CN110061089B - 蓝宝石斜切衬底优化氧化镓薄膜生长及日盲紫外探测器性能的方法 - Google Patents

蓝宝石斜切衬底优化氧化镓薄膜生长及日盲紫外探测器性能的方法 Download PDF

Info

Publication number
CN110061089B
CN110061089B CN201910204193.5A CN201910204193A CN110061089B CN 110061089 B CN110061089 B CN 110061089B CN 201910204193 A CN201910204193 A CN 201910204193A CN 110061089 B CN110061089 B CN 110061089B
Authority
CN
China
Prior art keywords
gallium oxide
substrate
film
beta
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910204193.5A
Other languages
English (en)
Other versions
CN110061089A (zh
Inventor
夏恒
谷雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Mingga Semiconductor Co ltd
Original Assignee
Beijing Mingga Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Mingga Semiconductor Co ltd filed Critical Beijing Mingga Semiconductor Co ltd
Priority to CN201910204193.5A priority Critical patent/CN110061089B/zh
Publication of CN110061089A publication Critical patent/CN110061089A/zh
Application granted granted Critical
Publication of CN110061089B publication Critical patent/CN110061089B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明提供了一种蓝宝石衬底表面斜切氧化镓探测器及其制造方法,以及氧化镓薄膜的制造方法。所述的探测器包括依次叠置的衬底、氧化镓薄膜和电极,其中氧化镓薄膜为β‑Ga2O3薄膜,衬底为Al2O3衬底。通过对Al2O3衬底进行不同角度斜切处理,能够增强光电探测器的性能。本发明的工艺可控性强、容易操作。本发明制得的氧化镓薄膜表面致密、厚度稳定均一,适于大面积制备、且复性好。本发明制得的光电探测器响应度高、暗电流小、紫外可见抑制比高、制造工艺简单,且所用材料容易获得。

Description

蓝宝石斜切衬底优化氧化镓薄膜生长及日盲紫外探测器性能 的方法
技术领域
本发明属于光电探测器技术领域,特别涉及一种利用磁控溅射沉积方法在表面斜切蓝宝石衬底上生长氧化镓(β-Ga2O3)薄膜的方法,以及应用β-Ga2O3薄膜的光电探测器。
背景技术
紫外光通信是基于大气散射和吸收的无线光通信技术。大气层中的臭氧对波长在200nm到280nm之间的紫外光有强烈的吸收作用,到达地面的紫外光辐射在海平面附近几乎衰减至零,也被称之为日盲区。日盲区的存在为工作在该波段的紫外光通信系统提供了一个良好的通信背景。在紫外通信系统中,紫外探测器是接收系统的核心器件,用来完成紫外光信号到电信号的转换。可见紫外探测器的性能是影响紫外光通信发展的关键技术之一。对于非视距的紫外光通信,理想的探测器应该具有探测面积大、增益高、宽带隙、高透过率、低暗电流密度的特性。目前得到广泛应用的探测器主要是由日盲型紫外光电倍增管构成,功率消耗约100mW。然而这种探测器的检测距离小,工作电压高,不能抗雷电的干扰。同时,即使是当前最高新技术的光电倍增管,体积也比半导体级探测器大很多,价格也极其昂贵。因此,基于尺寸、功耗、成本和安全等因素的考虑,采用半导体探测器替代光电倍增管是一种比较理想的选择。
Ga2O3是一种直接带隙半导体,具有优异的化学稳定性和热稳定性,其室温下禁带宽度为4.2-4.9eV(取决于不同晶格结构),对应的带边发射波长为240-280nm,已经进入深紫外波段,加上极高的光学透过率(紫外区大于80%,可见光区大于95%),是制备紫外/深紫外光电子器件如固态深紫外发光二级管和日盲深紫外光电探测器的理想材料。为了制备光电探测器,高质量的薄膜制备是非常必要,至今为止,Al2O3、硅、氮化镓、碳化硅衬底都曾被用来尝试外延生长β-Ga2O3薄膜,均由于他们之间的晶格失配而阻止了高质量β-Ga2O3薄膜的形成。
因此,找到与β-Ga2O3晶格匹配度较高,且使β-Ga2O3薄膜生长质量较好的衬底,从而增强基于Ga2O3薄膜的光电探测器性能,并开发出相对应的工艺方法,仍是业界极待解决的问题。
发明内容
为解决上述技术问题,本发明提出一种基于表面斜切蓝宝石衬底上生长β-Ga2O3薄膜光电探测器制备方法,可应用于日盲紫外探测器。
本发明在表面斜切蓝宝石衬底上制备了β-Ga2O3薄膜基金属-半导体-金属MSM结构日盲紫外探测器。该发明为高性能日盲紫外探测器的制备提供理论和技术支持。
本发明的氧化镓薄膜光电探测器,包括依次叠置的衬底、氧化镓薄膜和电极,所述衬底为Al2O3衬底,所述氧化镓薄膜为β-Ga2O3薄膜,所述衬底为<0001>取向且表面有一个斜切角度的Al2O3衬底,所述氧化镓薄膜为β-Ga2O3薄膜。
根据本发明的优选实施方式,所述衬底表面沿<11-20>有一个斜切角度。
根据本发明的优选实施方式,所述斜切角度大于0°,且小于8°。
根据本发明的优选实施方式,所述Al2O3衬底表面斜切角度最优为6°。
根据本发明的优选实施方式,所述电极包括Ti层和/或金层。
根据本发明的优选实施方式,所述氧化镓薄膜的厚度为10nm至100nm。
本发明还提出一种氧化镓薄膜的制造方法,包括:在衬底上,采用磁控溅射法生长氧化镓薄膜;在衬底上,采用磁控溅射法生长氧化镓薄膜;所述衬底为<0001>取向且表面有一个斜切角度的Al2O3衬底,所述氧化镓薄膜为β-Ga2O3薄膜。
根据本发明的优选实施方式,所述衬底表面沿<11-20>有一个斜切角度。
根据本发明的优选实施方式,所述斜切角度大于0°,且小于8°。
根据本发明的优选实施方式,所述Al2O3衬底表面斜切角度最优为6°。
根据本发明的优选实施方式,所述磁控溅射法的生长参数包括:工作气氛为Ar气。
根据本发明的优选实施方式,所述磁控溅射法的生长参数还包括:溅射功率为60W~100W。
根据本发明的优选实施方式,所述磁控溅射法的生长参数还包括:工作气压为0.01Pa~10Pa。
根据本发明的优选实施方式,所述磁控溅射法的生长参数还包括:薄膜生长温度为600℃~850℃。
此外,本发明还提出一种氧化镓薄膜光电探测器的制造方法,所述氧化镓薄膜光电探测器包括氧化镓薄膜,所述氧化镓薄膜是通过前述的氧化镓薄膜的制造方法所制造的。
本发明的有益效果是:
1.本发明制备过程简单,所用衬底为商业产品,能够获得β-Ga2O3薄膜;采用商业化的制备方法磁控溅射生长薄膜,工艺可控性强,易操作,所得薄膜表面致密、厚度稳定均一、可大面积制备、重复性好。
2.本发明所得的基于表面斜切蓝宝石衬底上生长β-Ga2O3薄膜光电探测器响应度高,暗电流小,紫外可见抑制比高,制造工艺简单,所用材料容易获得,具有广阔的发展前景。
附图说明
图1是表面斜切蓝宝石衬底的示意图;
图2通过本发明一个实施例的方法制备的表面斜切蓝宝石衬底上β-Ga2O3薄膜的日盲紫外探测器结构示意图;
图3是用本发明一个实施例的方法制得的不同角度表面斜切蓝宝石衬底上生长β-Ga2O3薄膜的紫外可见光谱;
图4是用本发明一个实施例的方法制得的不同角度(0°,2°,4°,6°,8°)表面斜切蓝宝石衬底上生长β-Ga2O3薄膜日盲紫外探测器在无光照及254nm光照下的I-V曲线;
具体实施方式
总的来说,本发明提出一种在表面斜切蓝宝石衬底上生长β-Ga2O3薄膜并制作高性能光电探测器的方法。该方法应用磁控溅射技术,生长的条件容易控制,重复性好,稳定性高,适宜进行大规模生产。本发明的光电探测器适合日盲紫外探测器。
通常,用于形成氧化镓薄膜的衬底可以选用Al2O3衬底。氧化镓薄膜通常沉积在无处理的表面<0001>取向的Al2O3衬底上,然而,在常规的工艺控制水平上,获得的氧化镓日盲探测器性能都较差,特别是探测器响应度偏低,性能难以得到进一步提高,无法满足实际应用需求。为了进一步提升氧化镓日盲探测器件的响应度,本发明提出在常规Al2O3衬底的表面上以角度斜切的方式获得具有台阶的衬底表面,并以此为作为沉积氧化镓薄膜的衬底,表面具有台阶形状的衬底相对而言,能更有利于氧化镓薄膜的二维层状生长,减少三维岛状生长的概率,因此能大大降低薄膜晶粒之间的晶界和内部缺陷,从而提升基于薄膜的探测器性能。
进一步,本发明根据本发明的优选实施方式,所述衬底为<0001>取向且表面沿<11-20>有一个斜切角度的Al2O3衬底,该角度优选为在0度和8度之间,最优为6度。在6度以下,随着斜切角度增大,台阶逐渐成型,增加了薄膜层状生长的概率,在8度以上,由于加工工艺所限,台阶高度过高会降低衬底表面粗糙度会太大,反而会降低薄膜质量,导致性能再次下降。因此角度优选为6度。
本发明可利用磁控溅射方法生长β-Ga2O3薄膜作为光敏层。
本发明在光敏层上再通过磁控溅射的方法溅射金属电极(例如Au层和/或Ti层叉指电极),从而获得MSM结构的日盲探测器件。通过本发明方法制备得到的日盲紫外探测器,结构为MSM型三明治结构,从下到上分别是表面斜切Al2O3衬底、β-Ga2O3薄膜、金属电极。
本发明还提出一种光电探测器,包括衬底和形成在衬底上的光电薄膜和电极层,所述光电薄膜为上述薄膜制备方法制作的薄膜。
以下结合附图并通过具体实施例进一步说明本发明,该实施例是一种制备日盲紫外探测器的方法,该方法包括如下步骤:
(1)取一片10mm×10mm×0.5mm大小的表面斜切Al2O3衬底,将衬底依次浸泡在15毫升的丙酮、无水乙醇、去离子水中分别超声15分钟,取出后再用流动的去离子水冲洗,最后用干燥的N2气吹干,等待下一步使用,表面斜切Al2O3衬底如图1所示。
(2)将上述清洗干净的表面斜切Al2O3衬底放入沉积室,采用磁控溅射在其上生长β-Ga2O3薄膜,以99.99%纯度的Ga2O3陶瓷为靶材,磁控溅射技术的具体生长参数如下:背底真空压强小于1×10-4Pa,工作气氛为Ar气,工作气压为1Pa,衬底温度为750℃,溅射功率为80W,溅射时间为15min,得到的β-Ga2O3薄膜的厚度约30nm。
(3)上述制备的β-Ga2O3薄膜用镂空的叉指电极掩膜板遮挡,采用磁控溅射方法在薄膜表面先后溅射金属Ti层(约10nm)和Au层(约20nm)获得Au/Ti叉指电极,叉指金属电极的指宽为20μm,指长为300μm,各叉指的间距为20μm。溅射工艺条件如下:背底真空为1×10- 4Pa,衬底温度为室温,工作气氛为Ar气,工作气压为3Pa,溅射功率为40W,Ti层的溅射时间为10s,Au层的溅射时间为20s。
通过上述步骤制备获得表面斜切Al2O3衬底上β-Ga2O3薄膜日盲紫外探测器如图2所示,包括表面斜切Al2O3衬底1、β-Ga2O3薄膜2和叉指电极3。在叉指电极3两侧外加偏压,电流则从正电极流入,通过光敏层β-Ga2O3薄膜,从负电极流出,构成金属-半导体-金属(MSM)型日盲紫外探测器。
图3给出了β-Ga2O3薄膜的紫外可见光吸收谱,从图中可以看出,不同表面斜切Al2O3衬底上生长的β-Ga2O3薄膜吸收边都在260nm左右,具有明显的日盲紫外光敏感特性。
图4给出了日盲紫外探测器在黑暗和254nm光照下的I-V曲线。在黑暗条件下,不同表面斜切Al2O3衬底上β-Ga2O3薄膜日盲紫外探测器的电流都非常小,均小于1nA。而在光强为0.6mW/cm2的254nm光照下,随着正向偏压的增加,光电流有着明显的增加,且随着斜切角度的增大,光电流先增加后降低,最高响应光电流对应的斜切角度为6°。在5V时,6°斜切角Al2O3衬底上获得的探测器电流从黑暗情况下的0.5nA增加至228.3nA,光暗比I254/Idark为457。而对应的未斜切Al2O3衬底上获得的探测器电流从黑暗情况下的0.64nA增加至10.7nA,光暗比I254/Idark为17。表明Al2O3衬底的表面斜切,对日盲探测器的性能提升,起着至关重要的作用。
对于上述实施例公开的具体实施方式,本领域的技术人员可在一定的范围内变化,具体如下:根据本发明的优选实施方式,所述靶材为99.99%纯度的Ga2O3陶瓷靶材。所述衬底为表面斜切Al2O3衬底,斜切角度优选6°。磁控溅射沉积过程工作气氛为Ar气,薄膜生长工作气压为0.01Pa~10Pa,优选1Pa。所述衬底温度为600℃~850℃,优选为750℃。溅射功率为60W~100W,优选为80W,溅射时间优选为15分钟。得到的β-Ga2O3薄膜的厚度优选为10nm至100nm。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种氧化镓薄膜光电探测器,包括依次叠置的衬底、氧化镓薄膜和电极,其特征在于:所述衬底为<0001>取向且表面沿<11-20>有一个斜切角度的Al2O3衬底,所述氧化镓薄膜为β-Ga2O3薄膜;所述β-Ga2O3薄膜的厚度为10nm至100nm;
其中,所述斜切角度大于6°,且小于8°;
其中,采用磁控溅射技术在Al2O3衬底上生长β-Ga2O3薄膜,所述磁控溅射技术的具体生长参数如下:以99.99%纯度的Ga2O3陶瓷为靶材,背底真空压强小于1×10-4Pa,工作气氛为Ar气,工作气压为0.01~10Pa,衬底温度为600℃~850℃,溅射功率为60W~100W,溅射时间为15min。
2.如权利要求1所述的氧化镓薄膜光电探测器,其特征在于:所述斜切角度为6°。
3.一种氧化镓薄膜的制造方法,包括以下步骤:
在Al2O3衬底上,采用磁控溅射法生长氧化镓薄膜;其特征在于:所述衬底为<0001>取向且表面沿<11-20>有一个斜切角度的Al2O3衬底,所述氧化镓薄膜为β-Ga2O3薄膜;所述β-Ga2O3薄膜的厚度为10nm至100nm;
其中,所述斜切角度大于6°,且小于8°;
其中,所述磁控溅射法的具体生长参数如下:以99.99%纯度的Ga2O3陶瓷为靶材,背底真空压强小于1×10-4Pa,工作气氛为Ar气,工作气压为0.01~10Pa,衬底温度为600℃~850℃,溅射功率为60W~100W,溅射时间为15min。
4.如权利要求3所述的氧化镓薄膜的制造方法,其特征在于:所述斜切角度为6°。
5.一种氧化镓薄膜光电探测器的制造方法,所述氧化镓薄膜光电探测器包括氧化镓薄膜,其特征在于,所述氧化镓薄膜是通过权利要求3或4所述的氧化镓薄膜的制造方法所制造的。
CN201910204193.5A 2019-03-18 2019-03-18 蓝宝石斜切衬底优化氧化镓薄膜生长及日盲紫外探测器性能的方法 Active CN110061089B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910204193.5A CN110061089B (zh) 2019-03-18 2019-03-18 蓝宝石斜切衬底优化氧化镓薄膜生长及日盲紫外探测器性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910204193.5A CN110061089B (zh) 2019-03-18 2019-03-18 蓝宝石斜切衬底优化氧化镓薄膜生长及日盲紫外探测器性能的方法

Publications (2)

Publication Number Publication Date
CN110061089A CN110061089A (zh) 2019-07-26
CN110061089B true CN110061089B (zh) 2022-06-07

Family

ID=67316295

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910204193.5A Active CN110061089B (zh) 2019-03-18 2019-03-18 蓝宝石斜切衬底优化氧化镓薄膜生长及日盲紫外探测器性能的方法

Country Status (1)

Country Link
CN (1) CN110061089B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110854233B (zh) * 2019-11-17 2021-09-07 金华紫芯科技有限公司 一种Ga2O3薄膜基日盲紫外探测器、制备方法及应用
CN113702447B (zh) * 2020-05-22 2022-10-14 中国科学院苏州纳米技术与纳米仿生研究所 氧化镓纳米结构器件及其制备方法和应用
CN113823707B (zh) * 2020-06-03 2023-12-22 中国科学院苏州纳米技术与纳米仿生研究所 基于氧化镓与氮化镓的集成式器件及其制备方法
CN112420491A (zh) * 2020-11-20 2021-02-26 南京大学 氧化镓外延薄膜及生长氧化镓外延薄膜的方法
CN114141909B (zh) * 2021-11-26 2023-09-29 北京铭镓半导体有限公司 在蓝宝石衬底生长不同晶向氧化镓薄膜的方法及基于该薄膜的紫外光探测器的制备方法
CN114141910B (zh) * 2021-11-27 2023-09-15 北京铭镓半导体有限公司 一种蓝宝石衬底生长纯相Ga2O3薄膜的方法及日盲紫外探测器
CN114293251B (zh) * 2021-12-20 2023-03-24 南京大学 制备高质量多孔GaN模板晶体的方法
CN115579405A (zh) * 2022-09-27 2023-01-06 山东大学 一种磁控溅射非晶氧化镓光电薄膜晶体管及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108666395A (zh) * 2018-05-24 2018-10-16 北京邮电大学 基于非晶氧化镓薄膜的日盲紫外光电探测器及其制备方法
CN109449219A (zh) * 2018-09-19 2019-03-08 北京镓族科技有限公司 基于β-Ga2O3单晶毫米级薄片的日盲紫外探测器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037386A (zh) * 2018-07-20 2018-12-18 北京镓族科技有限公司 基于氧化镁衬底的氧化镓薄膜光电探测器及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108666395A (zh) * 2018-05-24 2018-10-16 北京邮电大学 基于非晶氧化镓薄膜的日盲紫外光电探测器及其制备方法
CN109449219A (zh) * 2018-09-19 2019-03-08 北京镓族科技有限公司 基于β-Ga2O3单晶毫米级薄片的日盲紫外探测器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Towards High-Mobility Heteroepitaxial beta-Ga2O3 on Sapphire - Dependence on The Substrate Off-Axis Angle;Rafique, S 等;《PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE》;20180124;第215卷(第2期);摘要、2.试验、3.结果与讨论、附图2-4 *
氧化镓薄膜的制备及性能研究;廖奕凯;《中国优秀硕士学位论文全文数据库(电子期刊)工程科技科I辑》;20180215;第5章 *

Also Published As

Publication number Publication date
CN110061089A (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
CN110061089B (zh) 蓝宝石斜切衬底优化氧化镓薄膜生长及日盲紫外探测器性能的方法
CN109461790B (zh) 氧化镓/石墨烯异质结零功耗光电探测器及其制造方法
CN101807619B (zh) 一种透明柔性紫外探测器及其制备方法
CN110459640B (zh) 一种基于Cs3Cu2I5钙钛矿的自供能光电探测器及其制备方法
CN110676339B (zh) 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法
CN106252432A (zh) 一种可降低缺陷密度的碲化镉太阳能电池制备方法
CN110729376B (zh) 基于氧化镍/β-三氧化二镓异质结的紫外探测器及其制备方法
CN100568547C (zh) ZnO/纳米金刚石共面栅紫外光探测器的制备方法
CN103227230B (zh) 一种侧向生长ZnMgO纳米线日盲区紫外探测器及其制备方法
CN112103354A (zh) 透明Ga2O3的p-i-n异质结构日盲型紫外光探测器及其制备方法
CN109065661A (zh) 基于铝酸镁衬底的氧化镓薄膜光电探测器及其制造方法
CN105714262A (zh) 一种择优生长ito透明导电薄膜的制备方法
CN102176471A (zh) 一种绒面结构bzo/hgzo复合薄膜及应用
CN113707760A (zh) 一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法
CN109037386A (zh) 基于氧化镁衬底的氧化镓薄膜光电探测器及其制造方法
Sakalley et al. Cu3N thin film synthesized by selective in situ substrate heating during high power impulse magnetron sputtering for augmenting UV photodetection
CN111710752B (zh) 基于立方氮化硼厚膜的msm型深紫外光电探测器及制备方法
CN111910158B (zh) 一种超宽禁带p型SnO2薄膜及其制备方法
CN110350043B (zh) 一种自组装结晶/非晶氧化镓相结光电探测器及其制造方法
CN104818452A (zh) 一种制备氮铝共掺杂p型氧化锌薄膜的方法
CN111710750B (zh) 基于六方氮化硼厚膜的深紫外光电探测器及制备方法
CN111261735B (zh) 一种ZnMgO薄膜、紫外探测器及其制备方法
CN114566566A (zh) 一种氮化铝日盲光电探测器及其制备方法
Cruz et al. Microstructural and optical properties of CSS and CBD-CdS thin films for photovoltaic solar cells
CN111509065A (zh) 含有碱金属掺杂铜铟镓硒吸收层的太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210422

Address after: 101300 Room 102, 1st floor, building 1, No.1 shunqiang Road, Shunyi District, Beijing

Applicant after: Beijing mingga Semiconductor Co.,Ltd.

Address before: 101300 Beijing Shunyi District, Renhe Town, Shunqiang Road, No. 1 Building 2, North West Side of Floor 2

Applicant before: BEIJING JIAZU TECHNOLOGY Co.,Ltd.

GR01 Patent grant
GR01 Patent grant