CN108346712B - 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法 - Google Patents

一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法 Download PDF

Info

Publication number
CN108346712B
CN108346712B CN201810113459.0A CN201810113459A CN108346712B CN 108346712 B CN108346712 B CN 108346712B CN 201810113459 A CN201810113459 A CN 201810113459A CN 108346712 B CN108346712 B CN 108346712B
Authority
CN
China
Prior art keywords
boron nitride
silicon
layer
graphene
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810113459.0A
Other languages
English (en)
Other versions
CN108346712A (zh
Inventor
慈立杰
彭瑞芹
王旭天
张琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201810113459.0A priority Critical patent/CN108346712B/zh
Publication of CN108346712A publication Critical patent/CN108346712A/zh
Application granted granted Critical
Publication of CN108346712B publication Critical patent/CN108346712B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

本发明公开了硅掺杂氮化硼与石墨烯构建PN结的紫外探测器及制备方法,包括硅掺杂氮化硼纳米颗粒层和石墨烯层,所述硅掺杂氮化硼纳米颗粒层作为紫外吸收层,所述硅掺杂氮化硼纳米颗粒层和石墨烯层之间形成异质结,硅掺杂氮化硼纳米颗粒层中的硅掺杂氮化硼是氮化硼掺杂硅单质形成的n型半导体氮化硼材料。本发明对氮化硼材料进行硅掺杂,形成n型半导体氮化硼材料,结合石墨烯本征p型的特质,形成PN结型紫外探测器。该结构设计简单,能够充分发挥氮化硼材料的本征紫外吸收特点,另一方面利用石墨烯极高的载流子迁移率,两者结合可以有效提高器件速度。

Description

一种硅掺杂氮化硼/石墨烯的PN结型紫外探测器制备方法
技术领域
本发明涉及属于半导体光电子器件技术领域,具体涉及一种硅掺杂氮化硼纳米颗粒膜与石墨烯构建的PN结型紫外探测器及制备方法。
背景技术
随着半导体技术的发展,硅基半导体器件的性能已接近理论极限。在实际的军事、民用领域对半导体器件的应用提出更高的要求。例如更高的工作温度、频率、功率、化学稳定性、耐高压、抗腐蚀性、可见光透过率等特性,而目前的硅基器件已经难以满足这些要求。氮化硼是宽带隙半导体材料,载流子浓度低,电阻率高,具有高的热导率和高化学稳定性,并可以实现n型和p型掺杂,在光电子器件应用领域前景广阔。
氮化硼材料是直接宽带隙材料(5.9eV),本征吸收区就在紫外区域,具有较高的光吸收系数(7.5×105/cm)、高的介电强度(4.4MV/cm)和良好的稳定性优势,这些特性使得氮化硼材料在深紫外区域光电应用具有得天独厚的优势。但目前研究主要集中在制备高质量的氮化硼单晶及薄膜材料,在器件应用方面研究较少,特别是在氮化硼深紫外探测器的研究方面还处于起步阶段。二维材料半导体异质结结构的光电探测器以其极快的响应和极高的响应度与探测性能,并可以广泛应用于航空、军事领域,成为研究的热点。
石墨烯材料具有优异的光电性质,可用来制备光电探测器、柔性触摸屏、太阳能电池等光电器件。其中石墨烯光电探测器因其超快的响应速度和超宽的光谱响应范围而备受关注,理论带宽可高达500GHz。得益于本征石墨烯“零带隙”的特点,突破传统探测器的长波限制,理论上可以实现从紫外到红外范围的宽光谱探测。但是石墨烯对可见光和红外辐射很敏感,利用石墨烯实现紫外探测极易被干扰,需要外加复杂、精密的滤光系统来消除可见及红外光的影响,因此用石墨烯来实现深紫外探测困难重重。
氮化硼与石墨烯有相近的晶格常数,其中六方相氮化硼与石墨烯晶格失配仅为1.7%,因此利用氮化硼与石墨烯构建二维异质结,将大大降低由于晶格失配度过大带来的影响,如降低位错、缺陷的产生,减小消光现象,因此充分发挥氮化硼材料的本征紫外吸收特性和石墨烯材料的载流子迁移率高的优势,构建异质结用于深紫外探测器研究具有重要意义。
现有技术公开了多种紫外探测器传感器的制备方法。CN104617180A公开了一种石墨烯/氮化硼/氧化锌紫外探测器及其制备方法,该器件利用石墨烯材料的高透光性、氮化硼的绝缘性和透光度,以氧化锌作为紫外吸收层。虽然利用了二维材料的特性,但实际上光敏材料还是氧化锌作为紫外探测单元,没有真正实现二维材料的光电探测器结构设计。
CN106505115A报道了一种量子点掺杂石墨烯/氮化硼/氮化镓紫外光电探测器,该发明利用量子点对石墨烯进行掺杂来优化器件性能,降低暗电流,但其紫外波段区域敏感材料为氮化镓,氮化硼的作用仍为绝缘层,并没有充分发挥氮化硼的紫外特性。
综上,现有公布的紫外器件中,大部分仍以传统宽禁带材料如氧化锌、氮化镓等为主,而基于二维材料异质结的紫外探测器还未见报道。
发明内容
针对上述现有技术中缺少基于氮化硼的深紫外探测器、掺杂技术复杂、结构设计复杂等问题,本发明目的在于提供硅掺杂氮化硼与石墨烯构建PN结的紫外探测器及制备方法,通过简单的结构设计,利用与氮化硼晶格失配低的石墨烯材料构建异质结,制备PN结型紫外探测器,该探测器响应速度快的优势,在紫外光电器件、高精密紫外光源系统等领域具有巨大的技术优势和应用空间。另外,本发明制备方法简单、可控、生产成本低,可实现大规模生产,极具市场价值。
为了实现上述目的,本发明的技术方案为:
本发明的一个方面,提供了一种硅掺杂氮化硼纳米颗粒膜与石墨烯构建的PN结型紫外探测器,包括硅掺杂氮化硼纳米颗粒层和石墨烯层,所述硅掺杂氮化硼纳米颗粒层作为紫外吸收层,所述硅掺杂氮化硼纳米颗粒层和石墨烯层之间形成异质结,硅掺杂氮化硼纳米颗粒层中的硅掺杂氮化硼是氮化硼掺杂硅单质形成的n型半导体氮化硼材料。
针对氮化硼材料用于深紫外探测器存在的劣势,如电阻率过高,光吸收率低等,本发明对氮化硼材料进行硅掺杂,形成n型半导体氮化硼材料,结合石墨烯本征p型的特质,形成PN结型紫外探测器。该结构设计简单,能够充分发挥氮化硼材料的本征紫外吸收特点,另一方面利用石墨烯极高的载流子迁移率,两者结合可以有效提高器件速度。基于该异质结制作的紫外探测器具有较强的紫外吸收峰,实现了深紫外区域有效吸收,极具应用前景及市场价值。
本发明的另一个方面,提供了一种硅掺杂氮化硼纳米颗粒膜与石墨烯构建的PN结型紫外探测器的制备方法,以六方氮化硼和硅单质分别作为靶材,采用双靶共溅射沉积成膜的方法将硅单质掺杂至氮化硼,再进行控制温度至900~1200℃进行退火处理后即得硅掺杂氮化硼纳米颗粒层,然后采用化学气相沉积法在硅掺杂氮化硼纳米颗粒层的表面进行石墨烯原位生长,从而实现在硅掺杂氮化硼纳米颗粒层表面原位生长石墨烯层,并使硅掺杂氮化硼纳米颗粒层和石墨烯层之间形成异质结;其中,双靶共溅射沉积成膜中,氮化硼的沉积速率控制在0.1~0.2nm/s,硅的沉积速率控制在0.3~0.5nm/s,时间比例为每30s溅射氮化硼,溅射硅的时间为5s。
本发明中制作的紫外探测器,以氮化硼为紫外吸收层,通过与石墨烯构建异质结,实现光生载流子的分离,被金属电极收集实现光电流信号。
本发明的第三个方面,提供一种上述紫外探测器或上述制备方法获得的紫外探测器在深紫外光刻机、紫外探测及深空紫外探测等领域的应用。
与现有技术相比,本发明的有益效果是:
(1)本发明利用磁控溅射技术实现氮化硼材料的生长,采用共溅射技术实现硅掺杂,可以定量改性氮化硼材料的导电特性,同时结合本征石墨烯中氧存在导致的p型半导体特性,制作PN结型深紫外探测器。
(2)本发明中克服传统对于氮化硼仅能作为绝缘层使用,通过硅掺杂实现从高电阻的绝缘体到n型半导体的转变,结合石墨烯的高透光性、极高的载流子迁移率优势,利用氮化硼本征紫外吸收特性,实现深紫外波段探测,极具应用前景。
(3)本发明技术工艺可控,借助合理的材料特殊形貌设计,充分发挥二维材料的优势,通过构建异质结获得深紫外区域(220nm左右)响应的器件,制备工艺可重复,具有较大的应用价值。
(4)本发明技术还可扩展制备紫外探测器阵列,工艺操作简单、可控,为大规模紫外可视化探测系统研制提供技术支持。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明提供的紫外探测器的器件结构示意图。
图2为本发明实施例1中氮化硼上原位生长的石墨烯的扫描电镜图和原子力扫描图,其中,a为扫描电镜图,b为原子力扫描图。
图3为本发明实施例1中氮化硼上原位生长的石墨烯的拉曼能谱。
图4为本发明实施例1的紫外探测器的吸收波段。
图5为实施例4的紫外探测器的吸收波段。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,现有技术中存在缺少基于氮化硼的深紫外探测器、掺杂技术复杂、结构设计复杂等不足,为了解决如上的技术问题,本申请提出了硅掺杂氮化硼与石墨烯构建PN结的紫外探测器及制备方法。
本申请的一种典型实施方式,提供了一种硅掺杂氮化硼纳米颗粒膜与石墨烯构建的PN结型紫外探测器,包括硅掺杂氮化硼纳米颗粒层和石墨烯层,所述硅掺杂氮化硼纳米颗粒层作为紫外吸收层,所述硅掺杂氮化硼纳米颗粒层和石墨烯层之间形成异质结,硅掺杂氮化硼纳米颗粒层中的硅掺杂氮化硼是氮化硼掺杂硅单质形成的n型半导体氮化硼材料。
针对氮化硼材料用于深紫外探测器存在的劣势,如电阻率过高,光吸收率低等,本发明对氮化硼材料进行硅掺杂,形成n型半导体氮化硼材料,结合石墨烯本征p型的特质,形成PN结型紫外探测器。该结构设计简单,能够充分发挥氮化硼材料的本征紫外吸收特点,另一方面利用石墨烯极高的载流子迁移率,两者结合可以有效提高器件速度。基于该异质结制作的紫外探测器具有较强的紫外吸收峰,实现了深紫外区域有效吸收,极具应用前景及市场价值。
为了降低外延层与衬底之间的晶格失配,缓解应力的产生,较小缺陷、位错的产生,本申请优选的,在衬底与硅掺杂氮化硼纳米颗粒层之间设有氮化硼层。进一步优选的,所述氮化硼层的厚度为30~50nm。
优选的,硅掺杂氮化硼纳米颗粒层中硅的掺杂浓度为(1~2)×1018cm-3
优选的,硅掺杂氮化硼纳米颗粒层的厚度为500~1500nm。
优选的,石墨烯层的厚度为少数层,即D峰与G峰的比值在1左右。
优选的,硅掺杂氮化硼纳米颗粒层和石墨烯层均设有Ti/Au电极。
本申请的另一种实施方式,提供了一种硅掺杂氮化硼纳米颗粒膜与石墨烯构建的PN结型紫外探测器的制备方法,以六方氮化硼和硅单质分别作为靶材,采用双靶共溅射沉积成膜的方法将硅单质掺杂至氮化硼,再进行控制温度至900~1200℃进行退火处理后即得硅掺杂氮化硼纳米颗粒层,然后采用化学气相沉积法在硅掺杂氮化硼纳米颗粒层的表面进行石墨烯原位生长从而获得硅掺杂氮化硼纳米颗粒层表面形成石墨烯层,并使硅掺杂氮化硼纳米颗粒层和石墨烯层之间形成异质结;其中,双靶共溅射沉积成膜中,氮化硼的沉积速率控制在0.1~0.2nm/s,硅的沉积速率控制在0.3~0.5nm/s,时间比例为每30s溅射氮化硼,溅射硅的时间为5s。
优选的,先采用磁控溅射在衬底上沉积氮化硼层后再采用采用双靶共溅射沉积成膜的方法制备硅掺杂氮化硼纳米颗粒层。
进一步优选的,磁控溅射的参数为:靶材为六方氮化硼靶材(纯度为99.9),溅射功率在80W,衬底温度为500℃,压强为1Pa,Ar:N2体积比3:1,气体流量Ar气流量为15sccm,N2为5sccm。
进一步优选的,所述衬底为石英玻璃。石英玻璃作为衬底进行清洗的过程为:利用丙酮、无水乙醇、去离子水超声、重复冲洗石英玻璃衬底各5次,每次10min,后用氮气枪吹干。
优选的,双靶共溅射沉积成膜的参数为,衬底温度为300~500℃,氮化硼的沉积参数为:溅射功率在80W,压强为1Pa,Ar:N2体积比3:1,气体流量Ar气流量为15sccm,N2为5sccm;硅的溅射参数为:溅射功率在40W,压强为1Pa,Ar:N2体积比3:1,气体流量Ar气流量为15sccm,N2为5sccm。
退火的目的为氮化硼硅原子的高温扩散,实现均匀化掺杂,得到预期的n型掺杂,提高氮化硼的导电性。优选的,退火处理的气体氛围是氮气和氢气的混合气。进一步优选的,氮气和氢气的气体流量分别为100sccm和10sccm。
优选的,退火处理的温度为1050℃。
优选的,退火处理的时间为1~3h。保证硅原子的高温迁移,完成氮化硼材料的硅掺杂,改善氮化硼的导电性。进一步优选的,退火处理的时间为2h。保证硅原子的有效掺杂。
优选的,所述石墨烯原位生长的参数为:甲烷和氢气的气体流量分别为50sccm和5sccm,生长温度为800~1050℃,沉积时间为60~120min。实现少数层石墨烯的可控生长。进一步优选的,生长温度控制为1000℃,沉积时间为1h。
优选的,采用标准光刻工艺和电极沉积方法,分别在石墨烯层和硅掺杂氮化硼纳米颗粒层沉积Ti/Au电极。进一步优选的,设置在石墨烯层的Ti/Au电极厚度为100nm,设置在硅掺杂氮化硼纳米颗粒层的Ti/Au电极厚度为100nm。
本发明的第三个实施方式,提供一种上述紫外探测器或上述制备方法获得的紫外探测器在深紫外光刻机、紫外探测及深空紫外探测等领域的应用。
为了使得本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例详细说明本申请的技术方案。
实施例1:
步骤1),利用丙酮、无水乙醇、去离子水超声、重复冲洗石英玻璃衬底各5次,每次10min,后用氮气枪吹干,待用。然后利用磁控溅射技术预先溅射沉积一定厚度的氮化硼薄层,靶材为六方氮化硼靶材(纯度为99.9),溅射功率在80W,衬底温度为500℃,压强为1Pa,Ar:N2体积比3:1。气体流量Ar气流量为15sccm,N2为5sccm。预溅射薄层厚度的目的是降低外延层与衬底之间的晶格失配,利用薄层缓解应力的产生,较小缺陷、位错的产生。
步骤2),在氮化硼薄层基础上,溅射沉积硅掺杂氮化硼。采用双靶共溅射技术,靶材分别为六方氮化硼靶材和硅靶材(纯度为99.9%)。衬底温度为500℃,氮化硼的沉积参数为:溅射功率在80W,压强为1Pa,Ar:N2体积比3:1。气体流量Ar气流量为15sccm,N2为5sccm。硅的溅射参数为:溅射功率在40W,压强为1Pa,Ar:N2体积比3:1。气体流量Ar气流量为15sccm,N2为5sccm。经过线性拟合氮化硼的沉积速率控制在0.15nm,硅的沉积速率控制在0.3nm/s,通过控制硅靶材上方的闭合开关实现硅掺杂的间歇性掺杂。时间比例为每30s溅射氮化硼,溅射硅的时间为5s。该比例的设计为单纯的通过控制生长速率的方式,实现硅的定量掺杂。
步骤3),将溅射沉积完成的样品,进行退火处理,处理温度控制在1050℃,气体氛围为氮气和氢气混合气,气体流量分别为100sccm和10sccm。退火的目的为氮化硼硅原子的高温扩散,实现均匀化掺杂,得到预期的n型掺杂,提高氮化硼的导电性。
步骤4),退火结束后,降至室温后,将样品转移至精确控温的化学气相沉积系统中,进行原位石墨烯生长,该技术可以有效避免通过湿法转移或干法转移带来的损伤、污染及复杂过程。石墨烯原位生长的参数为:甲烷和氢气的比例分别为50sccm和5sccm,生长温度控制在1000℃,沉积时间控制在60min,实现少数层石墨烯的可控生长。
步骤5),利用标准光刻工艺和电极沉积技术,分别在石墨烯层和硅掺杂氮化硼层沉积Ti/Au电极,厚度分别为30nm和100nm,完成接触电极的制备。获得的紫外探测器结构如图1所示。
本实施例中得到的氮化硼原位生长石墨烯进行了紫外吸收光谱测试,扫描电镜图、成分分析图谱及光电响应测试,结果如图2~4所示。
实施例2
步骤1),利用丙酮、无水乙醇、去离子水超声、重复冲洗石英玻璃衬底各5次,每次10min,后用氮气枪吹干,待用。然后利用磁控溅射技术预先溅射沉积一定厚度的氮化硼薄层,靶材为六方氮化硼靶材(纯度为99.9),溅射功率在80W,衬底温度为500℃,压强为1Pa,Ar:N2体积比3:1。气体流量Ar气流量为15sccm,N2为5sccm。预溅射薄层厚度的目的是降低外延层与衬底之间的晶格失配,利用薄层缓解应力的产生,较小缺陷、位错的产生。
步骤2),在氮化硼薄层基础上,溅射沉积硅掺杂氮化硼。采用双靶共溅射技术,靶材分别为六方氮化硼靶材和硅靶材(纯度为99.9%)。衬底温度为300℃,氮化硼的沉积参数为:溅射功率在80W,压强为1Pa,Ar:N2体积比3:1。气体流量Ar气流量为15sccm,N2为5sccm。硅的溅射参数为:溅射功率在40W,压强为1Pa,Ar:N2体积比3:1。气体流量Ar气流量为15sccm,N2为5sccm。经过线性拟合氮化硼的沉积速率控制在0.1nm nm/s,硅的沉积速率控制在0.5nm/s,通过控制硅靶材上方的闭合开关实现硅掺杂的间歇性掺杂。时间比例为每30s溅射氮化硼,溅射硅的时间为5s。该比例的设计为单纯的通过控制生长速率的方式,实现硅的定量掺杂。
步骤3),将溅射沉积完成的样品,进行退火处理,处理温度控制在1000℃,气体氛围为氮气和氢气混合气,气体流量分别为100sccm和10sccm。退火的目的为氮化硼硅原子的高温扩散,实现均匀化掺杂,得到预期的n型掺杂,提高氮化硼的导电性。
步骤4),退火结束后,降至室温后,将样品转移至精确控温的化学气相沉积系统中,进行原位石墨烯生长,该技术可以有效避免通过湿法转移或干法转移带来的损伤、污染及复杂过程。石墨烯原位生长的参数为:甲烷和氢气的比例分别为50sccm和5sccm,生长温度控制在950℃,沉积时间控制在120min,实现少数层石墨烯的可控生长。
步骤5),利用标准光刻工艺和电极沉积技术,分别在石墨烯层和硅掺杂氮化硼层沉积Ti/Au电极,厚度分别为30nm和100nm,完成接触电极的制备。
实施例3
步骤1),利用丙酮、无水乙醇、去离子水超声、重复冲洗石英玻璃衬底各5次,每次10min,后用氮气枪吹干,待用。然后利用磁控溅射技术预先溅射沉积一定厚度的氮化硼薄层,靶材为六方氮化硼靶材(纯度为99.9),溅射功率在80W,衬底温度为500℃,压强为1Pa,Ar:N2体积比3:1。气体流量Ar气流量为15sccm,N2为5sccm。预溅射薄层厚度的目的是降低外延层与衬底之间的晶格失配,利用薄层缓解应力的产生,较小缺陷、位错的产生。
步骤2),在氮化硼薄层基础上,溅射沉积硅掺杂氮化硼。采用双靶共溅射技术,靶材分别为六方氮化硼靶材和硅靶材(纯度为99.9%)。衬底温度为500℃,氮化硼的沉积参数为:溅射功率在80W,压强为1Pa,Ar:N2体积比3:1。气体流量Ar气流量为15sccm,N2为5sccm。硅的溅射参数为:溅射功率在40W,压强为1Pa,Ar:N2体积比3:1。气体流量Ar气流量为15sccm,N2为5sccm。经过线性拟合氮化硼的沉积速率控制在0.2nm/s,硅的沉积速率控制在0.35nm/s,通过控制硅靶材上方的闭合开关实现硅掺杂的间歇性掺杂。时间比例为每30s溅射氮化硼,溅射硅的时间为5s。该比例的设计为单纯的通过控制生长速率的方式,实现硅的定量掺杂。
步骤3),将溅射沉积完成的样品,进行退火处理,处理温度控制在1200℃,气体氛围为氮气和氢气混合气,气体流量分别为100sccm和10sccm。退火的目的为氮化硼硅原子的高温扩散,实现均匀化掺杂,得到预期的n型掺杂,提高氮化硼的导电性。
步骤4),退火结束后,降至室温后,将样品转移至精确控温的化学气相沉积系统中,进行原位石墨烯生长,该技术可以有效避免通过湿法转移或干法转移带来的损伤、污染及复杂过程。石墨烯原位生长的参数为:甲烷和氢气的比例分别为50sccm和5sccm,生长温度控制在1050℃,沉积时间控制在90min,实现少数层石墨烯的可控生长。
步骤5),利用标准光刻工艺和电极沉积技术,分别在石墨烯层和硅掺杂氮化硼层沉积Ti/Au电极,厚度分别为30nm和100nm,完成接触电极的制备。
对实施例1所制备的紫外探测器,利用扫描电镜、X射线能谱、光电测试系统对器件进行实时检测,对照图2~4加以说明。图2为本发明实施例1中氮化硼上原位生长的石墨烯的扫描电镜图及原子力扫描图,从扫描图可以看出氮化硼呈现出颗粒状薄膜形式,石墨烯薄膜覆盖在氮化硼颗粒上,形成独特形貌的二维异质结形式。图3为本发明实施例1中氮化硼/石墨烯的拉曼能谱,从图中可以分辨出石墨烯的典型拉曼峰D峰、G峰和2D峰。图4为本发明提供的氮化硼/石墨烯材料的吸收波段。图中对比分析了BN、Si掺杂BN和Si掺杂BN/石墨烯复合结构的吸收图谱,其吸收波段大体在220-230nm范围内。从以上分析可以得出通过构建Si掺杂BN上原位生长石墨烯,形成二维异质结并成功制备紫外探测器,显示其吸收波段在220nm左右,覆盖深紫外区域。
实施例4
步骤1),利用丙酮、无水乙醇、去离子水超声、重复冲洗石英玻璃衬底各5次,每次10min,后用氮气枪吹干,待用。然后利用磁控溅射技术预先溅射沉积氮化硼层,靶材为六方氮化硼靶材(纯度为99.9),溅射功率在80W,衬底温度为500℃,压强为1Pa,Ar:N2体积比3:1。气体流量Ar气流量为15sccm,N2为5sccm。
步骤2),在氮化硼薄层基础上,溅射沉积硅掺杂氮化硼。采用双靶共溅射技术,靶材均分别为六方氮化硼靶材(纯度为99.9%)。衬底温度为500℃,氮化硼的沉积参数为:溅射功率在80W,压强为1Pa,Ar:N2体积比3:1。气体流量Ar气流量为15sccm,N2为5sccm。经过线性拟合氮化硼的沉积速率控制在0.2nm/s,该比例的设计为单纯的通过控制生长速率的方式。
步骤3),将溅射沉积完成的样品,进行退火处理,处理温度控制在1100℃,气体氛围为氮气和氢气混合气,气体流量分别为100sccm和10sccm。退火的目的将其材料的缺陷,去除部分杂,提高材料质量。
步骤4),退火结束后,降至室温后,将样品转移至精确控温的化学气相沉积系统中,进行原位石墨烯生长,该技术可以有效避免通过湿法转移或干法转移带来的损伤、污染及复杂过程。石墨烯原位生长的参数为:甲烷和氢气的比例分别为50sccm和5sccm,生长温度控制在1050℃,沉积时间控制在90min,实现少数层石墨烯的可控生长。
步骤5),利用标准光刻工艺和电极沉积技术,分别在石墨烯层和硅掺杂氮化硼层沉积Ti/Au电极,厚度分别为30nm和100nm,完成接触电极的制备。此实施例因缺乏氮化硼薄层导致材料质量极差,缺陷增加,影响后续石墨烯薄膜的生长。再者没有进行特定的元素掺杂,没有形成PN结,没有明显紫外吸收,其吸收图谱如图5所示。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (18)

1.一种硅掺杂氮化硼纳米颗粒膜与石墨烯构建的PN结型紫外探测器,其特征是,包括硅掺杂氮化硼纳米颗粒层和石墨烯层,所述硅掺杂氮化硼纳米颗粒层作为紫外吸收层,所述硅掺杂氮化硼纳米颗粒层和石墨烯层之间形成异质结,硅掺杂氮化硼纳米颗粒层中的硅掺杂氮化硼是氮化硼掺杂硅单质形成的n型半导体氮化硼材料。
2.如权利要求1所述的紫外探测器,其特征是,在衬底与硅掺杂氮化硼纳米颗粒层之间设有氮化硼层。
3.如权利要求2所述的紫外探测器,其特征是,所述氮化硼层的厚度为30~50nm。
4.如权利要求1所述的紫外探测器,其特征是,硅掺杂氮化硼纳米颗粒层中硅的掺杂浓度为1×1018~2×1018cm-3
5.如权利要求1所述的紫外探测器,其特征是,硅掺杂氮化硼纳米颗粒层的厚度为500~1500nm。
6.如权利要求1所述的紫外探测器,其特征是,硅掺杂氮化硼纳米颗粒层和石墨烯层均设计为Ti/Au电极。
7.一种硅掺杂氮化硼纳米颗粒膜与石墨烯构建的PN结型紫外探测器的制备方法,其特征是,以六方氮化硼和硅单质分别作为靶材,采用双靶共溅射沉积成膜的方法将硅单质掺杂至氮化硼,再进行控制温度至900~1200℃进行退火处理后即得硅掺杂氮化硼纳米颗粒层,然后采用化学气相沉积法在硅掺杂氮化硼纳米颗粒层的表面进行石墨烯原位生长从而获得硅掺杂氮化硼纳米颗粒层表面形成石墨烯层,并使硅掺杂氮化硼纳米颗粒层和石墨烯层之间形成异质结;其中,双靶共溅射沉积成膜中,氮化硼的沉积速率控制在0.1~0.2nm/s,硅的沉积速率控制在0.3~0.5nm/s,时间比例为每30s溅射氮化硼,溅射硅的时间为5s。
8.如权利要求7所述的制备方法,其特征是,先采用磁控溅射在衬底上沉积氮化硼层后再采用双靶共溅射沉积成膜的方法制备硅掺杂氮化硼纳米颗粒层。
9.如权利要求8所述的制备方法,其特征是,所述磁控溅射的参数为:靶材为六方氮化硼靶材,溅射功率在80W,衬底温度为500℃,压强为1Pa,Ar:N2体积比3:1,气体流量Ar气流量为15sccm,N2为5sccm。
10.如权利要求7所述的制备方法,其特征是,双靶共溅射沉积成膜的参数为,衬底温度为300~500℃,氮化硼的沉积参数为:溅射功率在80W,压强为1Pa,Ar:N2体积比3:1,气体流量Ar气流量为15sccm,N2为5sccm;硅的溅射参数为:溅射功率在40W,压强为1Pa,Ar:N2体积比3:1,气体流量Ar气流量为15sccm,N2为5sccm。
11.如权利要求7所述的制备方法,其特征是,退火处理的气体氛围是氮气和氢气的混合气。
12.如权利要求11所述的制备方法,其特征是,所述氮气和氢气的气体流量分别为100sccm和10sccm。
13.如权利要求11所述的制备方法,其特征是,退火处理的温度为1050℃。
14.如权利要求11所述的制备方法,其特征是,退火处理的时间为1~3h。
15.如权利要求14所述的制备方法,其特征是,退火处理的时间为2h。
16.如权利要求7所述的制备方法,其特征是,所述石墨烯原位生长的参数为:甲烷和氢气的气体流量分别为50sccm和5sccm,生长温度为800~1050℃,沉积时间为60~120min。
17.如权利要求16所述的制备方法,其特征是,所述生长温度控制为1000℃,沉积时间为1h。
18.一种权利要求1~6任一所述的紫外探测器或权利要求7~17任一所述的制备方法获得的紫外探测器在深紫外光刻机、紫外探测及深空紫外探测领域的应用。
CN201810113459.0A 2018-02-05 2018-02-05 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法 Active CN108346712B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810113459.0A CN108346712B (zh) 2018-02-05 2018-02-05 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810113459.0A CN108346712B (zh) 2018-02-05 2018-02-05 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法

Publications (2)

Publication Number Publication Date
CN108346712A CN108346712A (zh) 2018-07-31
CN108346712B true CN108346712B (zh) 2019-12-27

Family

ID=62958734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810113459.0A Active CN108346712B (zh) 2018-02-05 2018-02-05 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法

Country Status (1)

Country Link
CN (1) CN108346712B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200373451A1 (en) * 2019-05-24 2020-11-26 Seven Z's Trust Graphene and hexagonal boron nitride van der waals heterostructured solar energy processing unit (SPU)
CN110828550A (zh) * 2019-10-21 2020-02-21 浙江大学 一种氮化硼/石墨烯异质结器件
CN111308122B (zh) * 2019-12-06 2022-02-25 云南师范大学 基于掺硼硅量子点的气体流速探测器及系统
CN111524997B (zh) * 2020-03-17 2022-04-29 湖北云邦科技有限公司 一种基于量子碳膜的异质结光电二极管结构及制作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102392226A (zh) * 2011-11-28 2012-03-28 无锡第六元素高科技发展有限公司 一种石墨烯/氮化硼异质薄膜的制备方法
US9410243B2 (en) * 2013-08-06 2016-08-09 Brookhaven Science Associates, Llc Method for forming monolayer graphene-boron nitride heterostructures
CN104617180B (zh) * 2015-01-16 2018-01-09 浙江大学 一种石墨烯/氮化硼/氧化锌紫外探测器及其制备方法
CN106505115B (zh) * 2016-10-17 2018-11-13 浙江大学 量子点光掺杂石墨烯/氮化硼/氮化镓紫外探测器及其制作方法

Also Published As

Publication number Publication date
CN108346712A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
Qian et al. Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide
Wang et al. One-step growth of amorphous/crystalline Ga2O3 phase junctions for high-performance solar-blind photodetection
Ahmed et al. Fabrication and characterization of high performance MSM UV photodetector based on NiO film
Yu et al. High-performance photodetector based on sol–gel epitaxially grown α/β Ga2O3 thin films
Lupan et al. Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications
CN108346712B (zh) 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法
Hu et al. Oxides/graphene heterostructure for deep-ultraviolet photovoltaic photodetector
Ma et al. High-performance solar blind ultraviolet photodetector based on single crystal orientation Mg-alloyed Ga2O3 film grown by a nonequilibrium MOCVD scheme
Park et al. Ag2O/β-Ga2O3 heterojunction-based self-powered solar blind photodetector with high responsivity and stability
Deng et al. Surface plasma treatment reduces oxygen vacancies defects states to control photogenerated carriers transportation for enhanced self-powered deep UV photoelectric characteristics
Kuang et al. Dual-ultraviolet wavelength photodetector based on facile method fabrication of ZnO/ZnMgO core/shell nanorod arrays
Naveena et al. Significant enhancement of photo-physicochemical properties of Yb doped copper oxide thin films for efficient solid-state solar cell
Karmakar et al. Improved TCO characteristics of ZnO: Si films via utilization of Si4+ ionized donor states and its application in n-SZO/p-Si heterojunction solar cells
Yuan et al. Characterization of aluminum gallium oxide films grown by pulsed laser deposition
Mondal et al. Extraordinarily high ultraviolet photodetection by defect tuned phosphorus doped ZnO thin film on flexible substrate
Locovei et al. Physical properties of Cu and Dy co-doped ZnO thin films prepared by radio frequency magnetron sputtering for hybrid organic/inorganic electronic devices
He et al. Fabrication and characterization of ultraviolet detector based on epitaxial Ta-doped Zn2SnO4 films
Ferhati et al. Highly-detective tunable band-selective photodetector based on RF sputtered amorphous SiC thin-film: Effect of sputtering power
Zhao et al. Ultrasensitive Self-Powered Deep-Ultraviolet Photodetector Based on In Situ Epitaxial Ga₂O₃/Bi₂Se₃ Heterojunction
Zhao et al. RF magnetron sputtering processed transparent conductive aluminum doped ZnO thin films with excellent optical and electrical properties
Giri MgZnO nanoparticle-based metal–semiconductor–metal UV photodetector
Tong et al. Effects of annealing temperature and atmosphere on performances of Zn0. 9Mg0. 1O buffer layers for CIGS solar cell
Ozel Strain-induced photoresponsivity in gallium-doped ZnO thin film based UV photodetectors
Arab et al. Effect of the annealing process on the properties of ZnO thin films prepared by the sol-gel method
Meitei et al. Post deposition annealing effect on the electrical properties of β-Ga 2 O 3 Nanowire

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant