CN110676339B - 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法 - Google Patents

一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法 Download PDF

Info

Publication number
CN110676339B
CN110676339B CN201910884320.0A CN201910884320A CN110676339B CN 110676339 B CN110676339 B CN 110676339B CN 201910884320 A CN201910884320 A CN 201910884320A CN 110676339 B CN110676339 B CN 110676339B
Authority
CN
China
Prior art keywords
film
solar blind
layer
blind ultraviolet
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910884320.0A
Other languages
English (en)
Other versions
CN110676339A (zh
Inventor
杨陈
张进
蔡长龙
邵雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Technological University
Original Assignee
Xian Technological University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Technological University filed Critical Xian Technological University
Priority to CN201910884320.0A priority Critical patent/CN110676339B/zh
Publication of CN110676339A publication Critical patent/CN110676339A/zh
Application granted granted Critical
Publication of CN110676339B publication Critical patent/CN110676339B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及对于氧化镓纳米晶薄膜在日盲紫外光电探测方面的应用,具体涉及一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法。本发明采用单晶Si作为衬底,并采用电子束蒸发技术,在其上先沉积SiO2薄膜隔离层;然后再沉积Ga2O3薄膜日盲紫外吸收层,经过退火处理使吸收层形成纳米晶结构;再通过电子束蒸发及快速热处理技术将Au/Ti双层金属叉指电极制备于吸收层上,即可得到成本低廉、工艺要求简单、重复性好、可大规模制造且具有良好光电响应的日盲紫外光探测器件。

Description

一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法
技术领域
本发明涉及对于氧化镓纳米晶薄膜在日盲紫外光电探测方面的应用,具体涉及一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法。
背景技术
氧化镓(Ga2O3)是一种新型的宽禁带半导体材料,由于其优秀的物理特性以及良好的化学稳定性,在半导体光电器件制备中展现出广阔的应用前景;特别是其禁带宽度达4.9eV,对光的吸收波长小于280nm,使其成为制备日盲紫外探测器件的首选材料之一。
目前用于日盲紫外探测的氧化镓主要分为单晶块体、纳米结构和薄膜材料。Ga2O3单晶材料在制备过程中对设备和工艺要求极高,因此导致制备成本昂贵。而纳米线结构虽然能带来优异的光电性能,但在制备中长出的纳米线或纳米带常常取向杂乱、相互缠绕、尺寸不一、机械强度低,使其离实际应用还有很大差距。
近年来基于薄膜制备技术的成熟发展,Ga2O3薄膜日盲紫外探测器成为探测器发展的主流方式,但是目前的Ga2O3薄膜日盲紫外探测器大多以昂贵的蓝宝石和Ga2O3单晶材料为外延衬底,采用工艺控制要求较高的外延技术生长制备而成,制约了器件制备效率的提高和制备成本的降低。
发明内容
有鉴于此,本发明为解决制备氧化镓日盲紫外探测器过程中的制备工艺复杂和成本较高的问题,提供一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法。
为解决现有技术存在的问题,本发明的技术方案是:一种氧化镓纳米晶薄膜日盲紫外探测器的制备方法,其特征在于:步骤为:
1)以单晶硅为衬底,采用电子束蒸发的方式,在Si衬底上沉积一层50-300nm厚的SiO2薄膜;
2)在50℃加热温度及5Am枪灯丝束流条件下再沉积一层100-400nm厚的Ga2O3薄膜;
3)将步骤2)获得的薄膜样品取出,放置于退火炉中,在600-1000℃温度下进行1-3小时退火处理,使Ga2O3薄膜晶化生成β-Ga2O3相;
4)将叉指电极掩模版覆盖在步骤3)得到的Ga2O3薄膜表面,两者一起固定在样品架上,采用电子束蒸发的方式在对样品架上的样品表面沉积一层100nm厚的钛膜,然后再沉积一层100nm厚的Au膜,形成双层金属叉指电极;
5)将双层金属叉指电极放置于快速退火炉中,在200-500℃温度下对电极进行180s的快速退火,制得日盲紫外探测器件。
所述的制备方法制得的氧化镓纳米晶薄膜日盲紫外探测器。
与现有技术相比,本发明的优点如下:
1)本发明采用电子束蒸发技术结合热处理退火工艺制备Ga2O3多晶薄膜,具有制备成本低、工艺要求简单、而且重复性好和可大规模制造等优点;
2)本发明首先是在低成本的单晶Si衬底上制备日盲紫外探测器件,通过SiO2阻挡层的引入,屏蔽掉了衬底对入射光线的光电响应;其次,采用纳米晶Ga2O3薄膜作为器件对日盲紫外的吸收层,降低了薄膜制备工艺难度和对昂贵设备的依赖;
3)本发明制备的日盲紫外探测器件中的所有膜层,包括SiO2阻挡层、Ga2O3吸收层和Au/Ti金属电极层均采用同一种制备技术沉积而成,简化了制备过程,提高了制备效率。
附图说明:
图1为日盲紫外探测器件结构的截面图;
图2为日盲紫外探测器件的立体示意图;
图3不同退火温度下Ga2O3薄膜的XRD测试结果;
图4根据XRD测试结果计算得到的不同温度退火后Ga2O3薄膜晶粒尺寸变化情况;
图5为实施例5中制备得到的器件对紫外光的响应情况;
图6为实施例6中制备得到的器件对紫外光的响应情况。
具体实施方式
本发明提供一种氧化镓纳米晶薄膜日盲紫外探测器的制备方法,步骤为:
1)以单晶硅为衬底,采用电子束蒸发的方式,在Si衬底上沉积一层50-300nm厚的SiO2薄膜;
2)在50℃加热温度及5Am枪灯丝束流条件下再沉积一层100-40nm厚的Ga2O3薄膜;
3)将步骤2)获得的薄膜样品取出,放置于退火炉中,在600-1000℃温度下进行1-3小时退火处理,使Ga2O3薄膜晶化生成β-Ga2O3相;薄膜晶相结构参考图3,薄膜晶粒大小参考图4;
4)将叉指电极掩模版覆盖在步骤3)得到的Ga2O3薄膜表面,两者一起固定在样品架上,采用电子束蒸发的方式在对样品架上的样品表面沉积一层100nm厚的钛膜,然后再沉积一层100nm厚的Au膜,形成双层金属叉指电极;
5)将双层金属叉指电极放置于快速退火炉中,在200-500℃温度下对电极进行180s的快速退火,使电极与薄膜之间形成良好的接触,最终完成日盲紫外探测器件的制备,如图1和2所示。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1:
1)以单晶硅为衬底,采用电子束蒸发的方式,在Si衬底上沉积一层100nm厚的SiO2薄膜;
2)将纯度高于99.995%的Ga2O3粉,经真空烧结后的压胚粉碎成3-5mm大小的不规则颗粒作为起镀膜料,将起镀膜料放于坩埚中,调整枪灯丝束流至50mA对膜料进行加热蒸发,蒸发过程中对衬底烘烤温度控制在150℃,并通入分压为2.0×10-2Pa、纯度为99.999%的氧气,在SiO2薄膜上沉积一层厚200nm的Ga2O3薄膜;
3)将步骤2)获得的薄膜样品取出,放置于退火炉中,在600℃温度下进行1小时退火处理,使Ga2O3薄膜晶化生成β-Ga2O3相;
4)将叉指电极掩模版覆盖在步骤3)得到的Ga2O3薄膜表面,两者一起固定在样品架上,采用电子束蒸发的方式在对样品架上的样品表面沉积一层100nm厚的钛膜,然后再沉积一层100nm厚的Au膜,形成双层金属叉指电极;
5)将双层金属叉指电极放置于快速退火炉中,在200℃温度下对电极进行180s的快速退火,制得日盲紫外探测器件。
实施例2:
1)以单晶硅为衬底,采用电子束蒸发的方式,在Si衬底上沉积一层50nm厚的SiO2薄膜;
2)将纯度高于99.995%的Ga2O3粉,经真空烧结后的压胚粉碎成3-5mm大小的不规则颗粒作为起镀膜料,将起镀膜料放于坩埚中,调整枪灯丝束流至40mA对膜料进行加热蒸发,蒸发过程中对衬底烘烤温度控制在100℃,并通入分压为2.0×10-2Pa、纯度为99.999%的氧气,在SiO2薄膜上沉积一层厚200nm的Ga2O3薄膜;
3)将步骤2)获得的薄膜样品取出,放置于退火炉中,在700℃温度下进行1小时退火处理,使Ga2O3薄膜晶化生成β-Ga2O3相;
4)将叉指电极掩模版覆盖在步骤3)得到的Ga2O3薄膜表面,两者一起固定在样品架上,采用电子束蒸发的方式在对样品架上的样品表面沉积一层100nm厚的钛膜,然后再沉积一层100nm厚的Au膜,形成双层金属叉指电极;
5)将双层金属叉指电极放置于快速退火炉中,在200℃温度下对电极进行180s的快速退火,制得日盲紫外探测器件。
实施例3:
1)以单晶硅为衬底,采用电子束蒸发的方式,在Si衬底上沉积一层300nm厚的SiO2薄膜;
2)将纯度高于99.995%的Ga2O3粉,经真空烧结后的压胚粉碎成3-5mm大小的不规则颗粒作为起镀膜料,将起镀膜料放于坩埚中,调整枪灯丝束流至30mA对膜料进行加热蒸发,蒸发过程中对衬底烘烤温度控制在100℃,并通入分压为2.0×10-2Pa、纯度为99.999%的氧气,在SiO2薄膜上沉积一层厚100nm的Ga2O3薄膜;
3)将步骤2)获得的薄膜样品取出,放置于退火炉中,在800℃温度下进行1小时退火处理,使Ga2O3薄膜晶化生成β-Ga2O3相;
4)将叉指电极掩模版覆盖在步骤3)得到的Ga2O3薄膜表面,两者一起固定在样品架上,采用电子束蒸发的方式在对样品架上的样品表面沉积一层100nm厚的钛膜,然后再沉积一层100nm厚的Au膜,形成双层金属叉指电极;
5)将双层金属叉指电极放置于快速退火炉中,在200℃温度下对电极进行180s的快速退火,制得日盲紫外探测器件。
实施例4:
1)以单晶硅为衬底,采用电子束蒸发的方式,在Si衬底上沉积一层200nm厚的SiO2薄膜;
2)将纯度高于99.995%的Ga2O3粉,经真空烧结后的压胚粉碎成3-5mm大小的不规则颗粒作为起镀膜料,将起镀膜料放于坩埚中,调整枪灯丝束流至20mA对膜料进行加热蒸发,蒸发过程中对衬底烘烤温度控制在80℃,并通入分压为2.0×10-2Pa、纯度为99.999%的氧气,在SiO2薄膜上沉积一层厚300nm的Ga2O3薄膜;
3)将步骤2)获得的薄膜样品取出,放置于退火炉中,在700℃温度下进行2小时退火处理,使Ga2O3薄膜晶化生成β-Ga2O3相;
4)将叉指电极掩模版覆盖在步骤3)得到的Ga2O3薄膜表面,两者一起固定在样品架上,采用电子束蒸发的方式在对样品架上的样品表面沉积一层100nm厚的钛膜,然后再沉积一层100nm厚的Au膜,形成双层金属叉指电极;
5)将双层金属叉指电极放置于快速退火炉中,在200℃温度下对电极进行180s的快速退火,制得日盲紫外探测器件。
从图5中可以看出,所制备的日盲器件在无光照或日光环境中,外电场为10V的测试条件下,电流低至10-10A,显示出良好的暗电流特性;当采用254nm紫外光源对器件照射时,外加电场不变,器件有明显的光电流输出,光电流峰值可达2.48×10-7A,光暗电流比可达300,展示出较好的光电响应特性;而当采用365nm紫外光源对器件照射外加电场不变时,器件无明显的光电流输出,说明器件仅针对日盲紫外具有光电响应特性。
实施例5:
1)以单晶硅为衬底,采用电子束蒸发的方式,在Si衬底上沉积一层200nm厚的SiO2薄膜;
2)将纯度高于99.995%的Ga2O3粉,经真空烧结后的压胚粉碎成3-5mm大小的不规则颗粒作为起镀膜料,将起镀膜料放于坩埚中,调整枪灯丝束流至10mA对膜料进行加热蒸发,蒸发过程中对衬底烘烤温度控制在50℃,并通入分压为2.0×10-2Pa、纯度为99.999%的氧气,在SiO2薄膜上沉积一层厚200nm的Ga2O3薄膜;
3)将步骤2)获得的薄膜样品取出,放置于退火炉中,在900℃温度下进行3小时退火处理,使Ga2O3薄膜晶化生成β-Ga2O3相;
4)将叉指电极掩模版覆盖在步骤3)得到的Ga2O3薄膜表面,两者一起固定在样品架上,采用电子束蒸发的方式在对样品架上的样品表面沉积一层100nm厚的钛膜,然后再沉积一层100nm厚的Au膜,形成双层金属叉指电极;
5)将双层金属叉指电极放置于快速退火炉中,在200℃温度下对电极进行180s的快速退火,制得日盲紫外探测器件。
实施例6:
1)以单晶硅为衬底,采用电子束蒸发的方式,在Si衬底上沉积一层200nm厚的SiO2薄膜;
2)将纯度高于99.995%的Ga2O3粉,经真空烧结后的压胚粉碎成3-5mm大小的不规则颗粒作为起镀膜料,将起镀膜料放于坩埚中,调整枪灯丝束流至20mA对膜料进行加热蒸发,蒸发过程中对衬底烘烤温度控制在130℃,并通入分压为2.0×10-2Pa、纯度为99.999%的氧气,在SiO2薄膜上沉积一层厚300nm的Ga2O3薄膜;
3)将步骤2)获得的薄膜样品取出,放置于退火炉中,在800℃温度下进行2小时退火处理,使Ga2O3薄膜晶化生成β-Ga2O3相;
4)将叉指电极掩模版覆盖在步骤3)得到的Ga2O3薄膜表面,两者一起固定在样品架上,采用电子束蒸发的方式在对样品架上的样品表面沉积一层100nm厚的钛膜,然后再沉积一层100nm厚的Au膜,形成双层金属叉指电极;
5)将双层金属叉指电极放置于快速退火炉中,在200℃温度下对电极进行180s的快速退火,制得日盲紫外探测器件。
从图6中可以看出,器件对254nm的日盲紫外光有明显响应,但同时暗电流也有所增大,导致光暗电流比降低仅为45。说明器件对日盲紫外光的响应程度与薄膜制备工艺密切相关。
以上所述仅是本发明的优选实施例,并非用于限定本发明的保护范围,应当指出,对本技术领域的普通技术人员在不脱离本发明原理的前提下,对其进行若干改进与润饰,均应视为本发明的保护范围。

Claims (2)

1.一种氧化镓纳米晶薄膜日盲紫外探测器的制备方法,其特征在于:步骤为:
1)以单晶硅为衬底,采用电子束蒸发的方式,在Si衬底上沉积一层200nm厚的SiO2薄膜;
2)将纯度高于99.995%的Ga2O3粉,经真空烧结后的压胚粉碎成3-5mm大小的不规则颗粒作为起镀膜料,将起镀膜料放于坩埚中,调整枪灯丝束流至20mA对膜料进行加热蒸发,蒸发过程中对衬底烘烤温度控制在80℃,并通入分压为2.0×10-2Pa、纯度为99.999%的氧气,在SiO2薄膜上沉积一层厚300nm的Ga2O3薄膜;
3)将步骤2)获得的薄膜样品取出,放置于退火炉中,在700℃温度下进行2小时退火处理,使Ga2O3薄膜晶化生成β-Ga2O3相;
4)将叉指电极掩模版覆盖在步骤3)得到的Ga2O3薄膜表面,两者一起固定在样品架上,采用电子束蒸发的方式在对样品架上的样品表面沉积一层100nm厚的钛膜,然后再沉积一层100nm厚的Au膜,形成双层金属叉指电极;
5)将双层金属叉指电极放置于快速退火炉中,在200℃温度下对电极进行180s的快速退火,制得日盲紫外探测器件。
2.权利要求1所述的制备方法制得的氧化镓纳米晶薄膜日盲紫外探测器。
CN201910884320.0A 2019-09-19 2019-09-19 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法 Active CN110676339B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910884320.0A CN110676339B (zh) 2019-09-19 2019-09-19 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910884320.0A CN110676339B (zh) 2019-09-19 2019-09-19 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN110676339A CN110676339A (zh) 2020-01-10
CN110676339B true CN110676339B (zh) 2021-07-20

Family

ID=69076876

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910884320.0A Active CN110676339B (zh) 2019-09-19 2019-09-19 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110676339B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244207B (zh) * 2020-01-19 2024-02-02 湘潭大学 一种宽波段自供电锑薄膜光电探测器
CN112038443B (zh) * 2020-08-31 2022-06-17 浙江大学 一种氧化镓多晶薄膜晶体管型紫外探测器的制备方法
CN113659020B (zh) * 2021-02-26 2023-06-02 松山湖材料实验室 日盲紫外探测器及其制备方法、以及日盲紫外探测方法
CN114267747B (zh) * 2021-12-21 2023-06-02 河北工业大学 具有金属栅结构的Ga2O3/AlGaN/GaN日盲紫外探测器及其制备方法
CN114551646B (zh) * 2022-02-22 2023-03-24 山东大学 一种利用β相氧化镓晶体(100)面内各向异性制备高性能日盲探测器的方法
CN114823930B (zh) * 2022-03-24 2023-04-11 电子科技大学 基于MgO钝化的非晶Ga2O3日盲紫外探测器及其制备方法
CN115928014B (zh) * 2022-11-23 2024-06-14 西安邮电大学 一种β相氧化镓薄膜及其制备和掺杂方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107946176A (zh) * 2017-11-17 2018-04-20 西安电子科技大学 Ga2O3薄膜晶体管的制备方法
CN108411250A (zh) * 2018-02-11 2018-08-17 西安工业大学 一种采用电子束蒸发技术制备Ga2O3光电薄膜的方法
CN108470675A (zh) * 2018-02-28 2018-08-31 唐为华 一种Si基氧化镓薄膜背栅极日盲紫外光晶体管及其制备方法
CN109244158A (zh) * 2018-10-17 2019-01-18 山东大学 一种氧化镓场效应晶体管日盲探测器及其制作工艺

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820016B (zh) * 2010-04-16 2012-02-01 厦门大学 一种二氧化钛紫外光电探测器
CN105789377A (zh) * 2016-03-13 2016-07-20 浙江理工大学 一种基于氧化镓薄膜的新型火焰探测器及其制备方法
CN107507876B (zh) * 2017-08-28 2020-11-27 北京邮电大学 一种β-Ga2O3基日盲紫外光电探测器阵列及其制备方法
KR101946205B1 (ko) * 2018-07-16 2019-04-17 아주대학교산학협력단 태양광-블라인드 uv-c 광센서 및 이의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107946176A (zh) * 2017-11-17 2018-04-20 西安电子科技大学 Ga2O3薄膜晶体管的制备方法
CN108411250A (zh) * 2018-02-11 2018-08-17 西安工业大学 一种采用电子束蒸发技术制备Ga2O3光电薄膜的方法
CN108470675A (zh) * 2018-02-28 2018-08-31 唐为华 一种Si基氧化镓薄膜背栅极日盲紫外光晶体管及其制备方法
CN109244158A (zh) * 2018-10-17 2019-01-18 山东大学 一种氧化镓场效应晶体管日盲探测器及其制作工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ga2O3薄膜的电子束蒸发制备与掺杂及其性质研究;郭浩;《中国博士学位论文全文数据库(电子期刊)信息科技辑》;20140515;摘要、第1章绪论、第5章硅衬底上制备薄膜和掺杂薄膜特性研究 *

Also Published As

Publication number Publication date
CN110676339A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
CN110676339B (zh) 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法
CN104485425B (zh) 钙钛矿型材料制备方法和设备及其光伏器件的加工方法
CN110459640B (zh) 一种基于Cs3Cu2I5钙钛矿的自供能光电探测器及其制备方法
CN108767050B (zh) 基于氧化亚铜/氧化镓pn结的柔性紫外光电探测器及其制备方法
CN112086344B (zh) 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用
CN108767028B (zh) 基于氧化镓异质结结构的柔性日盲紫外探测器及其制备方法
CN111739961B (zh) 基于有序SnO2纳米棒阵列的无机钙钛矿太阳能电池及其制备方法
CN112563353B (zh) 一种异质结紫外探测器及其制备方法
CN111020487B (zh) 一种取向可控的准一维结构材料的薄膜制备方法
CN108346712B (zh) 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法
CN101325227A (zh) ZnO/纳米金刚石共面栅紫外光探测器的制备方法
CN111029435A (zh) 一种ZnGaO紫外探测器及其制备方法
CN109037386A (zh) 基于氧化镁衬底的氧化镓薄膜光电探测器及其制造方法
CN113707760A (zh) 一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法
CN108735826B (zh) 一种玻璃纤维基柔性氧化镓纳米阵列日盲紫外探测器及其制备方法
CN110797422B (zh) 一种ZnGaO紫外探测器及其制备方法
CN109166935A (zh) 一种Al组分过渡型日盲紫外探测器及其制备方法
CN110993707B (zh) 基于氧化镓多层堆叠结构的pin二极管及其制备方法
CN109524491B (zh) 具有ZnTe过渡层的GaN-CdZnTe复合结构组件、应用及其制备方法
CN111244202A (zh) 一种ZnMgO紫外探测器及其制备方法
CN111261735B (zh) 一种ZnMgO薄膜、紫外探测器及其制备方法
CN113658852A (zh) 硅基尺寸可控β-Ga2O3纳米线的制备方法
CN103498191B (zh) 高纯度短棒状结晶FeWO4/FeS核壳纳米结构的制备方法
CN110643937A (zh) 掺铝AlN-CdZnTe复合结构组件及其制备方法
CN110690316A (zh) 一种基于核壳结构GaN-MoO3纳米柱的自供电紫外探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant