β-Ga2O3薄膜在柔性材料衬底上的沉积条件为:温度680℃,腔体氧气分压0.1Pa,频率4Hz,激光能流密度2.8J cm-2
按照对比例1所述方法在氧分压为0.1Pa的条件下制备得到器件。
对比例2
一种β-Ga2O3柔性薄膜的光电检测器的制备方法,基本同实施例2,唯一不同的是:步骤 (2)按照以下操作:选取1英寸的商业Ga2O3陶瓷靶材,在柔性衬底上采用脉冲激光沉积法沉积生长β-Ga2O3薄膜,β-Ga2O3薄膜在柔性材料衬底上的沉积条件为:温度680℃,腔体为真空状态,频率4Hz,激光能流密度2.8J cm-2
按照对比例2所述方法在真空的条件下制备得到器件。
实验例1不同氧分压下制备对β-Ga2O3薄膜衍射峰的影响
将实施例2、对比例1和对比例2制备的β-Ga2O3薄膜进行β-Ga2O3薄膜XRD(X射线衍射)扫描,得到图3不同氧分压下制备的β-Ga2O3薄膜的XRD图,由图3可以非常明显看出衬底Mica的衍射峰,都是平行于(001)面的衍射峰,衍射峰强度高且窄,说明衬底的质量很好。三种不同的氧分压下对应的2θ图上都可以看到三个相同位置的衍射峰,峰位分别是 18.95°、38.43°和59.12°,根据XRD标准PDF卡片(卡片序号:00431012)可以得到对应的峰为β-Ga2O3薄膜(-201)、(-402)、(-603)晶面的衍射峰。在实施例2的XRD图60.1°的位置可以看到一个比较强的衍射峰,对应的是Ga2O3薄膜的(311)面,说明我们在云母衬底上生长的氧化镓为多晶结构。通过峰的强度以及形状可以说明,通过实施例2制备的β-Ga2O3薄膜结晶特性比较好。
实验例2不同氧分压下制备对β-Ga2O3状态和透过率的影响
将实施例2、对比例1和对比例2制备的Mica和β-Ga2O3/Mica进行比较,如图4(a) 云母衬底以及β-Ga2O3/Mica薄膜的照片,可以得出Mica衬底以及实施例2、对比例1和对比例2制备的β-Ga2O3/Mica薄膜都是透明的;在图4(a)中的小图中可以看到β-Ga2O3/Mica薄膜具有良好的力学柔韧性;
将实施例2、对比例1和对比例2制备的Mica和β-Ga2O3/Mica分别通过紫外-可见光谱进行透光率测试,得到如图4(b)所示的云母衬底以及β-Ga2O3/Mica薄膜的透过率图,在400-1100nm的波长范围内Mica衬底以及β-Ga2O3/Mica薄膜的透过率都在80%左右。
结果表明,基于β-Ga2O3/Mica薄膜可用于制备全透明的柔性电子器件。
实验例3不同氧分压下制备对器件光暗电流的影响
将实施例2、对比例1和对比例2制备的器件进行光暗电流测试,得到如图5所示不同氧分压下器件光暗电流的I-V图;由图5中器件的光电流I-V特性曲线可以看到,随着氧分压的增大,器件的光电流具有明显的上升趋势,其原因可能是随着氧分压的增大,薄膜结晶性提高、内部缺陷减少,从而提升光电流的大小;其中实施例2制备的器件光电流最大,效果最好。而氧分压对暗电流则没有很明显的影响。
实验例4不同氧分压下制备对器件光电响应的影响
将实施例2、对比例1和对比例2制备的器件进行光电响应测试,得到如图6(a)所示不同氧分压下器件I-t图,可以看到在20V的偏压以及254nm的紫外光照射下,实施例2、对比例1和对比例2制备的器件均有十分明显的光电响应,且光电流随着氧分压的增大而增大,其中实施例2制备的器件光电响应最为明显。通过测定不同氧分压制备的器件光电流大小和响应速率,得到图6(b)光电流大小以及响应速率随氧分压的变化图,可以看到氧分压的增大,不仅可以提升光电流,同时也减小了光电器件响应时间。说明氧分压对光电器件的性能的提升有比较重要的作用;
其原因可能是:一、氧分压提高提升薄膜的结晶性,降低载流子在输运过程中的晶格散射效应;二、同时降低薄膜内部的缺陷,减少缺陷对载流子的捕获。
实验例5不同弯曲半径对器件的光暗电流的影响
将实施例2制备的光电探测器在不弯曲、弯曲半径分别为5mm、8mm、10mm、15mm 的条件下,在254nm外加深紫外光照射进行I-V测试,得到如图7所示不同弯曲半径下器件的光暗电流图;
其中图7(a)是该光电探测器在254nm外加深紫外光照射下的I-V图,在20V的偏压下,光电流的大小基本维持在50μA上下,不同弯曲状态下的光电流没有很明显的变化。开关比 (器件开状态电流与关状态电流的比值)依然在105左右;
图7(b)是光电探测器在不加光的条件下的I-V图,可以看到在不同的弯曲状态下,器件的暗电流在数量级上也没有明显的差异,在20V偏压下的暗电流值基本在1nA以下,和不同弯曲半径下的光电流相似,光暗电流大小稍有衰减,但是这并不影响整个光电器件的工作状态,说明本工作的柔性光电探测器在经历弯曲变化的时候,弯曲状态对器件的光电性能较小。
实验例6不同弯曲次数对器件的光暗电流的影响
将实施例2制备的光电探测器分别弯曲一次、十次、百次、千次以及万次后进行I-V测试,得到如图8所示器件的疲劳测试图;
其中由图8(a)不同弯曲次数之后光电流的I-V图,可以得知在光电流方面,随着弯曲次数的增加,光电探测器的电流值呈现一定衰减趋势,但是变化并不是特别显著。可以看到在经历10000次之后这个光电器件的光流相较于原始电流数值相差不大;同样,从图8(b)不同弯曲次数之后暗电流的I-V图可以看到,在经历同样的弯曲次数之后,这个光电探测器的暗电流也呈现出与光电流一样的变化趋势,但是相对不明显。
综上所述,在经历10000次弯曲测试之后,器件性能稍有衰减,但是不影响光电器件的正常工作,说明实施例2制备的柔性深紫外光电探测器在实际的使用中具备优异的耐疲劳特性。

Claims (9)

1.一种β-Ga2O3柔性薄膜,其特征在于,所述β-Ga2O3柔性薄膜以柔性材料为衬底。
2.根据权利要求1所述的β-Ga2O3柔性薄膜,其特征在于,所述柔性材料的厚度为10-100μm。
3.权利要求2所述的β-Ga2O3柔性薄膜的制备方法,其特征在于,所述β-Ga2O3薄膜在柔性材料衬底上的沉积条件为:温度600~700℃,腔体氧气分压10-4~30Pa,频率3~5Hz,激光能流密度2.5~3.0Jcm-2
4.一种含有权利要求1至3任一项所述的β-Ga2O3柔性薄膜的光电检测器。
5.根据权利要求4所述的β-Ga2O3柔性薄膜的光电检测器,其特征在于,所述光电检测器以金属或金属氧化物薄膜为生长电极。
6.根据权利要求5所述的β-Ga2O3柔性薄膜的光电检测器,其特征在于,所述生长电极为金属叉状电极薄膜、金属网状电极薄膜、ITO薄膜或AZO薄膜中的至少一种。
7.根据权利要求6所述的β-Ga2O3柔性薄膜的光电检测器,其特征在于,所述柔性材料为云母。
8.权利要求7所述的β-Ga2O3柔性薄膜的光电检测器的制备方法,其特征在于,还包括以下步骤:选取金属或金属氧化物作为靶材,采用脉冲激光沉积法在β-Ga2O3柔性薄膜上沉积生长电极薄膜。
9.根据权利要求8所述的β-Ga2O3柔性薄膜的光电检测器的制备方法,其特征在于,沉积生长电极薄膜的生长条件为:温度为25~50℃,腔体氧分压为5.0×10-5~5.0×10-4Pa,频率为5~8Hz,激光能流密度为1.0~2.5J cm-2,厚度为50~150nm。
CN202010449057.5A 2020-05-25 2020-05-25 一种基于β-Ga2O3薄膜的柔性日盲区深紫外光电探测器及其制备方法和应用 Withdrawn CN111900229A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010449057.5A CN111900229A (zh) 2020-05-25 2020-05-25 一种基于β-Ga2O3薄膜的柔性日盲区深紫外光电探测器及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010449057.5A CN111900229A (zh) 2020-05-25 2020-05-25 一种基于β-Ga2O3薄膜的柔性日盲区深紫外光电探测器及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111900229A true CN111900229A (zh) 2020-11-06

Family

ID=73207530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010449057.5A Withdrawn CN111900229A (zh) 2020-05-25 2020-05-25 一种基于β-Ga2O3薄膜的柔性日盲区深紫外光电探测器及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111900229A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113451435A (zh) * 2021-06-30 2021-09-28 南方科技大学 一种单晶氧化镓基日盲紫外光电探测器及其制备方法与应用
CN113451447A (zh) * 2021-06-30 2021-09-28 南方科技大学 一种深紫外非晶氧化镓光电探测器及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224737A (ja) * 2008-03-19 2009-10-01 Fujifilm Corp 酸化ガリウムを主成分とする金属酸化物からなる絶縁膜およびその製造方法
CN105742398A (zh) * 2016-03-18 2016-07-06 浙江理工大学 基于β-Ga2O3/SiC异质结薄膜的日盲型紫外探测器及其制备方法
CN108535337A (zh) * 2018-05-30 2018-09-14 杨丽娜 基于氧化锡/氧化镓异质结纳米阵列的柔性气敏传感器及其制备方法
CN108615784A (zh) * 2018-05-30 2018-10-02 金康康 一种玻璃纤维基自供电柔性氧化锡/氧化镓异质结薄膜紫外探测器及其制备方法
CN109065661A (zh) * 2018-07-20 2018-12-21 北京镓族科技有限公司 基于铝酸镁衬底的氧化镓薄膜光电探测器及其制造方法
CN110455317A (zh) * 2019-07-05 2019-11-15 华南师范大学 一种耐高温柔性传感器及其制备方法
CN110828589A (zh) * 2019-11-17 2020-02-21 金华紫芯科技有限公司 一种柔性日盲紫外光电探测器及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224737A (ja) * 2008-03-19 2009-10-01 Fujifilm Corp 酸化ガリウムを主成分とする金属酸化物からなる絶縁膜およびその製造方法
CN105742398A (zh) * 2016-03-18 2016-07-06 浙江理工大学 基于β-Ga2O3/SiC异质结薄膜的日盲型紫外探测器及其制备方法
CN108535337A (zh) * 2018-05-30 2018-09-14 杨丽娜 基于氧化锡/氧化镓异质结纳米阵列的柔性气敏传感器及其制备方法
CN108615784A (zh) * 2018-05-30 2018-10-02 金康康 一种玻璃纤维基自供电柔性氧化锡/氧化镓异质结薄膜紫外探测器及其制备方法
CN109065661A (zh) * 2018-07-20 2018-12-21 北京镓族科技有限公司 基于铝酸镁衬底的氧化镓薄膜光电探测器及其制造方法
CN110455317A (zh) * 2019-07-05 2019-11-15 华南师范大学 一种耐高温柔性传感器及其制备方法
CN110828589A (zh) * 2019-11-17 2020-02-21 金华紫芯科技有限公司 一种柔性日盲紫外光电探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陶绪堂 等: "宽禁带半导体氧化镓晶体和器件研究进展", 《中国材料进展》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113451435A (zh) * 2021-06-30 2021-09-28 南方科技大学 一种单晶氧化镓基日盲紫外光电探测器及其制备方法与应用
CN113451447A (zh) * 2021-06-30 2021-09-28 南方科技大学 一种深紫外非晶氧化镓光电探测器及其制备方法与应用

Similar Documents

Publication Publication Date Title
Chu et al. Fabrication and characterization of Ni-Doped ZnO nanorod arrays for UV photodetector application
Fallahazad et al. Combination of surface texturing and nanostructure coating for reduction of light reflection in ZnO/Si heterojunction thin film solar cell
CN110676339B (zh) 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法
CN111628019B (zh) 一种三氧化二镓日盲紫外探测器及其制备方法
CN111900229A (zh) 一种基于β-Ga2O3薄膜的柔性日盲区深紫外光电探测器及其制备方法和应用
Sui et al. A flexible and transparent β-Ga2O3 solar-blind ultraviolet photodetector on mica
CN101038943A (zh) 一种a-b取向ZnO纳米线阵列的制备方法
CN108346712B (zh) 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法
CN111816720B (zh) MgGa2O4紫外探测器及其制备方法
Liu et al. Strong room-temperature ultraviolet emission from nanocrystalline ZnO and ZnO: Ag films grown by ultrasonic spray pyrolysis
CN109957759A (zh) Cu掺杂β-Ga2O3薄膜的制备方法及相应的结构
CN110828589B (zh) 一种柔性日盲紫外光电探测器及其制备方法
CN110797422B (zh) 一种ZnGaO紫外探测器及其制备方法
KR101069066B1 (ko) 알루미늄이 도핑된 산화아연 나노로드 기반 실리콘 태양전지의 투명전도성기판 제조방법
CN114657637B (zh) 镓酸锌薄膜及制备方法、紫外探测器及制备方法
CN110993707A (zh) 基于氧化镓多层堆叠结构的pin二极管及其制备方法
CN111785795B (zh) ZnMgGaO紫外探测器及其制备方法
Wang et al. Enhancing β-Ga2O3-film ultraviolet detectors via RF magnetron sputtering with seed layer insertion on c-plane sapphire substrate
CN203871359U (zh) 光电子器件
CN103060753B (zh) 一种低温制备六方相ZnS薄膜的工艺方法
Ikhmayies et al. The influence of annealing in nitrogen atmosphere on the electrical, optical and structural properties of spray-deposited ZnO thin films
Erkan et al. Enhanced photovoltaic performance of silicon-based solar cell through optimization of Ga-doped ZnO layer
Reddy et al. Oxygen pressure effect on optical properties and dye degradation of ZnO nanostructured films prepared by sputtering
Aljanaby et al. Synthesis Ni-doped ZnO nanorod of UV photodetector by chemical bath deposition
CN115084296B (zh) 复合型自驱动氧化锌同质结基紫外探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20201106