CN109065661A - 基于铝酸镁衬底的氧化镓薄膜光电探测器及其制造方法 - Google Patents

基于铝酸镁衬底的氧化镓薄膜光电探测器及其制造方法 Download PDF

Info

Publication number
CN109065661A
CN109065661A CN201810801049.5A CN201810801049A CN109065661A CN 109065661 A CN109065661 A CN 109065661A CN 201810801049 A CN201810801049 A CN 201810801049A CN 109065661 A CN109065661 A CN 109065661A
Authority
CN
China
Prior art keywords
oxide film
gallium oxide
substrate
film
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810801049.5A
Other languages
English (en)
Inventor
吴真平
余杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Gallium Science And Technology Co Ltd
Original Assignee
Beijing Gallium Science And Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Gallium Science And Technology Co Ltd filed Critical Beijing Gallium Science And Technology Co Ltd
Priority to CN201810801049.5A priority Critical patent/CN109065661A/zh
Publication of CN109065661A publication Critical patent/CN109065661A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Light Receiving Elements (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

基于铝酸镁衬底的氧化镓薄膜光电探测器及其制造方法。本发明提供了一种氧化镓薄膜光电探测器,以及相应的氧化镓薄膜和氧化镓薄膜的制造方法。所述的探测器包括依次叠置的衬底、氧化镓薄膜和电极,其中氧化镓薄膜为(00l)取向的β‑Ga2O3薄膜,衬底为MgAl2O4衬底。本发明的工艺可控性强、容易操作。本发明制得的氧化镓薄膜表面致密、厚度稳定均一,适于大面积制备、且复性好。本发明制得的光电探测器响应度高、暗电流小、紫外可见抑制比高、制造工艺简单,且所用材料容易获得。

Description

基于铝酸镁衬底的氧化镓薄膜光电探测器及其制造方法
技术领域
本发明属于光电探测器技术领域,特别涉及一种利用激光脉冲沉积方法在铝酸镁(MgAl2O4)衬底上外延生长(00l)取向β型氧化镓(β-Ga2O3)薄膜的方法,以及应用β-Ga2O3薄膜的光电探测器。
背景技术
由于臭氧层对紫外辐射区的强烈吸收作用,日盲紫外探测器不受太阳光背景影响,可以全天候工作,具有灵敏度高、虚警率低等特点,是国防预警、紫外通信、电力工业和环境监测等应用的核心技术。目前得到广泛应用的日盲探测器主要是由紫外光电倍增管构成,然而这种探测器的检测距离小,工作电压高,不能抗雷电的干扰。同时,即使是当前最高新技术的光电倍增管,体积也比半导体级探测器大很多,价格也极其昂贵。因此,基于尺寸、功耗、成本和安全等因素的考虑,采用半导体探测器替代光电倍增管是一种比较理想的选择。
作为一种直接带隙宽禁带半导体,β-Ga2O3具有优异的化学稳定性和热稳定性,其室温下禁带宽度约为4.9eV,对应的带边发射波长为280nm,已经进入深紫外波段,加上极高的光学透过率,因此它是制备光电探测器,特别是日盲深紫外探测器的理想材料。目前国际上性能最好的基于β-Ga2O3材料的日盲探测器是日本石卷大学报道的基于单晶β-Ga2O3的,但单晶材料成本极其昂贵,无法实现大规模生产,不具备产业化可能。因此,基于异质外延生长的β-Ga2O3薄膜的日盲探测器引起了人们的广泛关注。
由于β-Ga2O3单晶属于单斜晶系,自然界还缺乏能跟其晶格匹配度较高且制造成本较低的基底材料,虽然以c面蓝宝石(Al2O3)为基底能生长β-Ga2O3薄膜,但是在Al2O3衬底上异质外延生长高质量的β-Ga2O3薄膜难度仍然非常大,特别是在Al2O3衬底上生长获得的β-Ga2O3薄膜均为(-201)取向,基于该取向生长的β-Ga2O3基光电探测器性能要弱于沿(00l)取向生长的β-Ga2O3基光电探测器。
因此,找到与β-Ga2O3晶格匹配度较高,且使β-Ga2O3薄膜生长质量较好的衬底,并开发出相对应的工艺方法,仍是业界极待解决的问题。
发明内容
为解决上述技术问题,本发明提出一种基于MgAl2O4衬底的(00l)取向β-Ga2O3薄膜光电探测器制备方法,可应用于日盲紫外探测器。
本发明在MgAl2O4衬底上制备了沿(00l)取向外延生长的β-Ga2O3薄膜基金属-半导体-金属MSM结构日盲紫外探测器。该发明为(00l)取向β-Ga2O3薄膜基MSM结构光电探测器,特别是日盲紫外探测器的制备提供理论和技术支持。
本发明的氧化镓薄膜光电探测器,包括依次叠置的衬底、氧化镓薄膜和电极,所述氧化镓薄膜为(00l)取向的β-Ga2O3薄膜,所述衬底为MgAl2O4衬底。
根据本发明的一种具体实施方式,所述MgAl2O4衬底是(100)取向的。
根据本发明的一种具体实施方式,所述电极包括Ti层和/或金层。
根据本发明的一种具体实施方式,所述氧化镓薄膜的厚度为100nm至200nm。
本发明还提出一种氧化镓薄膜的制造方法,包括:在衬底上,采用激光脉冲沉积法生长氧化镓薄膜;其特征在于:所述氧化镓薄膜为(00l)取向的β-Ga2O3薄膜,所述衬底为MgAl2O4衬底。
根据本发明的一种具体实施方式,所述激光脉冲沉积法的生长参数包括:脉冲激光能量为1J/cm2~5J/cm2
根据本发明的一种具体实施方式,所述激光脉冲沉积法的生长参数还包括:脉冲激光频率为1Hz~5Hz。
根据本发明的一种具体实施方式,所述激光脉冲沉积法的生长参数还包括:衬底温度为600℃~850℃。
根据本发明的一种具体实施方式,所述激光脉冲沉积法的生长参数还包括:薄膜的生长气压为1×10-5Pa~1Pa。
相应的,本发明还提出一种氧化镓薄膜光电探测器的制造方法,所述氧化镓薄膜光电探测器包括氧化镓薄膜,所述氧化镓薄膜是通过前述的氧化镓薄膜的制造方法所制造的。
本发明的有益效果是:
1.本发明制备过程简单,所用衬底为商业产品,能够获得(00l)取向的β-Ga2O3薄膜;采用商业化的制备方法激光脉冲沉积生长薄膜,工艺可控性强,易操作,所得薄膜表面致密、厚度稳定均一、可大面积制备、重复性好。
2.本发明所得的MSM结构的(00l)取向的β-Ga2O3薄膜光电探测器响应度高,暗电流小,紫外可见抑制比高,制造工艺简单,所用材料容易获得,具有广阔的发展前景。
附图说明
图1是通过本发明一个实施例的方法制备的MgAl2O4基底上β-Ga2O3薄膜的日盲紫外探测器结构示意图;
图2是用本发明一个实施例的方法制得的MgAl2O4基底上β-Ga2O3薄膜的XRD图;
图3是用本发明一个实施例的方法制得的β-Ga2O3薄膜的紫外可见光谱;
图4是用本发明一个实施例的方法制得的β-Ga2O3薄膜的扫描电子显微镜图;
图5是用本发明一个实施例的方法制得的β-Ga2O3薄膜日盲紫外探测器在无光照,365nm及254nm光照下的I-V曲线;
图6是本发明一个实施例的方法制得的β-Ga2O3薄膜日盲紫外探测器在5V偏压的254nm光照下的I-T曲线。
具体实施方式
总的来说,本发明提出一种在铝酸镁(MgAl2O4)衬底上外延生长(00l)取向β-Ga2O3薄膜并制作光电探测器的方法。该方法应用激光脉冲沉积技术,生长的条件容易控制,重复性好,稳定性高,适宜进行大规模生产。本发明的光电探测器适合于日盲紫外探测器。
本发明以(100)取向的MgAl2O4为衬底,利用激光脉冲沉积方法生长(00l)取向的β-Ga2O3薄膜作为光敏层。
本发明在光敏层上再通过磁控溅射的方法溅射金属电极(例如Au层和/或Ti层叉指电极),从而获得MSM结构的光电探测器件。通过本发明方法制备得到的日盲紫外探测器,结构为MSM型三明治结构,从下到上分别是MgAl2O4衬底、(00l)取向β-Ga2O3薄膜、金属电极。
本发明还提出一种光电探测器,包括衬底和形成在衬底上的光电薄膜和电极层,所述光电薄膜为上述薄膜制备方法制作的薄膜。
以下结合附图并通过具体实施例来进一步说明本发明,该实施例是一种制备日盲紫外探测器的方法,该方法包括如下步骤:
(1)取一片10mm×10mm×0.5mm大小的(100)取向的MgAl2O4衬底,将衬底依次浸泡在15毫升的丙酮、无水乙醇、去离子水中分别超声15分钟,取出后再用流动的去离子水冲洗,最后用干燥的N2气吹干,等待下一步使用。
(2)将上述清洗干净的MgAl2O4衬底放入沉积室,采用激光脉冲沉积在其上生长β-Ga2O3薄膜,以99.99%纯度的Ga2O3陶瓷为靶材,激光脉冲沉积技术的具体生长参数如下:背底真空压强小于1×10-6Pa,工作气氛为氧气,工作气压为5×10-3Pa,衬底温度为750℃,激光波长为248nm,激光能量为5J/cm2,脉冲激光频率为2Hz,脉冲数为20000下,得到的β-Ga2O3薄膜的厚度约150nm。
(3)上述制备的β-Ga2O3薄膜用镂空的叉指电极掩膜板遮挡,采用磁控溅射方法在薄膜表面先后溅射金属Ti层(约10nm)和Au层(约20nm)获得Au/Ti叉指电极,叉指金属电极的指宽为200μm,指长为2800μm,各叉指的间距为200μm,光敏面积为2800μm×1200μm。溅射工艺条件如下:背底真空为1×10-4Pa,衬底温度为室温,工作气氛为Ar气,工作气压为3Pa,溅射功率为40W,Ti层的溅射时间为10s,Au层的溅射时间为20s。
通过上述步骤制备获得(00l)取向β-Ga2O3薄膜日盲紫外探测器如图1所示,包括(100)取向的MgAl2O4衬底1、(00l)取向β-Ga2O3薄膜2和叉指电极3。在叉指电极3两侧外加5V偏压,电流则从正电极流入,通过光敏层β-Ga2O3薄膜,从负电极流出,构成金属-半导体-金属(MSM)型日盲紫外探测器。
图2给出了β-Ga2O3薄膜的XRD,除去MgAl2O4衬底的衍射峰外,有且仅有β-Ga2O3(400)衍射峰,说明所有的样品都是沿着(00l)晶面外延生长的β相Ga2O3薄膜。
图3给出了β-Ga2O3薄膜的紫外可见光吸收谱,从图中可以看出,薄膜的吸收边都在260nm左右,具有明显的日盲紫外光敏感特性。
图4给出了β-Ga2O3薄膜的扫描电子显微镜图,可以看出薄膜表面都呈现出颗粒状,颗粒与颗粒存在清晰的界面。
图5给出了日盲紫外探测器在黑暗,254nm及365nm(光强为0.6mW/cm2)光照下的I-V曲线。在黑暗和365nm的光照下,β-Ga2O3薄膜日盲紫外探测器的电流都非常小。而在光强为0.6mW/cm2的254nm光照下,随着正向偏压的增加,光电流有着明显的增加。在5V时,探测器的电流从黑暗情况下的1.3nA增加至570.7nA,光暗比I254/Idark为439,而表明薄膜材料对254nm的紫外光具有强烈的响应,对365nm的光不敏感,几乎没响应。
图6给出了在5V偏压及三种不同光强下(0.3、0.6、0.9mW/cm2)的254nm光照下通过不断灯开灯关测得的I-t曲线。本实施例中重复了6个I-t循环,该器件表现出很好的重复性。通过进一步的拟合,可得知该探测器在的上升响应时间τr及衰减时间τd分别为0.908s和0.096s。
对于上述实施例公开的具体实施方式,本领域的技术人员可在一定的范围内变化,具体如下:根据本发明的优选实施方式,所述靶材为99.99%纯度的Ga2O3陶瓷靶材。所述沉积过程工作气氛为氧气,薄膜生长工作气压为1×10-5Pa~1Pa,优选5×10-3Pa。所述衬底温度为600℃~850℃,优选为750℃。所述激光波长优选为248nm,脉冲激光能量为1J/cm2~5J/cm2,优选为5J/cm2,脉冲激光频率为1Hz~5Hz,优选为2Hz,脉冲数优选为20000下。得到的β-Ga2O3薄膜的厚度优选为100nm至200nm。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种氧化镓薄膜光电探测器,包括依次叠置的衬底、氧化镓薄膜和电极,其特征在于:所述氧化镓薄膜为(00l)取向的β-Ga2O3薄膜,所述衬底为MgAl2O4衬底。
2.如权利要求1所述的氧化镓薄膜光电探测器,其特征在于:所述MgAl2O4衬底是(100)取向的。
3.如权利要求1或2所述的氧化镓薄膜光电探测器,其特征在于:所述电极包括Ti层和/或金层。
4.如权利要求1或2所述的氧化镓薄膜光电探测器,其特征在于:所述氧化镓薄膜的厚度为100nm至200nm。
5.一种氧化镓薄膜的制造方法,包括:在衬底上,采用激光脉冲沉积法生长氧化镓薄膜;其特征在于:所述氧化镓薄膜为(00l)取向的β-Ga2O3薄膜,所述衬底为MgAl2O4衬底。
6.如权利要求5所述的氧化镓薄膜的制造方法,其特征在于:所述激光脉冲沉积法的生长参数包括:脉冲激光能量为1J/cm2~5J/cm2
7.如权利要求6所述的氧化镓薄膜的制造方法,其特征在于:所述激光脉冲沉积法的生长参数还包括:脉冲激光频率为1Hz~5Hz。
8.如权利要求7所述的氧化镓薄膜的制造方法,其特征在于:所述激光脉冲沉积法的生长参数还包括:衬底温度为600℃~850℃。
9.如权利要求8所述的氧化镓薄膜的制造方法,其特征在于:所述激光脉冲沉积法的生长参数还包括:薄膜的生长气压为1×10-5Pa~1Pa。
10.一种氧化镓薄膜光电探测器的制造方法,所述氧化镓薄膜光电探测器包括氧化镓薄膜,其特征在于,所述氧化镓薄膜是通过权利要求5至9中任一项所述的氧化镓薄膜的制造方法所制造的。
CN201810801049.5A 2018-07-20 2018-07-20 基于铝酸镁衬底的氧化镓薄膜光电探测器及其制造方法 Pending CN109065661A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810801049.5A CN109065661A (zh) 2018-07-20 2018-07-20 基于铝酸镁衬底的氧化镓薄膜光电探测器及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810801049.5A CN109065661A (zh) 2018-07-20 2018-07-20 基于铝酸镁衬底的氧化镓薄膜光电探测器及其制造方法

Publications (1)

Publication Number Publication Date
CN109065661A true CN109065661A (zh) 2018-12-21

Family

ID=64817551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810801049.5A Pending CN109065661A (zh) 2018-07-20 2018-07-20 基于铝酸镁衬底的氧化镓薄膜光电探测器及其制造方法

Country Status (1)

Country Link
CN (1) CN109065661A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109852381A (zh) * 2019-01-23 2019-06-07 北京镓族科技有限公司 一种Yb和Er共掺杂的氧化镓薄膜及其制备方法
CN111816720A (zh) * 2020-08-11 2020-10-23 中国科学院长春光学精密机械与物理研究所 MgGa2O4紫外探测器及其制备方法
CN111900229A (zh) * 2020-05-25 2020-11-06 肇庆市华师大光电产业研究院 一种基于β-Ga2O3薄膜的柔性日盲区深紫外光电探测器及其制备方法和应用
JP2021038112A (ja) * 2019-09-02 2021-03-11 信越化学工業株式会社 積層構造体、半導体装置及び半導体システム
CN114551646A (zh) * 2022-02-22 2022-05-27 山东大学 一种利用β相氧化镓晶体(100)面内各向异性制备高性能日盲探测器的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106340551A (zh) * 2016-08-30 2017-01-18 孙顺秋 一种基于Mg:β‑Ga2O3/NSTO异质结的零功耗日盲紫外探测器及其制备方法
CN109742157A (zh) * 2019-01-21 2019-05-10 北京镓族科技有限公司 一种β-Ga2O3基薄膜晶体管及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106340551A (zh) * 2016-08-30 2017-01-18 孙顺秋 一种基于Mg:β‑Ga2O3/NSTO异质结的零功耗日盲紫外探测器及其制备方法
CN109742157A (zh) * 2019-01-21 2019-05-10 北京镓族科技有限公司 一种β-Ga2O3基薄膜晶体管及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YU FEI-PENG等: "Pulsed laser deposition of gallium oxide films for high performance solar-blind photodetectors", 《OPTICAL MATERIALS EXPRESS》 *
弭伟: "Beta-氧化镓异质外延薄膜的制备及特性研究", 《中国博士论文集》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109852381A (zh) * 2019-01-23 2019-06-07 北京镓族科技有限公司 一种Yb和Er共掺杂的氧化镓薄膜及其制备方法
JP2021038112A (ja) * 2019-09-02 2021-03-11 信越化学工業株式会社 積層構造体、半導体装置及び半導体システム
JP7093329B2 (ja) 2019-09-02 2022-06-29 信越化学工業株式会社 積層構造体、半導体装置及び半導体システム
CN111900229A (zh) * 2020-05-25 2020-11-06 肇庆市华师大光电产业研究院 一种基于β-Ga2O3薄膜的柔性日盲区深紫外光电探测器及其制备方法和应用
CN111816720A (zh) * 2020-08-11 2020-10-23 中国科学院长春光学精密机械与物理研究所 MgGa2O4紫外探测器及其制备方法
CN111816720B (zh) * 2020-08-11 2024-04-19 中国科学院长春光学精密机械与物理研究所 MgGa2O4紫外探测器及其制备方法
CN114551646A (zh) * 2022-02-22 2022-05-27 山东大学 一种利用β相氧化镓晶体(100)面内各向异性制备高性能日盲探测器的方法

Similar Documents

Publication Publication Date Title
CN109065661A (zh) 基于铝酸镁衬底的氧化镓薄膜光电探测器及其制造方法
CN108666395A (zh) 基于非晶氧化镓薄膜的日盲紫外光电探测器及其制备方法
CN106409963B (zh) 一种Zn:Ga2O3薄膜基MSM结构日盲紫外光电探测器及其制备方法
Chu et al. Fabrication and characterization of Ni-Doped ZnO nanorod arrays for UV photodetector application
CN110061089B (zh) 蓝宝石斜切衬底优化氧化镓薄膜生长及日盲紫外探测器性能的方法
CN109461790A (zh) 氧化镓/石墨烯异质结零功耗光电探测器及其制造方法
CN110676339B (zh) 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法
CN109037386A (zh) 基于氧化镁衬底的氧化镓薄膜光电探测器及其制造方法
CN111293181B (zh) 一种MSM型α-Ga2O3基日盲紫外光探测器
CN100428502C (zh) 一种a-b取向ZnO纳米线阵列的制备方法
Lu et al. Preparation of Ga2O3 thin film solar-blind photodetectors based on mixed-phase structure by pulsed laser deposition
CN112563353B (zh) 一种异质结紫外探测器及其制备方法
CN106340551A (zh) 一种基于Mg:β‑Ga2O3/NSTO异质结的零功耗日盲紫外探测器及其制备方法
CN112103354A (zh) 透明Ga2O3的p-i-n异质结构日盲型紫外光探测器及其制备方法
CN101425553B (zh) MgZnO基光电导型紫外探测器的制作方法
CN109256438A (zh) 一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法
CN107658384B (zh) 基于有机-无机多异质结纳米阵列的广谱光电探测器及其制备方法
CN109585593B (zh) 一种基于BeZnOS四元合金的自发极化场增强型紫外光探测器及其制备方法
Xing et al. Research of nanopore structure of Ga2O3 film in MOCVD for improving the performance of UV photoresponse
Jiang et al. GaN MSM structure UV photodetector detector based on nonplanar Si substrate and its performance optimization
Li et al. Preparation of Sn-doped Ga2O3 thin films and their solar-blind photoelectric detection performance
CN109524491B (zh) 具有ZnTe过渡层的GaN-CdZnTe复合结构组件、应用及其制备方法
CN111900229A (zh) 一种基于β-Ga2O3薄膜的柔性日盲区深紫外光电探测器及其制备方法和应用
CN108258081B (zh) CdZnTe薄膜和AlN/CdZnTe基紫外光探测器制备方法及应用
CN114657637B (zh) 镓酸锌薄膜及制备方法、紫外探测器及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181221