CN112038443B - 一种氧化镓多晶薄膜晶体管型紫外探测器的制备方法 - Google Patents

一种氧化镓多晶薄膜晶体管型紫外探测器的制备方法 Download PDF

Info

Publication number
CN112038443B
CN112038443B CN202010894770.0A CN202010894770A CN112038443B CN 112038443 B CN112038443 B CN 112038443B CN 202010894770 A CN202010894770 A CN 202010894770A CN 112038443 B CN112038443 B CN 112038443B
Authority
CN
China
Prior art keywords
substrate
sio
layer
ultraviolet detector
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010894770.0A
Other languages
English (en)
Other versions
CN112038443A (zh
Inventor
潘新花
沈乐昀
张涛
叶志镇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202010894770.0A priority Critical patent/CN112038443B/zh
Publication of CN112038443A publication Critical patent/CN112038443A/zh
Application granted granted Critical
Publication of CN112038443B publication Critical patent/CN112038443B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Thin Film Transistor (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明公开了一种氧化镓(Ga2O3)多晶薄膜晶体管型紫外探测器的制备方法,该紫外探测器的结构自下而上依次为p型Si层、SiO2层、Ga2O3多晶层和Au/Ti电极对。其采用脉冲激光沉积(PLD)方法制备,包括如下:使用Si/SiO2为衬底材料,采用PLD方法制备Ga2O3多晶层作为沟道层,最后在多晶薄膜表面镀上Au/Ti电极完成薄膜晶体管型紫外探测器的制作,其中衬底SiO2作为绝缘层,衬底Si作为栅极,Au/Ti电极作为源极和漏极。相较于传统的Ga2O3基紫外探测器,此方法制备的薄膜晶体管型紫外探测器具有结构简单、制备简便、暗电流低、光暗比大等优势,为Ga2O3功率器件的发展奠定了基础。

Description

一种氧化镓多晶薄膜晶体管型紫外探测器的制备方法
技术领域
本发明涉及一种氧化镓(Ga2O3)多晶薄膜晶体管型紫外探测器的制备方法,属于半导体光电器件技术领域。
背景技术
近年来,紫外探测技术吸引了来自各国科研学者的关注,目前已经被应用于多个领域,包括航空航天等军事领域以及人们的日常生活,如人体内维生素的合成、紫外致癌等方面。其中,波长小于280nm的紫外光被称为日盲紫外,利用日盲紫外可以避免背景噪声的干扰,所制备的器件灵敏度高,在导弹预警、空洞检测等方面有巨大的应用价值。常见的光电紫外探测器作为紫外探测技术的核心具有响应速度快、稳定性好等优点。
传统的固态探测器采用半导体硅(Si)、砷化镓(GaAs)、磷化铟(InP)等。但这些材料的禁带宽度较小,无法实现紫外全波段的高响应。氧化镓(Ga2O3)是一种直接带隙宽禁带氧化物半导体,禁带宽度高达4.7eV,具有更加优异的物理性能,在节能减排、信息技术、国防装备等领域都有广泛的应用。使用Ga2O3制备的光电探测器工作电压较低、能耗较小、噪声小,且在高温下仍具有优异的化学、机械和热稳定性能。
光电紫外探测器可分为很多种,包括光电导型(PC)、光伏型(PV)和光电子发射型(PE),常见的光伏型探测器又包括PN结构、MSM结构等,但这些结构的器件灵敏度较低且不能控制器件的开关态。薄膜晶体管(TFT)是一种电压控制器件,可以通过控制栅压改变输出电流。本发明旨在利用一种简单成熟的方法在硅片上制备高质量氧化镓多晶薄膜并实现TFT应用,该方法基于现有可产业化的方式和原料,可极大的降低成本,有利于推广应用。
发明内容
为克服传统紫外探测器暗电流较大的问题,本发明首次将脉冲激光沉积(PLD)法在硅衬底上制备的高质量氧化镓(Ga2O3)多晶薄膜应用在薄膜晶体管型紫外探测器中,提供了一种制备工艺简单、制作成本低且光暗比大、暗电流低的Ga2O3多晶薄膜晶体管型紫外探测器的制备方法。具体制备步骤如下:
1)清洗Si/SiO2衬底,获得表面洁净且无氧化物吸附的Si/SiO2片,SiO2厚度为300nm:
将Si/SiO2衬底分别使用丙酮、乙醇和去离子水超声清洗15min,清洗结束后用N2吹干表面水分,并放入等离子体清洗器中用等离子体清洗10-15min,以去除衬底表面的有机物,获得洁净的表面;
将清洗后的Si/SiO2衬底放入真空腔室内,加热至200℃并保温10min,以去除衬底表面吸附氧等杂质,获得无杂质且无氧吸附的Si/SiO2层。
2)采用PLD方法在洁净的Si/SiO2衬底表面沉积Ga2O3多晶层:
将Ga2O3靶材固定在腔体内的靶台上,将清洗好的Si/SiO2衬底固定在样品台上,用挡板将靶材和衬底隔开,调整靶材到衬底的距离为6.0cm;
依次关好腔门和漏气阀,依次打开机械泵和分子泵,约1.5h后达到实验所需的10- 5Pa真空度;然后将Si/SiO2衬底加热至700℃,维持温度的稳定;在真空腔内通入O2,调节压强,使腔内压强保持在0.1Pa;
打开激光器,预热10min后调整激光能量为200mJ/cm2,激光频率为3Hz;使激光束聚焦在Ga2O3靶面并烧蚀靶材,形成羽辉;先进行预沉积5min,去除靶材表面Ga、O比例不均匀层,然后打开靶材与衬底之间的挡板,在Si/SiO2衬底表面沉积Ga2O3薄膜,获得Ga2O3多晶层;
在N2氛围下进行800℃退火处理30min,消除薄膜中的部分应力,从而提升薄膜质量。
3)采用电子束蒸发技术在Ga2O3多晶层表面蒸镀厚度为50nm/20nm的Au/Ti电极对,完成Ga2O3多晶薄膜晶体管型紫外探测器的制备。
本发明的Ga2O3多晶薄膜晶体管型紫外探测器为底栅结构的氧化物薄膜晶体管,是一种三端场效应器件。由于内部氧空位的存在,Ga2O3显n型。它的工作原理是:通过栅极电压调控沟道层/绝缘栅层界面附近的载流子的电容式注入(即场效应),从而调控源极和漏极之间的电流大小。对于氧化物半导体薄膜晶体管,由于沟道内存在缺陷和存在于能带中的陷阱态密度使得氧化物半导体薄膜晶体管无法反型。参照图3,当栅压为零,即VG=0V时,为平衡状态;当金属上加正向偏压,即VG>0时,电子在沟道层和绝缘层的界面处积累,半导体的近绝缘层界面能带向下弯曲,并且沟道的电阻变小,当VG增大到一定值时,TFT将呈现开态,即积累状态;当金属上加负向偏压,即VG<0时,越接近沟道层和绝缘层的界面处,电子浓度越小,沟道层的能带向上弯曲,并且沟道的电阻变大,当VG足够小时,TFT将呈现关态,即耗尽状态。
本发明的有益效果在于:
1)本发明采用PLD技术在硅衬底上制备高质量的Ga2O3多晶薄膜,制备工艺步骤简便、安全无毒,尤其是在高温下(700℃)制得薄膜的结晶质量更好,对254nm波长光有明显的响应,属于日盲紫外范围,能够避开太阳光的影响,噪声小,可全天候使用。
2)本发明将PLD技术制备的Ga2O3多晶薄膜成功应用在薄膜晶体管型紫外探测器中,且光暗比、开关比等性能优异。
3)本发明在制备前期对Si/SiO2衬底进行清洗预处理,包括有机溶液超声清洗、氧等离子处理和200℃高温预处理,有效提升衬底表面质量,能够明显改善Ga2O3多晶薄膜的质量。
4)本发明的薄膜晶体管型紫外探测器结构简单,制作方法容易,且成本低、性能优,为Ga2O3基功率器件的发展奠定基础。
附图说明
图1是Ga2O3多晶薄膜晶体管型紫外探测器的正视结构示意图。
图2是Ga2O3多晶薄膜晶体管型紫外探测器的俯视结构示意图。
图3是Ga2O3多晶薄膜晶体管型紫外探测器在不同状态下工作的能带图。
图4是在不同温度下制备的Ga2O3多晶薄膜XRD图,在700℃下结晶质量最佳。
图5是实施例1的转移曲线,光照使用波长为254nm、功率为250μW/cm2的紫外光。
图6是实施例2的转移曲线,光照使用波长为254nm、功率为250μW/cm2的紫外光。
具体实施方式
以下结合附图及具体实施例对本发明做进一步阐述。
根据图1,图2,本发明的Ga2O3多晶薄膜晶体管型紫外探测器的结构自下而上依次为Si/SiO2层、Ga2O3多晶层和Au/Ti电极。
实施例1
1)将4英寸的Si/SiO2片切割成1.0cm x 1.0cm的小片;分别使用丙酮、乙醇和去离子水超声清洗10min,然后用氮气枪吹干残留在Si/SiO2衬底表面的水分。将清洗后的Si/SiO2衬底放入等离子体清洗器中使用等离子体清洗10min。最后将清洗后的Si/SiO2衬底放入真空腔室内使用200℃烘烤10min,完成对衬底的预处理。
2)将99.99%的Ga2O3靶材固定在腔室内的靶台上,将清洗好的Si/SiO2衬底固定在样品台上,用挡板将靶材和衬底隔开,调整靶材到衬底的距离为6.0cm。依次关好腔室门和漏气阀,依次打开机械泵和分子泵,约1.5h后达到实验所需的10-5Pa真空度。将Si/SiO2衬底加热至700℃,并稳定在这一温度。在真空腔室内通入O2,调节流量计,使腔室内气压保持在0.1Pa。然后打开激光器,预热10min后将激光能量调整为200mJ/cm2,激光频率调整为3Hz,使激光束聚焦在Ga2O3靶面并烧蚀靶材,形成羽辉。预沉积5min后打开靶材与衬底之间的挡板,在Si/SiO2衬底表面沉积Ga2O3多晶薄膜30min。沉积结束后在700℃下保温20min。关闭激光器,加热器,真空系统并自然降温至室温,获得80nm的Ga2O3多晶薄膜。最后在N2氛围下800℃快速热退火30min。
3)在Ga2O3多晶薄膜表面采用电子束蒸发蒸镀50nm/20nm的Au/Ti电极对,获得Ga2O3多晶薄膜晶体管型紫外探测器。
本例制得的Ga2O3多晶薄膜晶体管型紫外探测器的开关比为6.0×104,光暗比为6.5×103,亚阈值摆幅为4.8V/dec,响应度为0.8A/W。
实施例2
1)将4英寸的Si/SiO2片切割成1.0cm x 1.0cm的小片;分别使用丙酮、乙醇和去离子水超声清洗10min,然后用氮气枪吹干残留在Si/SiO2衬底表面的水分。将清洗后的Si/SiO2衬底放入等离子体清洗器中,使用等离子体清洗10min。最后将清洗后的Si/SiO2衬底放入真空腔室内使用200℃烘烤10min,完成对衬底的预处理。
2)将99.99%的Ga2O3靶材固定在腔室内的靶台上,将清洗好的Si/SiO2衬底固定在样品台上,用挡板将靶材和衬底隔开,调整靶材到衬底的距离为6.0cm。依次关好腔室门和漏气阀,依次打开机械泵和分子泵,约1.5h后达到实验所需的10-5Pa真空度。将Si/SiO2衬底加热至700℃,并稳定在这一温度。在真空腔室内通入O2,调节流量计,使腔室内气压保持在0.1Pa。然后打开激光器,预热10min后将激光能量调整为200mJ/cm2,激光频率调整为3Hz,使激光束聚焦在Ga2O3靶面并烧蚀靶材,形成羽辉。预沉积5min后打开靶材与衬底之间的挡板,在Si/SiO2衬底表面沉积Ga2O3多晶薄膜60min。沉积结束后在700℃下保温20min。关闭激光器、加热器、真空系统,并自然降温至室温,获得150nm的Ga2O3多晶薄膜。最后在N2氛围下800℃快速热退火30min。
3)在Ga2O3多晶薄膜表面通过电子束蒸发蒸镀50nm/20nm的Au/Ti电极对,获得Ga2O3多晶薄膜晶体管型紫外探测器。
本例制得的Ga2O3多晶薄膜晶体管型紫外探测器的开关比为8.5×104,光暗比为6.9×103,亚阈值摆幅为3.8V/dec,响应度为0.6A/W。

Claims (3)

1.一种氧化镓多晶薄膜晶体管型紫外探测器的制备方法,其特征在于,该紫外探测器自下而上依次有Si/SiO2层、Ga2O3多晶层和Au/Ti电极对,该探测器的制备方法包括以下步骤:
1)清洗Si/SiO2衬底,获得表面洁净无杂质且无氧吸附的Si/SiO2片;具体为:
将Si/SiO2衬底分别使用丙酮、乙醇和去离子水超声清洗,清洗结束后用N2吹干表面水分,并放入等离子体清洗器中用等离子体清洗10-15min,以去除衬底表面的有机物,获得洁净的表面;
将清洗后的Si/SiO2衬底放入真空腔室内,加热至200℃并保温10min,获得无杂质且无氧吸附的Si/SiO2层;
2)采用PLD方法在洁净的Si/SiO2衬底表面沉积50-150nm的Ga2O3多晶层;具体为:
将Ga2O3靶材固定在PLD腔体内的靶台上,将步骤(1)清洗好的Si/SiO2衬底固定在样品台上,用挡板将靶材和衬底隔开,调整好靶材到衬底的距离为6.0cm;
依次关好腔门和漏气阀,依次打开机械泵和分子泵,使腔体内达到10-5Pa真空度;然后将Si/SiO2衬底加热至700℃,维持温度的稳定;在真空腔内通入O2,调节压强,使腔内压强保持在0.1Pa;
打开激光器,预热10min后调整激光能量为200mJ/cm2,激光频率为3Hz;使激光束聚焦在Ga2O3靶面并烧蚀靶材,形成羽辉;先进行预沉积5min,去除靶材表面Ga、O比例不均匀层,然后打开靶材与衬底之间的挡板,在Si/SiO2衬底表面沉积Ga2O3薄膜,获得Ga2O3多晶层;
在N2氛围下进行800℃退火处理30min,消除薄膜中的部分应力,从而提升薄膜质量;
3)在Ga2O3多晶层表面蒸镀Au/Ti电极对,完成Ga2O3多晶薄膜晶体管型紫外探测器的制备。
2.根据权利要求1所述的氧化镓多晶薄膜晶体管型紫外探测器的制备方法,其特征在于,所述的Au/Ti电极对的厚度为50nm/20nm。
3.一种氧化镓多晶薄膜晶体管型紫外探测器,其特征在于,采用如权利要求1-2任一项所述的方法制备获得,为日盲紫外探测器。
CN202010894770.0A 2020-08-31 2020-08-31 一种氧化镓多晶薄膜晶体管型紫外探测器的制备方法 Active CN112038443B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010894770.0A CN112038443B (zh) 2020-08-31 2020-08-31 一种氧化镓多晶薄膜晶体管型紫外探测器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010894770.0A CN112038443B (zh) 2020-08-31 2020-08-31 一种氧化镓多晶薄膜晶体管型紫外探测器的制备方法

Publications (2)

Publication Number Publication Date
CN112038443A CN112038443A (zh) 2020-12-04
CN112038443B true CN112038443B (zh) 2022-06-17

Family

ID=73587751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010894770.0A Active CN112038443B (zh) 2020-08-31 2020-08-31 一种氧化镓多晶薄膜晶体管型紫外探测器的制备方法

Country Status (1)

Country Link
CN (1) CN112038443B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659020B (zh) * 2021-02-26 2023-06-02 松山湖材料实验室 日盲紫外探测器及其制备方法、以及日盲紫外探测方法
CN114566490B (zh) * 2022-04-15 2023-06-27 中国电子科技集团公司第十研究所 垂直布局msm电容结构及其制作方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110676339A (zh) * 2019-09-19 2020-01-10 西安工业大学 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470675B (zh) * 2018-02-28 2021-09-28 唐为华 一种Si基氧化镓薄膜背栅极日盲紫外光晶体管及其制备方法
CN111081825A (zh) * 2019-12-20 2020-04-28 浙江大学 一种msm型日盲紫外探测器的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110676339A (zh) * 2019-09-19 2020-01-10 西安工业大学 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法

Also Published As

Publication number Publication date
CN112038443A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
Kapadnis et al. Cadmium telluride/cadmium sulfide thin films solar cells: a review
Compaan et al. High efficiency, magnetron sputtered CdS/CdTe solar cells
Pietruszka et al. New efficient solar cell structures based on zinc oxide nanorods
Minami et al. High-efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3 thin film as n-type layer
Li et al. Development of pulsed laser deposition for CdS/CdTe thin film solar cells
CN112038443B (zh) 一种氧化镓多晶薄膜晶体管型紫外探测器的制备方法
Ameen et al. Solar light photodetectors based on nanocrystalline zinc oxide cadmium doped/p-Si heterojunctions
CN108470675A (zh) 一种Si基氧化镓薄膜背栅极日盲紫外光晶体管及其制备方法
Chen Review of ZnO transparent conducting oxides for solar applications
TWI705577B (zh) 二維電子元件與相關製造方法
CN103500776A (zh) 一种硅基CdZnTe薄膜紫外光探测器的制备方法
CN105714262A (zh) 一种择优生长ito透明导电薄膜的制备方法
KR20120080045A (ko) 태양전지의 제조방법
CN110993503B (zh) 基于氧化镓/钙钛矿传输层异质结的n型晶体管及其制备方法
CN109841703A (zh) 一种高稳定、低暗电流全无机钙钛矿光电探测器及其制备方法
CN102569486B (zh) 一种肖特基栅场效应紫外探测器及其制备方法
KR101210171B1 (ko) 태양전지 및 이의 제조방법
Bayhan et al. Eects of Post Deposition Treatments on Vacuum Evaporated CdTe Thin Films and CdS= CdTe Heterojunction Devices
CN105957924A (zh) 一种利用ZnO缓冲层制备择优取向ITO光电薄膜的方法
CN112071941B (zh) 功能模组及其制备方法和应用
KR101439240B1 (ko) 박막 태양전지 광흡수층의 저온 제조방법
CN207938614U (zh) 一种p-AlN/i-AlN/n-ZnO结构
CN112736150A (zh) 一种铜铟镓硒薄膜太阳能电池及其制备方法
CN114242813B (zh) 一种CuI/ZTO异质结紫外探测器及其制备方法
Cimaroli et al. Effects of oxygen plasma treatment on the performance of CdTe thin-film solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant