CN115579405A - 一种磁控溅射非晶氧化镓光电薄膜晶体管及其制备方法与应用 - Google Patents

一种磁控溅射非晶氧化镓光电薄膜晶体管及其制备方法与应用 Download PDF

Info

Publication number
CN115579405A
CN115579405A CN202211183592.6A CN202211183592A CN115579405A CN 115579405 A CN115579405 A CN 115579405A CN 202211183592 A CN202211183592 A CN 202211183592A CN 115579405 A CN115579405 A CN 115579405A
Authority
CN
China
Prior art keywords
thin film
film transistor
logic
photoelectric thin
photoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211183592.6A
Other languages
English (en)
Inventor
辛倩
纪兴启
宋爱民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202211183592.6A priority Critical patent/CN115579405A/zh
Publication of CN115579405A publication Critical patent/CN115579405A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/14Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/20Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits characterised by logic function, e.g. AND, OR, NOR, NOT circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明涉及一种磁控溅射非晶氧化镓光电薄膜晶体管及其制备方法与应用,包括由下自上依次生长的栅电极、介质层、氧化镓沟道层、源电极和漏电极;源电极和漏电极形成叉指结构。本发明在254nm的光照下,表现出优越的光电探测特性,包括响应度为2.0×105A W‑1、探测率为4.9×1018Jones及亮暗电流比大于2.9×108。在此基础上,本发明进一步基于非晶氧化镓薄膜光电晶体管制备了具有高探测灵敏度、高对比度的成像探测阵列与光控逻辑门电路。

Description

一种磁控溅射非晶氧化镓光电薄膜晶体管及其制备方法与 应用
技术领域
本发明涉及一种磁控溅射非晶氧化镓光电薄膜晶体管及其制备方法与应用,属于半导体技术领域。
背景技术
氧化镓(Ga2O3)具有~4.9eV的直接带隙,对应的紫外吸收截止边约为254nm,位于日盲紫外区,同时具有紫外光吸收系数大、抗辐射、稳定性高、成本低的特点,是日盲紫外探测器的理想选择。日盲紫外探测器具有高信噪比、全天候等优点,可用于导弹制导、保密通信、火焰探测、生物检测、成像等领域。迄今为止,日盲探测器的器件结构主要有金属-半导体-金属、肖特基二极管、异质结二极管和光电晶体管等。其中光电晶体管因场效应调控具有高响应度、高探测率、关态电流低和高亮暗电流比等优点,且易于在阵列成像及光敏电路中集成,阵列无串扰,电路设计简单。
中国专利文献CN109244158A公开了一种Ga2O3场效应晶体管日盲探测器及其制作工艺,该器件结构是采用机械剥离的Ga2O3单晶转移到栅介质上形成Ga2O3沟道层,然后在Ga2O3沟道层上制备源漏电极。虽然该器件具有高的响应度(4.79×105A W-1)和快的响应速度(25ms),但机械剥离的Ga2O3均一性差、尺寸小(通常微米级),不利于大面积制备。
中国专利文献CN110571301B公开了一种Ga2O3基日盲探测器及其制备方法,该器件结构是在Ga2O3外延层的衬底上沉积源极和漏极,然后覆盖二氧化硅钝化层,之后从氧化硅钝化层开设至Ga2O3衬底的沟槽,在沟槽底部和沟槽侧壁沉积氧化铝作为栅介质,最后栅介质上方沉积栅极。利用栅极调节沟道的载流子浓度,从而调节器件的暗电流,该器件满足大面积制备的需求。但是该器件制备过程比较复杂,外延器件制作成本相对较高。
非晶氧化镓(a-Ga2O3)光电晶体管与机械剥离和外延生长的单晶Ga2O3相比,具有大面积均匀性好、制备温度低、成本低等优点,更易于在阵列成像及光敏电路中集成。2019年,Qin等人利用溅射的a-Ga2O3制备了a-Ga2O3光电薄膜晶体管,实现了高响应度(4.1×103AW-1),[Y.Qin,S.B.Long,Q.M.He,H.Dong,G.Z.Jian,Y.Zhang,X.H.Hou,P.J.Tan,Z.F.Zhang,Y.J.Lu,C.X.Shan,J.L.Wang,W.D.Hu,H.B.Lv,Q.Liu,and M.Liu,Adv.Electron.Mater.,1900389(2019).],但响应时间较长(50/400s),亮暗电流比仅为~102,难以满足高对比度快速成像和高灵敏度光敏电路。
发明内容
本专利通过磁控溅射工艺制备了具有适当氧空位浓度的a-Ga2O3薄膜,并进而制备了其光电薄膜晶体管,通过栅极电场调控,实现了高响应度、高探测率和高亮暗电流比。在此基础上,本发明进一步基于a-Ga2O3薄膜光电晶体管制备了具有高探测灵敏度、高对比度的成像探测阵列与光控逻辑门电路。
本发明的技术方案为:
一种磁控溅射非晶氧化镓光电薄膜晶体管,包括由下自上依次生长的栅电极、介质层、a-Ga2O3沟道层、源电极和漏电极;所述源电极和漏电极形成叉指结构。
根据本发明优选的,所述叉指结构的叉指对数为2-50对,指宽5-50μm,叉指间距为5-100μm,指长为100-1000μm;
进一步优选的,所述叉指结构的叉指对数为14对,指宽10μm,叉指间距为10μm,指长为400μm。
根据本发明优选的,所述栅电极为Ti、Au、Pt、Al金属以及ITO、重掺杂Si中的一种;所述介质层为SiO2、Al2O3、HfO2、Si3N4中的一种;所述a-Ga2O3沟道层为非故意掺杂的a-Ga2O3或者掺杂Si、Sn、Cr、Ge、Zr和Ti中的一种或多种元素的a-Ga2O3;所述源电极和漏电极均为金属电极。
进一步优选的,所述栅电极为p型重掺杂Si。
根据本发明优选的,所述介质层的厚度为50-300nm;所述a-Ga2O3沟道层的厚度为10-500nm。
进一步优选的,所述介质层的厚度为100nm;所述a-Ga2O3沟道层的厚度为70nm。
上述磁控溅射非晶氧化镓光电薄膜晶体管的制备方法,包括:
在衬底上生长栅电极,其上加载介质层;
使用射频磁控溅射法在介质层上溅射沉积a-Ga2O3薄膜,形成a-Ga2O3沟道层;
在a-Ga2O3沟道层上生长金属,形成源电极和漏电极,既得。
根据本发明优选的,使用射频磁控溅射法溅射沉积生长a-Ga2O3薄膜,形成a-Ga2O3沟道层;射频磁控溅射中的工艺参数如下:
靶材为Ga2O3陶瓷靶;
溅射功率为50-120W;
工作气压为2.5-5mTorr;
气体流速为10-30SCCM;
衬底温度为25-300℃;
生长氛围为纯Ar;
溅射时间为4分9秒-204分55秒。
进一步优选的,使用射频磁控溅射法溅射沉积生长a-Ga2O3薄膜,形成a-Ga2O3沟道层;射频磁控溅射中的工艺参数如下:
溅射功率为90W;
工作气压为4.1mTorr;
气体流速为20SCCM;
衬底温度为室温;
溅射时间为28分41秒。
根据本发明优选的,形成a-Ga2O3沟道层之后执行如下操作,包括:氮气环境下,在100-600℃条件下快速热退火0.5-60分钟。
进一步优选的,形成a-Ga2O3光沟道层之后执行如下操作,包括:氮气环境下,在350℃条件下快速热退火1分钟。
根据本发明优选的,对衬底进行抛光并进行清洗。
进一步优选的,对衬底进行清洗,包括:依次使用迪康清洗剂、去离子水、异丙醇、乙醇超声清洗,吹干之后备用。
根据本发明优选的,在a-Ga2O3沟道层上生长金属,形成源电极和漏电极,包括:使用电子束蒸发镀膜的方式生长20nm的Ti和30nm的Au,作源电极和漏电极。
上述磁控溅射非晶氧化镓光电薄膜晶体管的应用,包括:将上述非晶氧化镓光电薄膜晶体管应用在图像探测上,具体是指:将光照射在覆盖有图像掩膜的a-Ga2O3光电薄膜晶体管阵列上,测试每个单元的电流值,通过电流分布,清晰显示出掩膜的图像。
上述磁控溅射非晶氧化镓光电薄膜晶体管的应用,包括:将上述磁控溅射非晶氧化镓光电薄膜晶体管应用在光控逻辑门电路上。
将上述磁控溅射非晶氧化镓光电薄膜晶体管应用在光控逻辑门电路上,包括上述磁控溅射非晶氧化镓光电薄膜晶体管应用在光控逻辑或门上及上述磁控溅射非晶氧化镓光电薄膜晶体管应用在光控逻辑与门上。
进一步优选的,上述磁控溅射非晶氧化镓光电薄膜晶体管应用在光控逻辑与门上,基于a-Ga2O3薄膜晶体管光控逻辑与门的电路包括:两个a-Ga2O3光电薄膜晶体管T1、T2及电流表A,两个a-Ga2O3光电薄膜晶体管T1、T2的栅极相连,a-Ga2O3光电薄膜晶体管T1的源极连接a-Ga2O3光电薄膜晶体管T2的漏极,a-Ga2O3光电薄膜晶体管T2的漏极连接电流表A;包括:
采用波长为230-280nm的两束光源分别照射两个a-Ga2O3光电薄膜晶体管T1、T2,光源的开和关作为信号的输入,光源的开关状态设定为0和1,即开为1、关为0;设定基准电流,当电流表A测得的电流超过基准电流时,输出逻辑1;否则,输出逻辑0;
两个a-Ga2O3光电薄膜晶体管T1、T2在无光源照射时,电流表A测得的电流无变化,输出逻辑0;a-Ga2O3光电薄膜晶体管T1无光源照射,a-Ga2O3光电薄膜晶体管T2有光源照射,电流表A测得的电流无变化,输出逻辑为0;a-Ga2O3光电薄膜晶体管T1有光源照射,a-Ga2O3光电薄膜晶体管T2无光源照射,电流表A测得的电流无变化,输出逻辑为0;a-Ga2O3光电薄膜晶体管T1有光源照射,a-Ga2O3光电薄膜晶体管T2有光源照射,电流表A测得的电流有变化,且电流超过基准电流,输出逻辑为1。
进一步优选的,上述a-Ga2O3光电薄膜晶体管应用在光控逻辑或门上,基于a-Ga2O3薄膜晶体管光控逻辑或门的电路包括:两个a-Ga2O3光电薄膜晶体管T1、T2及电流表A,两个a-Ga2O3光电薄膜晶体管T1、T2的漏极相连后连接电流表A;包括:
采用波长为230-280nm的两束光源分别照射两个a-Ga2O3光电薄膜晶体管T1、T2,光源的开和关作为信号的输入,光源的开关状态设定为0和1,即开为1、关为0;设定基准电流,当电流表A测得的电流超过基准电流时,输出逻辑1;否则,输出逻辑0;
两个a-Ga2O3光电薄膜晶体管T1、T2在无光源照射时,电流表A测得的电流无变化,输出逻辑0;a-Ga2O3光电薄膜晶体管T1无光源照射,a-Ga2O3光电薄膜晶体管T2有光源照射,电流表A测得的电流有变化,且电流超过基准电流,输出逻辑为1;a-Ga2O3光电薄膜晶体管T1有光源照射,a-Ga2O3光电薄膜晶体管T2无光源照射,电流表A测得的电流有变化,且电流超过基准电流,输出逻辑为1;a-Ga2O3光电薄膜晶体管T1有光源照射,a-Ga2O3光电薄膜晶体管T2有光源照射,电流表A测得的电流有变化,且电流超过基准电流,输出逻辑为1。
本发明的有益效果为:
1、本发明通过磁控溅射工艺制备了具有适当氧空位浓度的a-Ga2O3薄膜,并进而制备了光电薄膜晶体管。
2、本发明制备的a-Ga2O3光电薄膜晶体管,其源、漏电极采用叉指电极,增加了有效的光探测区域,进而增加光探测效率;采用叉指电极能高效的收集跃迁到导带的光生载流子,形成更大的光电流,从而提高光电探测器的性能。
3、本发明提供的a-Ga2O3光电薄膜晶体管,在254nm的光照下,表现出优越的光电探测特性,包括响应度为2.0×105A W-1、探测率为4.9×1018Jones及亮暗电流比为2.9×108
4、本发明基于a-Ga2O3薄膜光电晶体管制备了具有高探测灵敏度、高对比度的成像探测阵列。
5、本发明基于a-Ga2O3薄膜光电晶体管制备了光控逻辑门电路。
附图说明
图1为本发明a-Ga2O3光电薄膜晶体管的结构示意图;
图2为本发明方法制得的在Si/SiO2上溅射的Ga2O3的X射线衍射(XRD)谱图;
图3为本发明方法制得的在Si/SiO2上溅射的Ga2O3中O 1s的X射线光电子能谱;
图4为本发明方法制得的a-Ga2O3光电薄膜晶体管在不同光强下的电流-电压(I-V)特性曲线;
图5为本发明方法制得的a-Ga2O3光电薄膜晶体管在单个开灯和关灯下的电流-时间(I-T)特性曲线示意图;
图6为a-Ga2O3光电薄膜晶体管阵列版图及a-Ga2O3光电薄膜晶体管阵列实物图;
图7为基于10×10a-Ga2O3光电薄膜晶体管阵列图像探测结构示意图;
图8为本发明方法制得的a-Ga2O3光电薄膜晶体管阵列对“SDU”图像探测的结果显示图。
图9为基于a-Ga2O3薄膜晶体管光控逻辑与门的电路示意图;
图10为a-Ga2O3光电薄膜晶体管光控逻辑与门的测试波形图;
图11为基于a-Ga2O3薄膜晶体管光控逻辑或门的电路示意图;
图12为a-Ga2O3光电薄膜晶体管光控逻辑或门的测试波形图。
1、栅电极,2、介质层,3、Ga2O3沟道层,4、源电极,5、漏电极。
具体实施方式
下面结合说明书附图和实施例对本发明作进一步限定,但不限于此。
实施例1
一种磁控溅射非晶氧化镓光电薄膜晶体管,如图1所示,包括由下自上依次生长的栅电极1、介质层2、a-Ga2O3沟道层3、源电极4和漏电极5;源电极4和漏电极5形成叉指结构。
本发明源电极4和漏电极5采用叉指状电极,可增加有效的光探测区域,进而增加光探测效率;能高效地收集跃迁到导带的光生载流子,形成更大的光电流,从而提高光电探测器的性能;每对叉指之间相当于并联,使光电流得到倍增。
实施例2
根据实施例1所述的一种磁控溅射非晶氧化镓光电薄膜晶体管,其区别在于:
叉指结构的叉指对数为2-50对,指宽5-50μm,叉指间距为5-100μm,指长为100-1000μm;
栅电极1为Ti、Au、Pt、Al金属以及ITO、重掺杂Si中的一种;介质层2为SiO2、Al2O3、HfO2中的一种;a-Ga2O3沟道层3为非故意掺杂的Ga2O3或者掺杂Si、Sn、Cr、Ge、Zr和Ti中的一种或多种元素的a-Ga2O3;源电极4和漏电极5均为金属电极。
介质层2的厚度为50-300nm;a-Ga2O3沟道层3的厚度为10-500nm。
实施例3
根据实施例1所述的一种磁控溅射非晶氧化镓光电薄膜晶体管,其区别在于:
叉指结构的叉指对数为14对,指宽10μm,叉指间距为10μm,指长为400μm。
一般情况下,器件暗电流受叉指电极宽度的影响(叉指宽度越大,器件暗电流越大),与电极间距无关;器件光电流随叉指电极宽度的增加而增加;器件光电流随叉指间距、叉指对数、指长的增加而增大,这是因为感光面积增大,导致光电流的增大;叉指对数越多、指长越长或电极宽度越宽,电极之间的电容也就越大,不利于响应速度。
栅电极1为p型重掺杂Si。
介质层2的厚度为100nm;a-Ga2O3沟道层3的厚度为70nm。
表1为制得的a-Ga2O3光电薄膜晶体管的基本性能参数。
表1
Figure BDA0003866293000000061
图2为本发明方法制得的在Si/SiO2上溅射的Ga2O3的X射线衍射(XRD)谱图;Ga2O3的XRD曲线中,除了Si/SiO2的峰,没有其他峰,说明Ga2O3为非晶。
图3为本发明方法制得的在Si/SiO2上溅射的Ga2O3中O 1s的X射线光电子能谱;其中氧空位的含量为49.1%,说明了a-Ga2O3薄膜中具有大量的氧空位。氧空位可以被深紫外光电离,并有助于高光载流子浓度。
图4为本发明方法制得的a-Ga2O3光电薄膜晶体管在不同光强下的电流-电压(I-V)特性曲线;其中ID为源漏电流,VG为栅电压,VD为源漏电压。无光照下,a-Ga2O3光电薄膜晶体管在栅极电压(VG)为-40~40V时,呈现出“始终关断”的特性,暗电流约3×10-12A,该暗电流已达到设备测试极限。随着光强从0增加到63.19μW cm-2,产生的光生载流子使光电流增加。当光强为63.19μW cm-2时,光电流为1.8×10-3A,亮暗电流比大于2.9×10-8
图5为本发明方法制得的a-Ga2O3光电薄膜晶体管在单个开灯和关灯下的电流-时间(I-T)特性曲线示意图;当光强为63.19μW cm-2时,上升时间和衰减时间分别为0.70s和0.21s(上升时间:电流从10%增加到90%所用的时间;衰减时间:电流从90%衰减到10%所用的时间)。
实施例4
实施例1-3任一磁控溅射非晶氧化镓光电薄膜晶体管的制备方法,包括:
在衬底上生长栅电极1,其上加载介质层2;
使用射频磁控溅射法在介质层2上溅射沉积a-Ga2O3薄膜,形成a-Ga2O3沟道层3;
在a-Ga2O3沟道层3上生长金属,形成源电极4和漏电极5,既得。
使用射频磁控溅射法溅射沉积生长a-Ga2O3薄膜,形成a-Ga2O3沟道层3;射频磁控溅射中的工艺参数如下:
靶材为Ga2O3陶瓷靶;
溅射功率为50-120W;
工作气压为2.5-5mTorr;
气体流速为10-30SCCM;
衬底温度为25-300℃;
生长氛围为纯Ar;
溅射时间为4分9秒-204分55秒。
形成a-Ga2O3沟道层3之后执行如下操作,包括:氮气环境下,在100-600℃条件下快速热退火0.5-60分钟。
对衬底进行抛光并进行清洗。
在a-Ga2O3沟道层3上生长金属,形成源电极4和漏电极5,包括:使用电子束蒸发镀膜的方式生长20nm的Ti和30nm的Au,作源电极4和漏电极5。
实施例5
根据实施例4所述的磁控溅射非晶氧化镓光电薄膜晶体管的制备方法,包括:
使用射频磁控溅射法溅射沉积生长a-Ga2O3薄膜,形成a-Ga2O3沟道层3;射频磁控溅射中的工艺参数如下:
溅射功率为90W;
工作气压为4.1mTorr;
气体流速为20SCCM;
衬底温度为室温;
溅射时间为28分41秒。
形成Ga2O3光沟道层之后执行如下操作,包括:氮气环境下,在350℃条件下快速热退火1分钟。
对衬底进行清洗,包括:依次使用迪康清洗剂、去离子水、异丙醇、乙醇超声清洗,吹干之后备用。
实施例6
实施例1-3任一磁控溅射非晶氧化镓光电薄膜晶体管的应用,包括:将上述磁控溅射非晶氧化镓光电薄膜晶体管应用在图像探测上,具体是指:将一定波长的光照射在覆盖有图像掩膜的a-Ga2O3光电薄膜晶体管阵列上,测试每个单元的电流值,通过电流分布,清晰显示出掩膜的图像。
图6为a-Ga2O3光电薄膜晶体管阵列版图及a-Ga2O3光电薄膜晶体管阵列示意图;图6中,左图为a-Ga2O3光电薄膜晶体管阵列版图,右图为通过激光直写或紫外光刻,依照左图a-Ga2O3光电薄膜晶体管阵列版图,在Si/SiO2衬底上制备的10×10a-Ga2O3光电薄膜晶体管阵列实物图。如图7所示,将254nm的光照射在覆盖有黑色“SDU”图像掩膜的10×10a-Ga2O3光电薄膜晶体管阵列上,然后测试每个单元的电流值,实现了如图8所示的电流分布,清晰的显示出“SDU”的图像(利用电流值表征图像信息)。结果表明,a-Ga2O3光电薄膜晶体管具有大面积、高分辨率和高检测灵敏度的成像潜力。
实施例7
实施例1-3任一磁控溅射非晶氧化镓光电薄膜晶体管的应用,包括:将上述a-Ga2O3光电薄膜晶体管应用在光控逻辑门上。
将上述磁控溅射非晶氧化镓光电薄膜晶体管应用在光控逻辑门上,包括上述a-Ga2O3光电薄膜晶体管应用在光控逻辑或门上及上述a-Ga2O3光电薄膜晶体管应用在光控逻辑与门上。
实施例8
根据实施例7任一磁控溅射非晶氧化镓光电薄膜晶体管的应用,其区别在于:
a-Ga2O3光电薄膜晶体管应用在光控逻辑与门上,基于a-Ga2O3薄膜晶体管光控逻辑与门的电路包括:两个a-Ga2O3光电薄膜晶体管T1、T2及电流表A,两个a-Ga2O3光电薄膜晶体管T1、T2的栅极相连,a-Ga2O3光电薄膜晶体管T1的源极连接a-Ga2O3光电薄膜晶体管T2的漏极,a-Ga2O3光电薄膜晶体管T2的漏极连接电流表A;包括:
采用波长为190-280nm的两束光源分别照射两个a-Ga2O3光电薄膜晶体管T1、T2,光源的开和关作为信号的输入,光源的开关状态设定为0和1,即开为1、关为0;设定基准电流,当电流表A测得的电流超过基准电流时,输出逻辑1;否则,输出逻辑0;
两个a-Ga2O3光电薄膜晶体管T1、T2在无光源照射时,电流表A测得的电流无变化,输出逻辑0;a-Ga2O3光电薄膜晶体管T1无光源照射,a-Ga2O3光电薄膜晶体管T2有光源照射,电流表A测得的电流无变化,输出逻辑为0;a-Ga2O3光电薄膜晶体管T1有光源照射,a-Ga2O3光电薄膜晶体管T2无光源照射,电流表A测得的电流无变化,输出逻辑为0;a-Ga2O3光电薄膜晶体管T1有光源照射,a-Ga2O3光电薄膜晶体管T2有光源照射,电流表A测得的电流有变化,且电流超过基准电流,输出逻辑为1。
基于a-Ga2O3薄膜晶体管光控逻辑与门的电路图如图9所示,其中T1、T2分别为a-Ga2O3光电薄膜晶体管,VG为栅极电压,VD为漏极电压,Opt.1、Opt.2分别为两束波长为254-nm的光源(两束光源波长不限于254-nm,可以是230-280nm中的任意波长的光),A为电流表。
测试过程中,利用光源Opt.1和Opt.2分别照射T1和T2,光源的开和关作为信号的输入,光源的开关状态设定为0和1,即开为1、关为0。
逻辑与门的测试结果如图10所示。设定基准电流为1μA,即当电流(图9中电流表A测得)超过基电流时,输出逻辑1;否则,输出逻辑0。T1和T2在无光照(00)的情况下,电流值无变化,逻辑输出0;T1无光照,T2有光照(01),电流值无变化,逻辑输出为0;T1有光照,T2无光照(10),电流值无变化,逻辑输出为0;T1有光照,T2有光照(11),电流值有变化且超过基准电流值,逻辑输出为1。即只有当Opt.1和Opt.2同时存在时,才会输出逻辑1;否则,输出将是逻辑0。
实施例9
根据实施例7任一磁控溅射非晶氧化镓光电薄膜晶体管的应用,其区别在于:
a-Ga2O3光电薄膜晶体管应用在光控逻辑或门上,基于a-Ga2O3薄膜晶体管光控逻辑或门的电路包括:两个a-Ga2O3光电薄膜晶体管T1、T2及电流表A,两个a-Ga2O3光电薄膜晶体管T1、T2的漏极相连后连接电流表A;包括:
采用波长为230-280nm的两束光源分别照射两个a-Ga2O3光电薄膜晶体管T1、T2,光源的开和关作为信号的输入,光源的开关状态设定为0和1,即开为1、关为0;设定基准电流,当电流表A测得的电流超过基准电流时,输出逻辑1;否则,输出逻辑0;
两个a-Ga2O3光电薄膜晶体管T1、T2在无光源照射时,电流表A测得的电流无变化,输出逻辑0;a-Ga2O3光电薄膜晶体管T1无光源照射,a-Ga2O3光电薄膜晶体管T2有光源照射,电流表A测得的电流有变化,且电流超过基准电流,输出逻辑为1;a-Ga2O3光电薄膜晶体管T1有光源照射,a-Ga2O3光电薄膜晶体管T2无光源照射,电流表A测得的电流有变化,且电流超过基准电流,输出逻辑为1。a-Ga2O3光电薄膜晶体管T1有光源照射,a-Ga2O3光电薄膜晶体管T2有光源照射,电流表A测得的电流有变化,且电流超过基准电流,输出逻辑为1。
基于a-Ga2O3薄膜晶体管光控逻辑或门的电路图如图11所示,其中T1、T2分别为a-Ga2O3光电薄膜晶体管,VG为栅极电压,VD为漏极电压,Opt.1、Opt.2分别为两束波长为254-nm的光源(两束光源波长不限于254-nm,可以是230-280nm中的任意波长的光),A为电流表。
测试过程中,利用光源Opt.1和Opt.2分别照射T1和T2,光源的开和关作为信号的输入,光源的开关状态设定为0和1,即开为1、关为0。
逻辑或门的测试结果如图12所示。设定基准电流为1μA,即当电流(图10中电流表A测得)超过基电流时,输出逻辑1;否则,输出逻辑0。T1和T2在无光照(00)的情况下,电流值无变化,逻辑输出0;T1无光照,T2有光照(01),电流值有变化且超过基准电流值,逻辑输出为1;T1有光照,T2无光照(10),电流值有变化且超过基准电流值,逻辑输出为1;T1有光照,T2有光照(11),电流值有变化且超过基准电流值,逻辑输出为1。即只有当Opt.1和Opt.2同时都不存在时,才会输出逻辑0;否则,输出将是逻辑1。

Claims (10)

1.一种磁控溅射非晶氧化镓光电薄膜晶体管,其特征在于,包括由下自上依次生长的栅电极、介质层、氧化镓沟道层、源电极和漏电极;所述源电极和漏电极形成叉指结构。
2.根据权利要求1所述的一种磁控溅射非晶氧化镓光电薄膜晶体管,其特征在于,所述叉指结构的叉指对数为2-50对,指宽5-50μm,叉指间距为5-100μm,指长为100-1000μm;
进一步优选的,所述叉指结构的叉指对数为14对,指宽10μm,叉指间距为10μm,指长为400μm。
3.根据权利要求1所述的一种磁控溅射非晶氧化镓光电薄膜晶体管,其特征在于,所述栅电极为Ti、Au、Pt、Al金属以及ITO、重掺杂Si中的一种;所述介质层为SiO2、Al2O3、HfO2中的一种;所述a-Ga2O3沟道层为非故意掺杂的a-Ga2O3或者掺杂Si、Sn、Cr、Ge、Zr和Ti中的一种或多种元素的a-Ga2O3;所述源电极和漏电极均为金属电极;
所述介质层的厚度为50-300nm;所述Ga2O3沟道层的厚度为10-500nm;
进一步优选的,所述栅电极为p型重掺杂Si;所述介质层的厚度为100nm;所述a-Ga2O3沟道层的厚度为70nm。
4.权利要求1-3任一所述的磁控溅射非晶氧化镓光电薄膜晶体管的制备方法,其特征在于,包括:
在衬底上生长栅电极,其上加载介质层;
使用射频磁控溅射法在介质层上溅射沉积a-Ga2O3薄膜,形成a-Ga2O3沟道层;
在a-Ga2O3沟道层上生长金属,形成源电极和漏电极,既得。
5.根据权利要求4所述的磁控溅射非晶氧化镓光电薄膜晶体管的制备方法,其特征在于,使用射频磁控溅射法溅射沉积生长a-Ga2O3薄膜,形成a-Ga2O3沟道层;射频磁控溅射中的工艺参数如下:
靶材为Ga2O3陶瓷靶;
溅射功率为50-120W;
工作气压为2.5-5mTorr;
气体流速为10-30SCCM;
衬底温度为25-300℃;
生长氛围为纯Ar;
溅射时间为4分9秒-204分55秒;
进一步优选的,使用射频磁控溅射法溅射沉积生长a-Ga2O3薄膜,形成a-Ga2O3沟道层;射频磁控溅射中的工艺参数如下:
溅射功率为90W;
工作气压为4.1mTorr;
气体流速为20SCCM;
衬底温度为室温;
溅射时间为28分41秒。
6.根据权利要求4所述的磁控溅射非晶氧化镓光电薄膜晶体管的制备方法,其特征在于,形成a-Ga2O3沟道层之后执行如下操作,包括:氮气环境下,在100-600℃条件下快速热退火0.5-60分钟;在a-Ga2O3沟道层上生长金属,形成源电极和漏电极,包括:使用电子束蒸发镀膜的方式生长20nm的Ti和30nm的Au,作源电极和漏电极;
进一步优选的,形成a-Ga2O3沟道层之后执行如下操作,包括:氮气环境下,在350℃条件下快速热退火1分钟。
7.权利要求1-3任一所述的磁控溅射非晶氧化镓光电薄膜晶体管的应用,其特征在于,包括:将上述a-Ga2O3光电薄膜晶体管应用在图像探测上,具体是指:将光照射在覆盖有图像掩膜的a-Ga2O3光电薄膜晶体管阵列上,测试每个单元的电流值,通过电流分布,清晰显示出掩膜的图像。
8.权利要求1-3任一所述的磁控溅射非晶氧化镓光电薄膜晶体管的应用,其特征在于,包括:将上述a-Ga2O3光电薄膜晶体管应用在光控逻辑门上;包括上述a-Ga2O3光电薄膜晶体管应用在光控逻辑或门上及上述a-Ga2O3光电薄膜晶体管应用在光控逻辑与门上。
9.根据权利要求8所述的磁控溅射非晶氧化镓光电薄膜晶体管的应用,其特征在于,上述a-Ga2O3光电薄膜晶体管应用在光控逻辑与门上,基于a-Ga2O3薄膜晶体管光控逻辑与门的电路包括:两个a-Ga2O3光电薄膜晶体管T1、T2及电流表A,两个a-Ga2O3光电薄膜晶体管T1、T2的栅极相连,a-Ga2O3光电薄膜晶体管T1的源极连接a-Ga2O3光电薄膜晶体管T2的漏极,a-Ga2O3光电薄膜晶体管T2的漏极连接电流表A;包括:
采用波长为230-280nm的两束光源分别照射两个a-Ga2O3光电薄膜晶体管T1、T2,光源的开和关作为信号的输入,光源的开关状态设定为0和1,即开为1、关为0;设定基准电流,当电流表A测得的电流超过基准电流时,输出逻辑1;否则,输出逻辑0;
两个a-Ga2O3光电薄膜晶体管T1、T2在无光源照射时,电流表A测得的电流无变化,输出逻辑0;a-Ga2O3光电薄膜晶体管T1无光源照射,a-Ga2O3光电薄膜晶体管T2有光源照射,电流表A测得的电流无变化,输出逻辑为0;a-Ga2O3光电薄膜晶体管T1有光源照射,a-Ga2O3光电薄膜晶体管T2无光源照射,电流表A测得的电流无变化,输出逻辑为0;a-Ga2O3光电薄膜晶体管T1有光源照射,a-Ga2O3光电薄膜晶体管T2有光源照射,电流表A测得的电流有变化,且电流超过基准电流,输出逻辑为1。
10.根据权利要求8所述的磁控溅射非晶氧化镓光电薄膜晶体管的应用,其特征在于,上述a-Ga2O3光电薄膜晶体管应用在光控逻辑或门上,基于a-Ga2O3薄膜晶体管光控逻辑或门的电路包括:两个a-Ga2O3光电薄膜晶体管T1、T2及电流表A,两个a-Ga2O3光电薄膜晶体管T1、T2的漏极相连后连接电流表A;包括:
采用波长为190-280nm的两束光源分别照射两个a-Ga2O3光电薄膜晶体管T1、T2,光源的开和关作为信号的输入,光源的开关状态设定为0和1,即开为1、关为0;设定基准电流,当电流表A测得的电流超过基准电流时,输出逻辑1;否则,输出逻辑0;
两个a-Ga2O3光电薄膜晶体管T1、T2在无光源照射时,电流表A测得的电流无变化,输出逻辑0;a-Ga2O3光电薄膜晶体管T1无光源照射,a-Ga2O3光电薄膜晶体管T2有光源照射,电流表A测得的电流有变化,且电流超过基准电流,输出逻辑为1;a-Ga2O3光电薄膜晶体管T1有光源照射,a-Ga2O3光电薄膜晶体管T2无光源照射,电流表A测得的电流有变化,且电流超过基准电流,输出逻辑为1。a-Ga2O3光电薄膜晶体管T1有光源照射,a-Ga2O3光电薄膜晶体管T2有光源照射,电流表A测得的电流有变化,且电流超过基准电流,输出逻辑为1。
CN202211183592.6A 2022-09-27 2022-09-27 一种磁控溅射非晶氧化镓光电薄膜晶体管及其制备方法与应用 Pending CN115579405A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211183592.6A CN115579405A (zh) 2022-09-27 2022-09-27 一种磁控溅射非晶氧化镓光电薄膜晶体管及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211183592.6A CN115579405A (zh) 2022-09-27 2022-09-27 一种磁控溅射非晶氧化镓光电薄膜晶体管及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN115579405A true CN115579405A (zh) 2023-01-06

Family

ID=84582907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211183592.6A Pending CN115579405A (zh) 2022-09-27 2022-09-27 一种磁控溅射非晶氧化镓光电薄膜晶体管及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN115579405A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103065969A (zh) * 2011-10-24 2013-04-24 株式会社半导体能源研究所 半导体装置以及半导体装置的制造方法
CN108470675A (zh) * 2018-02-28 2018-08-31 唐为华 一种Si基氧化镓薄膜背栅极日盲紫外光晶体管及其制备方法
CN108767048A (zh) * 2018-05-31 2018-11-06 北京镓族科技有限公司 一种柔性日盲探测器及其制备方法
CN110061089A (zh) * 2019-03-18 2019-07-26 北京镓族科技有限公司 蓝宝石斜切衬底优化氧化镓薄膜生长及日盲紫外探测器性能的方法
CN112635594A (zh) * 2020-12-18 2021-04-09 西安电子科技大学 基于极性J-TMDs/β-Ga2O3异质结的高速光电子器件及其制备方法
CN113707760A (zh) * 2021-07-20 2021-11-26 青岛滨海学院 一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103065969A (zh) * 2011-10-24 2013-04-24 株式会社半导体能源研究所 半导体装置以及半导体装置的制造方法
CN108470675A (zh) * 2018-02-28 2018-08-31 唐为华 一种Si基氧化镓薄膜背栅极日盲紫外光晶体管及其制备方法
CN108767048A (zh) * 2018-05-31 2018-11-06 北京镓族科技有限公司 一种柔性日盲探测器及其制备方法
CN110061089A (zh) * 2019-03-18 2019-07-26 北京镓族科技有限公司 蓝宝石斜切衬底优化氧化镓薄膜生长及日盲紫外探测器性能的方法
CN112635594A (zh) * 2020-12-18 2021-04-09 西安电子科技大学 基于极性J-TMDs/β-Ga2O3异质结的高速光电子器件及其制备方法
CN113707760A (zh) * 2021-07-20 2021-11-26 青岛滨海学院 一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
方明志, 《硕士电子期刊出版信息: 工程科技II辑》, no. 2022, 15 January 2022 (2022-01-15), pages 18 - 56 *
李庆祥,徐端颐编著: "《实用光电技术》", 30 November 1996, 北京:中国计量出版社, pages: 130 - 133 *

Similar Documents

Publication Publication Date Title
CN107507876B (zh) 一种β-Ga2O3基日盲紫外光电探测器阵列及其制备方法
Chen et al. The effect of oxygen vacancy concentration on indium gallium oxide solar blind photodetector
CN109686844B (zh) 一种基于钙钛矿自供电行为的光敏传感器
CN106876515A (zh) 薄膜晶体管结构可见盲光电探测器及其制备方法
Krishnaiah et al. Solution-processed CuI films towards flexible visible-photodetectors: Role of annealing temperature on Cu/I ratio and photodetective properties
CN109962124B (zh) 基于三层结构的半导体光电探测器及其制备方法
CN108346712B (zh) 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法
Gupta et al. Ferroelectric PZT thin films for photovoltaic application
CN103500776A (zh) 一种硅基CdZnTe薄膜紫外光探测器的制备方法
CN110808296B (zh) 一种双层半导体结构的光电导型深紫外单色光电探测器
Meng et al. Enhancement of responsivity in solar-blind UV detector with back-gate MOS structure fabricated on β-Ga2O3 films
Witkowski et al. Photoresistor based on ZnO nanorods grown on a p-type silicon substrate
Zhao et al. Study of a neutron-resistant p+-Si/n-ZnO photodetector with avalanching gain
Xing et al. High-Performance Ultraviolet Photodetector Based on Polycrystalline ${\rm SrTiO} _ {3} $ Thin Film
Caputo et al. Detailed study of amorphous silicon ultraviolet sensor with chromium silicide window layer
CN115579405A (zh) 一种磁控溅射非晶氧化镓光电薄膜晶体管及其制备方法与应用
CN209691770U (zh) 一种利用二氧化铪钝化增强型低维纳米探测器
CN112951948A (zh) 基于氧化镓能带调控的同质结光电探测器及其制备方法
Vieira et al. Wide spectral response in μc-Si: H photodiodes
Li et al. CMOS-Compatible Ultraviolet Photodetector Based on p-Nickel-Oxide/n-Indium-Gallium-Zinc-Oxide Heterojunction Diode
CN109950359A (zh) 一种利用二氧化铪钝化增强型低维纳米探测器及制备方法
Liu et al. Performance improvement of co-sputtering AlGaZnO solar-blind photodetectors
CN115566086A (zh) 一种非晶氧化镓肖特基日盲紫外探测器及其制备方法与应用
Kim et al. Impact of oxygen deficiency and shallow hole-traps on high-responsivity ZnO-based UV photodetectors
CN108649095A (zh) 基于纳晶结构碳膜的场效应管结构光电器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination