CN110828550A - 一种氮化硼/石墨烯异质结器件 - Google Patents

一种氮化硼/石墨烯异质结器件 Download PDF

Info

Publication number
CN110828550A
CN110828550A CN201911000926.XA CN201911000926A CN110828550A CN 110828550 A CN110828550 A CN 110828550A CN 201911000926 A CN201911000926 A CN 201911000926A CN 110828550 A CN110828550 A CN 110828550A
Authority
CN
China
Prior art keywords
graphene
boron nitride
heterojunction
layer
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911000926.XA
Other languages
English (en)
Inventor
徐明生
王维佳
冯志红
蔚翠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
CETC 13 Research Institute
Original Assignee
Zhejiang University ZJU
CETC 13 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, CETC 13 Research Institute filed Critical Zhejiang University ZJU
Priority to CN201911000926.XA priority Critical patent/CN110828550A/zh
Publication of CN110828550A publication Critical patent/CN110828550A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Abstract

本发明公开了一种氮化硼/石墨烯异质结器件,其特征在于,所述氮化硼/石墨烯异质结器件包括六方氮化硼材料层和石墨烯材料层,所述氮化硼和石墨烯层间的旋转角度在5°‑15°之间。本发明提供的氮化硼/石墨烯异质结器件在特定的层与层堆砌(旋转)结构,可以使异质结体系出现平带结构而导致超导现象。

Description

一种氮化硼/石墨烯异质结器件
技术领域
本发明涉及二维层状材料的异质结构建,具体涉及一种氮化硼/石墨烯异质结。
背景技术
随着经济社会的发展,半导体产业日益进步,随着芯片小型化、多功能化发展对半导体的光电性能提出了新的要求。当前,硅基CMOS晶体管的尺寸微缩已经进入到亚10nm尺度,面临着基本物理原理、高功耗、高成本投入等挑战,2015年国际半导体线路图(ITRS2.0)明确指出,信息技术进入后摩尔时代(More Moore),以新材料、新结构和新原理为主要特征的More Moore新器件技术开始受到广泛关注,成为微纳电子科学的重大前沿。
异质结是半导体器件基本核心结构,通过异质结构建可以调控能带结构而使异质结获得单一材料没有的新颖特性,比如超晶格结构的二维电子气等量子效应,利用这些新颖的特性可以研制新原理器件。对于如砷化镓、氮化镓等传统半导体,异质结的形成要求半导体材料的晶格结构匹配。
二维层状(范德瓦尔斯van der Waals)材料是层内由较强的共价键或离子键结合、而层间靠范德瓦尔斯力结合一类新型材料,因独特的二维结构包括其表面不存在悬挂键、Z维度方向静电屏蔽减弱、单层原子厚度等而具有奇特的光、电、磁特性与功能。不同层数的二维层状材料可以堆砌成不同层数或厚度的二维材料。通过控制层间扭曲角度,可以调控范德瓦尔斯异质结的电子结构。对于层间是以很弱的范德瓦尔斯力而构成的结构高度有序的二维层状晶体材料,能带结构或电子性能取决于结构对称性,电子态只需通过很小的库伦力相互作用就可进行调节,比如层与层(比如石墨烯与石墨烯)之间通过改变相互之间的旋转角度(旋转产生的位错使石墨烯层中的电子能带结构不再对齐);可以通过晶格不匹配的单层晶体(不同的二维层状材料)进行耦合而进行调节【Science 363,1059(2019);Nature Physics 15,237(2019);Nature 567,66(2019);Nature 567,76(2019);Nature567,81(2019)】,这种层间晶格的失配能够调控二维异质结体系的二维周期势。这样通过调控二维层状材料层与层之间的相互堆砌或层间旋转角度(twist angle),能够调节异质结体系的能带结构而获得奇异的物理效应比如激子发光、超导等,利用这些奇异的物理效应可以制备新型光、电、磁器件。但是,奇异物理效应的出现需要控制层与层之间的相对堆砌或旋转扭曲角(twist angle)。
因此如何通过利用这些奇异的物理效应可以制备新型光、电、磁器件获得新型光、电、磁器件是目前的研究热点。
发明内容
本发明的目的在于提供一种氮化硼/石墨烯异质(h-BN/graphene)器件,在特定的层与层堆砌(旋转)结构,可以使异质结体系出现平带结构而导致超导现象。
一种氮化硼/石墨烯异质结器件,其特征在于,所述氮化硼/石墨烯异质结器件包括六方氮化硼材料层和石墨烯材料层,所述氮化硼(材料)层和石墨烯(材料)层之间的旋转角度在5°-15°之间。
在本发明中六方氮化硼材料层又称之为氮化硼层或h-BN层,石墨烯材料层又称之为石墨烯层或graphene层,六方氮化硼材料层和石墨烯材料层组成氮化硼/石墨烯异质结,氮化硼/石墨烯异质结器件又称之为h-BN/graphene异质结器件。
本发明通过控制h-BN与石墨烯层间的旋转角能够调控异质结体系的能带结构而诱导出超导特性。
作为优选,所述六方氮化硼材料层的层数是1-100层。
作为优选,所述六方氮化硼材料层的层数是1-20层。因h-BN的能带间隙很大(约6.0eV),所述的氮化硼层不要求一定是单层的h-BN,但优选为层数为1-20层的h-BN材料。
作为优选,石墨烯材料层的层数1-4层。
作为优选,所述的石墨烯材料层的层数为1-2层。
作为优选,所述氮化硼/石墨烯异质结器件为六方氮化硼/石墨烯/六方氮化硼。
作为优选,所述氮化硼和石墨烯层间的旋转角度在7°-11°之间。
在本发明中,所述氮化硼/石墨烯异质结通过机械转移法和常规的微纳加工技术制备。
本发明提供的氮化硼/石墨烯异质结器件中的六方氮化硼材料层和石墨烯材料层都是二维层状材料,并且是严格物理意义上的二维材料【Chem.Rev.113,3766–3798(2013)】,比如单层石墨烯(graphene)是由当层的sp2杂化的蜂窝状的单一碳原子层,双层石墨烯是由二层石墨烯组成,三层石墨烯是由三层石墨烯堆砌而成。六方氮化硼(h-BN)是由B和N原子构成的如石墨烯的二维层状材料。超导体(现象)指在某一温度下,电阻为零或实际低于10-25Ω的材料(现象);超导体在电力行业、通信领域、军事领域以及医疗领域等具有广泛的应用前景。
在本发明中,由于h-BN与石墨烯的不同层间堆砌方式(rotationalalignment)导致不同的层间相互作用而影响异质结体系的能带结构或者moire周期势。在一定的旋转转角或扭曲角度,扭曲的异质结会形成窄电子能带(或称为平带,即在费米能级附近出现flatbands),电子相互作用效应增强,从而产生非导电的Mott绝缘态,在Mott绝缘态情况下加入少量电荷载流子,就可以转变为超导态。通常,高温超导起源于掺杂的Mott绝缘态。
因此,通过构建不同的氮化硼/石墨烯异质结器件的堆砌方式,使其产生不同的电学特性;并且本发明提供的氮化硼/石墨烯异质结器件通过一定的堆砌结构,实现了超导特性,为实现超导及其应用提供了可能。
附图说明
图1为本发明的二维的(a)石墨烯、(b)六方氮化硼以及(c)石墨烯/氮化硼堆砌的结构示意图;
图2为本发明的h-BN/石墨烯异质结结构示意图;
其中1为上层的h-BN层、2为石墨烯层、3为下层的h-BN层、θt和θb分别对应于上层h-BN与石墨烯层间的旋转角度和下层h-BN与石墨烯层间的旋转角度。
图3为实施例1得到的h-BN/graphene异质结结构体系能带结构图;
图4为实施例2得到的h-BN/graphene异质结结构体系能带结构图;
图5为对比实施例1得到的h-BN/graphene异质结结构体系能带结构图;
图6为h-BN/石墨烯异质结结构(器件)的制备方法。
具体实施方式
下面结合附图及具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。
图1中的(a)、(b)和(c)分别为单层石墨烯、单层的h-BN和石墨烯/氮化硼堆砌的结构示意图,图2为h-BN/graphene/h-BN异质结结构示意图。在异质结制备时,本发明不区分h-BN/graphene异质结中哪层在上面、哪层在下面,即h-BN/graphene或graphene/h-BN。
本发明所需的石墨烯材料和h-BN材料是通过本领域的常规方法制备比如机械剥离法和化学气相沉积法制备而获得。
因目前制备技术限制,本发明在光学显微镜下,采用机械转移的方法逐层转移二维材料的方法制备异质结。包括以下制备步骤(如图6):
(1)将h-BN层(层数约15-30层)转移到Si/SiO2衬底,形成Si/SiO2/h-BN结构;
(2)将石墨烯层(1-4层)转移到Si/SiO2/h-BN上,形成Si/SiO2/h-BN/石墨烯的结构;此时通过光学显微镜观察,依据石墨烯与h-BN晶体结构的对称性,控制石墨烯层与h-BN层间的旋转角在特定角度(参照实施例1-2和对比例13),形成Si/SiO2/h-BN/石墨烯的结构,从而可以控制石墨烯/h-BN异质结结构的电学特性。
(3)为了对异质结进行保护,步骤2后,将h-BN层(层数约15-30层)转移到Si/SiO2/h-BN/石墨烯结构上,形成Si/SiO2/h-BN/石墨烯/h-BN的结构。
上述异质结结构制备后,可以采用常规的微纳加工技术比如光刻、电子束刻蚀等制备异质结特性研究的电极,图6仅是其中电极布局的一种结构。
尽管本实施例采用机械转移的方法制备二维材料构成的异质结,但是,随着二维材料制备技术的发展,未来有可能采用化学气相沉积等方法直接的二维材料层上制备高质量的其它二维材料形成异质结。二维材料(石墨烯、h-BN)的层数、石墨烯/h-BN层间的旋转角度可以依据器件所需的特性比如本发明的超导特性(旋转角7°-11°)而调整。
实施例1
通过机械转移法构建h-BN/graphene异质结,使h-BN与graphene层间的旋转角度为7°,采用第一性原理进行异质结结构优化和能带结构计算。如图3所示,在费米能级附近出现平带结构(长方形框中),意味着存在超导特性。
实施例2
通过机械转移法构建h-BN/graphene异质结,使h-BN与graphene层间的旋转角度为11°,采用第一性原理进行异质结结构优化和能带结构计算。如图4所示,在费米能级附近出现平带结构(长方形框中),意味着存在超导特性。
对比例1
通过机械转移法构建h-BN/graphene异质结,使h-BN与graphene层间的旋转角度为3°,采用第一性原理进行异质结结构优化和能带结构计算。如图5所示,在费米能级附近没有出现平带结构,意味着不存在超导现象。
通过对比实施例1、实施例2和对比例1,可以发现,h-BN与graphene堆砌层间不同的旋转角度可以对异质结体系的能带结构产生显著的影响,而改变异质结的光、电、磁特性,在特定的层与层堆砌(旋转)结构,可以使异质结体系出现平带结构而导致超导现象。
此外应理解,在阅读了本发明的上述描述内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (8)

1.一种氮化硼/石墨烯异质结器件,其特征在于,所述氮化硼/石墨烯异质结器件包括六方氮化硼材料层和石墨烯材料层,所述氮化硼和石墨烯层间的旋转角度在5°-15°之间。
2.根据权利要求1所述的氮化硼/石墨烯异质结器件,其特征在于,所述六方氮化硼材料层的层数是1-100层。
3.根据权利要求1所述的氮化硼/石墨烯异质结器件,其特征在于,所述六方氮化硼材料层的层数是1-20层。
4.根据权利要求1所述的氮化硼/石墨烯异质结器件,所述石墨烯材料层的层数1-4层。
5.根据权利要求1所述的氮化硼/石墨烯异质结器件,所述石墨烯材料层的层数1-2层。
6.根据权利要求1所述的氮化硼/石墨烯异质结器件,其特征在于,所述氮化硼/石墨烯异质结器件为六方氮化硼/石墨烯/六方氮化硼。
7.根据权利要求1所述的氮化硼/石墨烯异质结器件,其特征在于,所述氮化硼和石墨烯层间的旋转角度在7°-11°之间。
8.根据权利要求1所述的氮化硼/石墨烯异质结器件,其特征在于,所述氮化硼/石墨烯异质结通过机械转移法和常规的微纳加工技术制备。
CN201911000926.XA 2019-10-21 2019-10-21 一种氮化硼/石墨烯异质结器件 Pending CN110828550A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911000926.XA CN110828550A (zh) 2019-10-21 2019-10-21 一种氮化硼/石墨烯异质结器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911000926.XA CN110828550A (zh) 2019-10-21 2019-10-21 一种氮化硼/石墨烯异质结器件

Publications (1)

Publication Number Publication Date
CN110828550A true CN110828550A (zh) 2020-02-21

Family

ID=69549960

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911000926.XA Pending CN110828550A (zh) 2019-10-21 2019-10-21 一种氮化硼/石墨烯异质结器件

Country Status (1)

Country Link
CN (1) CN110828550A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540282A (zh) * 2021-07-20 2021-10-22 南京大学 从远红外到太赫兹波段连续可调的双层石墨烯光电探测器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897750A (zh) * 2011-07-29 2013-01-30 浙江大学 一种石墨烯薄膜的制备方法
CN105019030A (zh) * 2014-04-28 2015-11-04 中国科学院物理研究所 石墨烯/六方氮化硼的高度晶向匹配堆叠结构及其制备方法
CN108346712A (zh) * 2018-02-05 2018-07-31 山东大学 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897750A (zh) * 2011-07-29 2013-01-30 浙江大学 一种石墨烯薄膜的制备方法
CN105019030A (zh) * 2014-04-28 2015-11-04 中国科学院物理研究所 石墨烯/六方氮化硼的高度晶向匹配堆叠结构及其制备方法
CN108346712A (zh) * 2018-02-05 2018-07-31 山东大学 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ADOLFO DE SANCTIS: "《Strain-Engineering of Twist-Angle in Graphene/hBN Superlattice Devices》", NANO LETTERS, vol. 18, no. 12 *
ADOLFO DE SANCTIS: "Strain-Engineering of Twist-Angle in Graphene/hBN Superlattice Devices", NANO LETTERS, vol. 18, no. 12 *
GIBNEY, ELIZABETH: "《Surprise graphene discovery could unlock secrets of superconductivity》", NATURE, vol. 555, no. 7695 *
MATTHEW YANKOWITZ: "《Tuning superconductivity in twisted bilayer graphene》", SCIENCE, vol. 363, no. 6431 *
MATTHEW YANKOWITZ: "Tuning superconductivity in twisted bilayer graphene", SCIENCE, vol. 363, no. 6431 *
PILKYUNG MOON: ""Electronic properties of graphene/hexagonal-boron-nitride moire´ superlattice"", vol. 90, no. 15, pages 155406 *
YUAN CAO: "《Unconventional superconductivity in magic-angle graphene superlattices》", NATURE, vol. 556, no. 7699 *
YUAN CAO: "Unconventional superconductivity in magic-angle graphene superlattices", NATURE, vol. 556, no. 7699, XP055688594, DOI: 10.1038/nature26160 *
YUNQI ZHAO: ""Negative Differential Resistance in Graphene Boron Nitride Heterostructure Controlled by Twist and Phonon-Scattering"", vol. 37, no. 9, XP011620363, DOI: 10.1109/LED.2016.2595522 *
摘自《科技日报》: "神奇!石墨烯扭转"角度"可变超导体 新发现将打开非常规超导体研究大门", 炭素技术 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540282A (zh) * 2021-07-20 2021-10-22 南京大学 从远红外到太赫兹波段连续可调的双层石墨烯光电探测器

Similar Documents

Publication Publication Date Title
Zhao et al. Layer-dependent transport and optoelectronic property in two-dimensional perovskite:(PEA) 2 PbI 4
Sun et al. Substrate induced changes in atomically thin 2-dimensional semiconductors: Fundamentals, engineering, and applications
Guo et al. The strain effect on the electronic properties of the MoSSe/WSSe van der Waals heterostructure: a first-principles study
Ryu et al. Superlattices based on van der Waals 2D materials
Wang et al. Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core/shell nanowire arrays
KR102526649B1 (ko) 이차원 물질을 포함하는 반도체소자 및 그 제조방법
WO2020147584A1 (zh) 一种具有多值存储能力的各向异性浮栅存储器
Jiang et al. The coexistence of ferroelectricity and topological phase transition in monolayer α-In2Se3 under strain engineering
CN106206682B (zh) Pi膜制备的多层石墨烯量子碳基半导体材料及其制备方法
KR101571351B1 (ko) 실리콘-그래핀 이종접합 태양전지의 제조방법 및 이에 의하여 제조된 실리콘-그래핀 이종접합 태양전지
Guo et al. Multiferroic oxide BFCNT/BFCO heterojunction black silicon photovoltaic devices
CN105070347A (zh) 一种以石墨烯作为接触电极的器件结构及其制备方法
Jin et al. The rise of 2D materials/ferroelectrics for next generation photonics and optoelectronics devices
CN107634089A (zh) 一种石墨烯‑硒化铌超导异质结器件及其制备方法
Liu et al. Strain-tunable electronic structure and anisotropic transport properties in Janus MoSSe and g-SiC van der Waals heterostructure
CN110828652B (zh) 一种二硫化钼/石墨烯异质结器件
Feng et al. Electronic structure and energy band of IIIA doped group ZnO nanosheets
CN110828550A (zh) 一种氮化硼/石墨烯异质结器件
Li et al. Tuning the electronic, magnetic and optical properties of monolayer Cr2Ge2Te6 through surface adsorption
Liu et al. Ferroelectric polarization in CsPbI3/CsSnI3 perovskite heterostructure
Kim et al. Piezoelectric enhancement by surface effect in hydrofluorinated graphene bilayer
Kanwal et al. Effect of electric field on two-dimensional honeycomb structures from group (III–V)
Wu et al. Strain-tunable photogalvanic effect in phosphorene
Prasanna et al. Reduced interfacial recombination in perovskite solar cells by structural engineering simulation
US9548435B2 (en) Electronic platform comprising an ABO3 type crystal and graphene, method for its manufacture and chip comprising the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination