CN113707760A - 一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法 - Google Patents

一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法 Download PDF

Info

Publication number
CN113707760A
CN113707760A CN202110817810.6A CN202110817810A CN113707760A CN 113707760 A CN113707760 A CN 113707760A CN 202110817810 A CN202110817810 A CN 202110817810A CN 113707760 A CN113707760 A CN 113707760A
Authority
CN
China
Prior art keywords
mgo
beta
layer
port
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110817810.6A
Other languages
English (en)
Inventor
孟冬冬
王大放
王刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Binhai University
Original Assignee
Qingdao Binhai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Binhai University filed Critical Qingdao Binhai University
Priority to CN202110817810.6A priority Critical patent/CN113707760A/zh
Publication of CN113707760A publication Critical patent/CN113707760A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于日盲紫外光探测器技术领域,公开了一种基于β‑Ga2O3/MgO异质结的三端口紫外光探测器制作方法,包括以下步骤:采用镂空的叉指电极掩膜板遮挡光敏层,采用磁控溅射的方法在β‑Ga2O3薄膜表面溅射Ti/Au叉指金属电极作为晶体管电极的S端和D端,在MgO衬底背部溅射Ti/Au作为栅极G端,从而获得三端口的MSM结构的日盲探测器件。本发明实施例在(100)取向MgO衬底上能够生长出均匀分布的(00l)取向的β‑Ga2O3薄膜,晶格的匹配度高,晶格间结合紧密,外延层不易脱落;采用磁控溅射方法外延生长β‑Ga2O3薄膜层,工艺简单、易操作、可控性强,所得薄膜表面光滑、致密、厚度均匀,可用于批量的商业化制备,所得产品的性能稳定、重复性好。

Description

一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作 方法
技术领域
本发明属于日盲紫外光探测器技术领域,特别涉及一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法。
背景技术
由于臭氧层的存在,几乎不存在波长介于200-280nm的紫外光(称之为日盲区),针对该波段的信号探测被称为日盲紫外光探测。日盲紫外光探测器不受太阳光背景影响,可以全天候工作,具有灵敏度高、虚警率低等特点,工作在此波段的通信准确率也极高,在生物测试、臭氧空洞监测、航天航空等方面有广泛的应用。日盲紫外通信技术的核心是高灵敏度、低噪声的紫外光探测器件的研制。目前常用的基于光电倍增管的真空紫外光探测器件体积大、响应慢,而基于宽禁带半导体材料的紫外光探测器件则具有体积小、重量轻、增益高、响应快、噪声低、耐冲击、抗振动以及不受磁场影响等优点,特别适用于装备集成。因此,基于尺寸、功耗、成本和安全等因素的考虑,采用半导体探测器替代光电倍增管是一种比较理想的选择。近年来,得益于宽禁带半导体物理基础研究和材料制备工艺的进展和突破,为新型固态紫外光探测器件的开发带来了新的希望。
要实现日盲紫外光探测,器件核心半导体材料的禁带宽度要大于4.4eV(对应探测波长280nm),近几年研究主要集中在AlGaN、MgZnO、Ga2O3等宽带禁带半导体材料上。理论上,三元合金AlGaN禁带宽度会随着Al组分的变化在3.4~6.2eV之间可调,要获得日盲区探测,AlGaN的Al组分需高于38%,但高Al含量的AlGaN薄膜需要极高温的生长环境且易发生异相分离。MgZnO在单晶纤维锌矿的结构下很难保持超过4.5eV的带隙,影响了它们在日盲探测领域的应用。而Ga2O3的禁带宽度约为4.9eV,正好对应于日盲区,室温下激子束缚能高达40~50meV,远高于室温热离化能(26meV),并具有优异的热稳定性和化学稳定性,是制备日盲紫外光探测器件的天然理想材料。
目前基于Ga2O3材料的日盲紫外光探测的研究还处于起步阶段,基于Ga2O3单晶的日盲探测器件性能很好,但是单晶生长困难且价格昂贵。相对而言,基于Ga2O3薄膜的日盲紫外光探测器件的性能进步很快,由于β-Ga2O3单晶属于单斜晶系,自然界还缺乏能跟其晶格匹配度较高且制造成本较低的基底材料,虽然以c面蓝宝石(Al2O3)为基底能生长β-Ga2O3薄膜,但是在Al2O3衬底上异质外延生长高质量的β-Ga2O3薄膜难度仍然非常大,特别是在Al2O3衬底上生长获得的β-Ga2O3薄膜均为(-201)取向,基于该取向生长的β-Ga2O3薄膜制作的日盲紫外光探测器性能要弱于沿(00l)取向生长的β-Ga2O3基探测器。尽管基于(100)取向的MgAl2O4衬底上已经成功长成了β-Ga2O3薄膜,并制作成了相关的光电探测器,但(100)取向的MgAl2O4衬底不易获得,价格稍显昂贵。
发明内容
为解决上述技术问题,本发明提出一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法,利用磁控溅射沉积方法在氧化镁(MgO)衬底上外延生长(00l)取向氧化镓(β-Ga2O3)薄膜,获得β-Ga2O3/MgO异质结,并应用该异质薄膜制作日盲紫外光探测器。
本发明的技术方案是这样实现的:
在一个实施例中,公开了一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器制作方法,包括以下步骤:采用镂空的叉指电极掩膜板遮挡光敏层,采用磁控溅射的方法在β-Ga2O3薄膜表面溅射Ti/Au叉指金属电极作为晶体管电极的S端和D端,在MgO衬底背部溅射Ti/Au作为栅极G端,从而获得三端口的MSM结构的日盲探测器件,从下到上分别是Ti/Au背栅电极、MgO衬底、β-Ga2O3薄膜、Ti/Au叉指金属电极,β-Ga2O3薄膜用作光敏层,MgO层作为栅电极溅射层,金属Ti/Au层作为电极层。
根据本发明的优选实施方式,一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器制作方法,包括以下步骤:
步骤(1),取一片MgO晶片,将该晶片依次在丙酮、无水乙醇、去离子水中分别超声浸泡10~20分钟,取出后用流动的去离子水冲洗残留的试剂,最后用干燥的氮气吹干,获得的晶片作为衬底片;
步骤(2),将衬底片放入沉积室,以纯度为99.99%的Ga2O3陶瓷为靶材,采用磁控溅射方法在其表层上外延生长β-Ga2O3薄膜层;
步骤(3),将β-Ga2O3薄膜层用镂空的叉指电极掩膜板遮挡表面,采用磁控溅射方法在薄膜表面溅射金属Ti层,然后在Ti层基础上溅射金属Au层获得Ti/Au叉指金属电极,上述叉指金属电极分别作为晶体管的S端和D端使用;采用同样的方法,在衬底MgO表面分别溅射Ti/Au层,作为三端口晶体器件的栅极G端。
根据本发明的优选实施方式,所述步骤(2)中,β-Ga2O3薄膜层生长过程的具体参数设置如下:背底压强小于1×10-4Pa。
根据本发明的优选实施方式,所述步骤(2)中,β-Ga2O3薄膜层生长过程的具体参数设置如下:衬底温度为750℃。
根据本发明的优选实施方式,所述步骤(2)中,β-Ga2O3薄膜层生长过程的具体参数设置如下:工作气氛为Ar气,气压为1Pa。
根据本发明的优选实施方式,所述步骤(2)中,β-Ga2O3薄膜层生长过程的具体参数设置如下:溅射功率为80W,溅射时间为100分钟。
根据本发明的优选实施方式,所述步骤(3)中,溅射条件设置如下:背底真空为1×10-4Pa。
根据本发明的优选实施方式,所述步骤(3)中,溅射条件设置如下:衬底温度保持室温。
根据本发明的优选实施方式,所述步骤(3)中,溅射条件设置如下:工作气氛为Ar气,气压为3Pa。
根据本发明的优选实施方式,所述步骤(3)中,溅射条件设置如下:溅射功率为40W,金属Ti/Au层的溅射时间分别为10s/20s。
根据本发明的优选实施方式,所述电极的溅射过程中的溅射功率设定为40W,10nm厚的金属Ti层的溅射时间为10s,20nm厚的金属Au层的溅射时间为20s。
在另一个实施例中,还公开了一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器,从下到上分别是Ti/Au背栅电极、MgO衬底、β-Ga2O3薄膜、Ti/Au叉指金属电极,β-Ga2O3薄膜用作光敏层,MgO层作为栅电极溅射层,金属Ti/Au层作为电极层。
作为设计,本发明以结晶度更高、价格更低的(100)取向的MgO为衬底,获得的β-Ga2O3/MgO异质结结合紧密,晶格匹配度高,电子传输速度快。
作为设计,利用磁控溅射方法生长(00l)取向的β-Ga2O3薄膜作为光敏层,光的响应度更高。
本发明的优势在于:
1.本发明所涉原材料容易获取,薄膜的制备过程简单。所用MgO衬底为商业产品,可批量购买;在(100)取向MgO衬底上能够生长出均匀分布的(00l)取向的β-Ga2O3薄膜,晶格的匹配度高,晶格间结合紧密,外延层不易脱落;采用磁控溅射方法外延生长β-Ga2O3薄膜层,工艺简单、易操作、可控性强,所得薄膜表面光滑、致密、厚度均匀,可用于批量的商业化制备,所得产品的性能稳定、重复性好。
2.本发明所得的MSM结构的β-Ga2O3薄膜日盲紫外光电探测器响应度高,响度速度快,暗电流小,制作工艺简单,具有广阔的市场前景。
3.本发明所得的带有背栅电极的三端口MSM结构的β-Ga2O3薄膜日盲紫外光探测器,通过调节栅极电压的大小调节β-Ga2O3薄膜上感生载流子的数量,从而提高探测器的响应速度,减小光电流的上升和下降时间,使探测器件具有更高的灵敏度。
附图说明
图1是通过本发明方法制作的β-Ga2O3/MgO异质薄膜基三端口探测器结构示意图;
图2是用本发明方法制得的β-Ga2O3/MgO薄膜的XRD图;
图3是用本发明方法制得的β-Ga2O3薄膜的紫外可见光谱图;
图4是用本发明方法制得的β-Ga2O3薄膜的扫描电子显微镜图;
图5是用本发明方法制得的β-Ga2O3/MgO异质薄膜基探测器在黑暗,365nm及254nm光照下的I-V曲线图;
图6是用本发明方法制得的探测器在10V栅极电压(黑暗情况下)及10V、0V栅极电压(254nm光照、光强为0.6mW/cm2)的电流输出特性曲线图;
图7是本发明方法制得的β-Ga2O3/MgO异质薄膜基日盲紫外光探测器在5V偏压及254nm光照下的I-t曲线图。
具体实施方式
总的来说,本发明提出一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器制作方法,采用磁控溅射技术,生长的工艺条件简单可控,所制作的探测器性能稳定。
在一个实施例中,公开了一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器制作方法,包括以下步骤:采用镂空的叉指电极掩膜板遮挡光敏层,采用磁控溅射的方法在β-Ga2O3薄膜表面溅射Ti/Au叉指金属电极作为晶体管电极的S端和D端,在MgO衬底背部溅射Ti/Au作为栅极G端,从而获得三端口的MSM结构的日盲探测器件。
本实施例中,日盲探测器件从下到上分别是Ti/Au背栅电极、MgO衬底、β-Ga2O3薄膜、Ti/Au叉指金属电极,β-Ga2O3薄膜用作光敏层,MgO层作为栅电极溅射层,金属Ti/Au层作为电极层。
本实施例在MgO衬底上沿(00l)取向外延生长了β-Ga2O3薄膜材料,获得了β-Ga2O3/MgO异质薄膜,通过在该薄膜的β-Ga2O3表面溅射Ti/Au叉指金属电极,分别作为晶体管电极的S端和D端,在MgO衬底背部溅射Ti/Au作为栅极G端,完成了β-Ga2O3/MgO异质薄膜基金属-半导体-金属(MSM)结构三端口日盲紫外光探测器的制作。
在一个实施例中,上述基于β-Ga2O3/MgO异质结的三端口紫外光探测器制作方法,具体包括以下步骤:
步骤(1),取一片MgO晶片,将该晶片依次在丙酮、无水乙醇、去离子水中分别超声浸泡10~20分钟,取出后用流动的去离子水冲洗残留的试剂,最后用干燥的氮气吹干,获得的晶片作为衬底片;
步骤(2),将衬底片放入沉积室,以纯度为99.99%的Ga2O3陶瓷为靶材,采用磁控溅射方法在其表层上外延生长β-Ga2O3薄膜层;
步骤(3),将β-Ga2O3薄膜层用镂空的叉指电极掩膜板遮挡表面,采用磁控溅射方法在薄膜表面溅射金属Ti层,然后在Ti层基础上溅射金属Au层获得Ti/Au叉指金属电极,上述叉指金属电极分别作为晶体管的S端和D端使用;采用同样的方法,在衬底MgO表面分别溅射Ti/Au层,作为三端口晶体器件的栅极G端。
以下结合实例进一步说明本发明的实现过程。
结合图1,取一片大小为10mm×10mm×0.5mm、(100)取向的MgO晶片10,将晶片依次在丙酮、无水乙醇、去离子水中分别超声浸泡15分钟,取出后再用流动的去离子水冲洗,最后用干燥的氮气吹干,经此过程处理后的晶片作为衬底,等待下一步使用。将上述清洗干净的MgO衬底10放入沉积室,以纯度为99.99%的Ga2O3陶瓷为靶材,采用磁控溅射在其上生长β-Ga2O3薄膜20,设置磁控溅射技术的生长参数如下:背底真空压强小于1×10-4Pa,工作气氛为Ar气(气压为1Pa),衬底温度为750℃,溅射功率为80W,溅射时间为100分钟,得到的β-Ga2O3薄膜的厚度为150nm。在上述制备的β-Ga2O3薄膜表面用镂空的叉指电极掩膜板遮挡,采用磁控溅射方法在β-Ga2O3薄膜表面先后溅射厚度分别为10nm和20nm的金属Ti和金属Au层,获得Ti/Au叉指电极,叉指金属电极的面积为2800μm×200μm、各叉指的间距为200μm、光敏面积为2800μm×1200μm。溅射工艺条件如下:背底真空为1×10-4Pa,衬底温度为室温,工作气氛为Ar气(气压为3Pa),溅射功率为40W,Ti层和Au层的溅射时间分别为10s和20s。叉指金属电极分别作为三端口场效应管的S端和D端使用。采用同样的技术方法,在衬底MgO表面先后溅射10nm/20nm的Ti/Au,作为三端口器件的栅极G使用。
通过上述步骤即可获得β-Ga2O3/MgO异质薄膜基探测器,外型结构如图1所示。在叉指电极两侧外加5V偏压,电流则从正电极流入,通过光敏层β-Ga2O3薄膜,从负电极流出,实现纵向金属-半导体-金属(MSM)型探测器的基本功能。图2给出了β-Ga2O3/MgO薄膜的XRD结果,除去MgO衬底的(200)衍射峰外,有且仅有β-Ga2O3(400)衍射峰,说明所有的样品都是沿着(00l)晶面外延生长的β相Ga2O3薄膜。图3给出了β-Ga2O3薄膜的紫外可见光吸收谱,从图中可以看出,薄膜的吸收边都在260nm左右,具有明显的日盲紫外光敏感特性。图4给出了β-Ga2O3薄膜的扫描电子显微镜图,可以看出薄膜表面均呈现出颗粒状,颗粒与颗粒存在清晰的界面。
图5给出了该β-Ga2O3/MgO异质薄膜基探测器在黑暗,365nm及254nm(光强为0.6mW/cm2)光照下的I-V曲线。在黑暗和365nm的光照下,β-Ga2O3薄膜基探测器的电流都非常小。而在光强为0.6mW/cm2的254nm光照下,随着正向偏压的增加,光电流有着明显的增加。在5V正向偏压下,探测器的电流从黑暗情况下的0.65nA增加至954.4nA,光暗比I254/Idark为1468,表明该异质薄膜材料对254nm的紫外光具有强烈的响应,响应度最高达158.9A/W;而对365nm的光不敏感,几乎无响应,显示出明显的日盲紫外光探测特性。
图6给出了该探测器在10V栅极电压、黑暗情况下及10V和0V栅极电压、254nm光照下(光强为0.6mW/cm2)的电流输出特性曲线。由光电流的输出特点可知,该探测器在254nm的光照下,出现了明显的光电流,并且电流强度随着正向偏压的增加不断增强;同时,当栅极施加电压时,光电流明显增加,表明光电流的强度还受到了栅极电压的调制作用。该器件显示出了典型的肖特基势垒光电晶体管的特点。
图7给出了该探测器在5V偏压及波长为254nm光照下(光强为0.6mW/cm2)通过不断灯开、灯关测得的I-t曲线。通过6次I-t循环测试,显示出该器件具有良好的重复性和稳定性。利用指数松弛方程对测试结果进行进一步拟合,从而获得该探测器的上升响应时间τr及衰减时间τd分别为0.957s和0.096s。
在另一个实施例中,还公开了一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器,从下到上分别是Ti/Au背栅电极、MgO衬底、β-Ga2O3薄膜、Ti/Au叉指金属电极,β-Ga2O3薄膜用作光敏层,MgO层作为栅电极溅射层,金属Ti/Au层作为电极层。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明。应强调的是,以上所述仅为本发明的具体实施例之一,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器制作方法,其特征在于,包括以下步骤:采用镂空的叉指电极掩膜板遮挡光敏层,采用磁控溅射的方法在β-Ga2O3薄膜表面溅射Ti/Au叉指金属电极作为晶体管电极的S端和D端,在MgO衬底背部溅射Ti/Au作为栅极G端,从而获得三端口的MSM结构的日盲探测器件。
2.如权利要求1所述的一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器制作方法,其特征在于,包括以下步骤:
步骤(1),取一片MgO晶片,将该晶片依次在丙酮、无水乙醇、去离子水中分别超声浸泡10~20分钟,取出后用流动的去离子水冲洗残留的试剂,最后用干燥的氮气吹干,获得的晶片作为衬底片;
步骤(2),将衬底片放入沉积室,以纯度为99.99%的Ga2O3陶瓷为靶材,采用磁控溅射方法在其表层上外延生长β-Ga2O3薄膜层;
步骤(3),将β-Ga2O3薄膜层用镂空的叉指电极掩膜板遮挡表面,采用磁控溅射方法在薄膜表面溅射金属Ti层,然后在Ti层基础上溅射金属Au层获得Ti/Au叉指金属电极,上述叉指金属电极分别作为晶体管的S端和D端使用;采用同样的方法,在衬底MgO表面分别溅射Ti/Au层,作为三端口晶体器件的栅极G端。
3.如权利要求2所述的一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器制作方法,其特征在于,
所述步骤(2)中,β-Ga2O3薄膜层生长过程的具体参数设置如下:背底压强小于1×10- 4Pa。
4.如权利要求2所述的一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器制作方法,其特征在于,
所述步骤(2)中,β-Ga2O3薄膜层生长过程的具体参数设置如下:衬底温度为750℃。
5.如权利要求2所述的一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器制作方法,其特征在于,
所述步骤(2)中,β-Ga2O3薄膜层生长过程的具体参数设置如下:工作气氛为Ar气,气压为1Pa。
6.如权利要求2所述的一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器制作方法,其特征在于,
所述步骤(2)中,β-Ga2O3薄膜层生长过程的具体参数设置如下:溅射功率为80W,溅射时间为100分钟。
7.如权利要求2所述的一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器制作方法,其特征在于,
所述步骤(3)中,溅射条件设置如下:背底真空为1×10-4Pa。
8.如权利要求2所述的一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器制作方法,其特征在于,
所述步骤(3)中,溅射条件设置如下:衬底温度保持室温。
9.如权利要求2所述的一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器制作方法,其特征在于,
所述步骤(3)中,溅射条件设置如下:工作气氛为Ar气,气压为3Pa,溅射功率为40W,金属Ti/Au层的溅射时间分别为10s/20s。
10.一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器,其特征在于,从下到上分别是Ti/Au背栅电极、MgO衬底、β-Ga2O3薄膜、Ti/Au叉指金属电极,β-Ga2O3薄膜用作光敏层,MgO层作为栅电极溅射层,金属Ti/Au层作为电极层。
CN202110817810.6A 2021-07-20 2021-07-20 一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法 Pending CN113707760A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110817810.6A CN113707760A (zh) 2021-07-20 2021-07-20 一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110817810.6A CN113707760A (zh) 2021-07-20 2021-07-20 一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法

Publications (1)

Publication Number Publication Date
CN113707760A true CN113707760A (zh) 2021-11-26

Family

ID=78649048

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110817810.6A Pending CN113707760A (zh) 2021-07-20 2021-07-20 一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法

Country Status (1)

Country Link
CN (1) CN113707760A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114582994A (zh) * 2022-03-04 2022-06-03 仲恺农业工程学院 一种超宽禁带非晶MgGaO真空紫外光伏探测器
CN114823930A (zh) * 2022-03-24 2022-07-29 电子科技大学 基于MgO钝化的非晶Ga2O3日盲紫外探测器及其制备方法
CN115579405A (zh) * 2022-09-27 2023-01-06 山东大学 一种磁控溅射非晶氧化镓光电薄膜晶体管及其制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870225A (zh) * 2016-03-31 2016-08-17 张权岳 一种单片集成的多功能紫外/日盲紫外双色探测器及其制备方法
CN108470675A (zh) * 2018-02-28 2018-08-31 唐为华 一种Si基氧化镓薄膜背栅极日盲紫外光晶体管及其制备方法
CN108666395A (zh) * 2018-05-24 2018-10-16 北京邮电大学 基于非晶氧化镓薄膜的日盲紫外光电探测器及其制备方法
CN109037386A (zh) * 2018-07-20 2018-12-18 北京镓族科技有限公司 基于氧化镁衬底的氧化镓薄膜光电探测器及其制造方法
CN109256438A (zh) * 2018-09-26 2019-01-22 北京镓族科技有限公司 一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法
CN109742180A (zh) * 2018-12-28 2019-05-10 中国科学院宁波材料技术与工程研究所 一种基于非晶氧化镓基薄膜晶体管的深紫外光电探测器
CN110571301A (zh) * 2019-07-31 2019-12-13 中国科学技术大学 氧化镓基日盲探测器及其制备方法
CN111524998A (zh) * 2020-05-07 2020-08-11 西安电子科技大学 太阳光盲区肖特基背栅金属氧化物半导体场效应光电晶体管
CN111628019A (zh) * 2020-06-28 2020-09-04 中国科学院长春光学精密机械与物理研究所 一种三氧化二镓日盲紫外探测器及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870225A (zh) * 2016-03-31 2016-08-17 张权岳 一种单片集成的多功能紫外/日盲紫外双色探测器及其制备方法
CN108470675A (zh) * 2018-02-28 2018-08-31 唐为华 一种Si基氧化镓薄膜背栅极日盲紫外光晶体管及其制备方法
CN108666395A (zh) * 2018-05-24 2018-10-16 北京邮电大学 基于非晶氧化镓薄膜的日盲紫外光电探测器及其制备方法
CN109037386A (zh) * 2018-07-20 2018-12-18 北京镓族科技有限公司 基于氧化镁衬底的氧化镓薄膜光电探测器及其制造方法
CN109256438A (zh) * 2018-09-26 2019-01-22 北京镓族科技有限公司 一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法
CN109742180A (zh) * 2018-12-28 2019-05-10 中国科学院宁波材料技术与工程研究所 一种基于非晶氧化镓基薄膜晶体管的深紫外光电探测器
CN110571301A (zh) * 2019-07-31 2019-12-13 中国科学技术大学 氧化镓基日盲探测器及其制备方法
CN111524998A (zh) * 2020-05-07 2020-08-11 西安电子科技大学 太阳光盲区肖特基背栅金属氧化物半导体场效应光电晶体管
CN111628019A (zh) * 2020-06-28 2020-09-04 中国科学院长春光学精密机械与物理研究所 一种三氧化二镓日盲紫外探测器及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114582994A (zh) * 2022-03-04 2022-06-03 仲恺农业工程学院 一种超宽禁带非晶MgGaO真空紫外光伏探测器
CN114823930A (zh) * 2022-03-24 2022-07-29 电子科技大学 基于MgO钝化的非晶Ga2O3日盲紫外探测器及其制备方法
CN114823930B (zh) * 2022-03-24 2023-04-11 电子科技大学 基于MgO钝化的非晶Ga2O3日盲紫外探测器及其制备方法
CN115579405A (zh) * 2022-09-27 2023-01-06 山东大学 一种磁控溅射非晶氧化镓光电薄膜晶体管及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN113707760A (zh) 一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法
Guo et al. Decrease of oxygen vacancy by Zn-doped for improving solar-blind photoelectric performance in β-Ga 2 O 3 thin films
Shen et al. A self-powered ultraviolet photodetector based on solution-processed p-NiO/n-ZnO nanorod array heterojunction
Yin et al. The light-induced pyro-phototronic effect improving a ZnO/NiO/Si heterojunction photodetector for selectively detecting ultraviolet or visible illumination
CN110676339B (zh) 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法
Chen et al. The effect of oxygen vacancy concentration on indium gallium oxide solar blind photodetector
CN110061089B (zh) 蓝宝石斜切衬底优化氧化镓薄膜生长及日盲紫外探测器性能的方法
US11201254B2 (en) (GaMe)2O3 ternary alloy material, its preparation method and application in solar-blind ultraviolet photodetector
CN112086344B (zh) 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用
CN111864005B (zh) 氧化镓基pn结光电探测器、远程电晕监测系统及制作方法
CN109037386A (zh) 基于氧化镁衬底的氧化镓薄膜光电探测器及其制造方法
CN114141909B (zh) 在蓝宝石衬底生长不同晶向氧化镓薄膜的方法及基于该薄膜的紫外光探测器的制备方法
CN114220878A (zh) 一种具有载流子传输层的Ga2O3/GaN日盲紫外探测器及其制备方法
CN108346712B (zh) 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法
CN103227230A (zh) 一种侧向生长ZnMgO纳米线日盲区紫外探测器及其制备方法
Yadav et al. Double Schottky metal–semiconductor–metal based GaN photodetectors with improved response using laser MBE technique
CN114267747B (zh) 具有金属栅结构的Ga2O3/AlGaN/GaN日盲紫外探测器及其制备方法
CN113675297A (zh) 一种氧化镓/氮化镓异质结光电探测器及其制备方法
CN111710752B (zh) 基于立方氮化硼厚膜的msm型深紫外光电探测器及制备方法
CN111785793A (zh) ZnMgO紫外探测器及其制备方法
Ku et al. Mg x Zn 1− x O Thin-Film Transistor-Based UV Photodetector with Enhanced Photoresponse
CN115295677A (zh) 高响应度β-Ga2O3基异质结自供能紫外探测器及其制备方法和应用
CN110350043B (zh) 一种自组装结晶/非晶氧化镓相结光电探测器及其制造方法
Chou et al. Characteristics of Ultraviolet Photodetector Based on Li-doped ZnO Nanorods
CN116190497B (zh) 一种基于强耦合MoS2/MoO3异质结光电探测器的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination