CN109461790B - 氧化镓/石墨烯异质结零功耗光电探测器及其制造方法 - Google Patents

氧化镓/石墨烯异质结零功耗光电探测器及其制造方法 Download PDF

Info

Publication number
CN109461790B
CN109461790B CN201811121634.7A CN201811121634A CN109461790B CN 109461790 B CN109461790 B CN 109461790B CN 201811121634 A CN201811121634 A CN 201811121634A CN 109461790 B CN109461790 B CN 109461790B
Authority
CN
China
Prior art keywords
gallium oxide
graphene
oxide film
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811121634.7A
Other languages
English (en)
Other versions
CN109461790A (zh
Inventor
谷雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing mingga Semiconductor Co.,Ltd.
Original Assignee
Beijing Jiazu Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiazu Technology Co ltd filed Critical Beijing Jiazu Technology Co ltd
Priority to CN201811121634.7A priority Critical patent/CN109461790B/zh
Publication of CN109461790A publication Critical patent/CN109461790A/zh
Application granted granted Critical
Publication of CN109461790B publication Critical patent/CN109461790B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明提供了一种氧化镓/石墨烯异质结型光电探测器及其制造方法。所述的光电探测器包括依次叠置的衬底、石墨烯层、氧化镓薄膜和电极。石墨烯层优选为标准湿法转移的石墨烯,氧化镓薄膜优选为室温生长非晶氧化镓薄膜。本发明中非晶氧化镓薄膜采用磁控溅射方法生长,工艺可控性强、容易操作,制作成本低。本发明制得的氧化镓薄膜表面致密、厚度稳定均一,适于大面积制备、且重复性好。本发明制得的光电探测器能够在零功耗下工作,在日盲紫外探测领域具有潜在的应用前景。

Description

氧化镓/石墨烯异质结零功耗光电探测器及其制造方法
技术领域
本发明属于光电探测器技术领域,特别涉及一种氧化镓/石墨烯异质结的光电探测器及其制造方法。所述方法在石墨烯层衬底上生长氧化镓薄膜形成探测器,所述探测器可作为一种零功耗日盲紫外探测器。
背景技术
大气中的平流臭氧层对波长在200nm到280nm之间的紫外光具有强烈的吸收作用,到达地面的处在该波段的紫外光辐射在海平面附近几乎衰减至零,故被称作日盲区,这就为工作于该波段的日盲-紫外光电探测系统提供了一个良好的信号背景。随着日盲-紫外探测技术的发展,其在日盲-紫外通信、导弹预警跟踪、火箭尾焰探测、天基紫外预警、紫外超光谱侦察、着舰引导、电晕探测、海上搜救等军用与民用领域有着广泛的应用前景。要实现日盲紫外探测,器件核心半导体材料的禁带宽度要大于4.4eV(对应探测波长280nm),Ga2O3的禁带宽度约为4.9eV,正好对应于日盲区,室温下激子束缚能高达40~50meV,远高于室温热离化能(26meV),并具有优异的热稳定性和化学稳定性,是制备光电探测器,特别是日盲紫外探测器件的天然理想材料。
目前报道的Ga2O3薄膜基日盲-紫外探测器的结构主要有金属-半导体-金属型、肖特基结型,异质结和雪崩二极管型。金属-半导体-金属型器件具有工艺简单、方便集成的优势,但没有内部增益、对微弱光信号的探测能力差、难以获得高的光电响应度。肖特基、异质结和雪崩型器件利用了结效应的光生载流子倍增效果和对载流子输运的调制作用,往往能够获得较高的光电流增益和较快的响应速度。
目前基于Ga2O3薄膜的异质结型日盲紫外探测的研究还处于起步阶段,且主要集中在基于高温条件下生长的单晶或多晶Ga2O3薄膜,但高温生长设备价格昂贵,生长条件要求也较高。如何开发出制备简单、成本较低且性能较高的Ga2O3薄膜异质结型日盲探测器的工艺方法,仍是业界极待解决的问题。另一方面,探测器工作时的功耗一直是实际应用中最关心的问题,目前市场上的真空紫外探测器件由于功耗高而逐渐要被市场淘汰。因此,急需开发一种新型的零功耗日盲紫外探测器。
发明内容
为解决上述技术问题,本发明提出一种室温生长的非晶氧化镓/石墨烯异质结的零功耗日盲紫外探测器及其制造方法,可应用于零功耗日盲紫外探测器。
本发明在湿法转移了石墨烯层的刚性衬底上制备了非晶氧化镓/石墨烯异质结的零功耗日盲紫外探测器。该发明为零功耗的光电探测器,特别是零功耗日盲紫外探测器的制备提供理论和技术支持。
本发明的室温生长的非晶氧化镓/石墨烯异质结的零功耗日盲紫外探测器,包括依次叠置的衬底、石墨烯层、氧化镓薄膜和电极,其特征在于:所述石墨烯层为标准湿法转移的石墨烯,氧化镓薄膜为室温生长非晶氧化镓薄膜,所述衬底为刚性衬底,如石英玻璃或硅基衬底。
根据本发明的优选实施方式,所述衬底为具有SiO2层的硅基衬底,且SiO2层厚度为100nm至400nm。
根据本发明的优选实施方式,所述电极包括Au层或Au/Ti层。
根据本发明的优选实施方式,所述非晶氧化镓薄膜的厚度为100nm至400nm。
本发明还提出一种非晶氧化镓薄膜的制造方法,包括:在衬底上,采用磁控溅射法生长氧化镓薄膜;其特征在于:所述氧化镓薄膜为非晶氧化镓薄膜,所述衬底为刚性衬底如石英玻璃或硅基衬底。
根据本发明的优选实施方式,所述磁控溅射法的生长参数包括:工作气氛为Ar气。
根据本发明的优选实施方式,所述磁控溅射法的生长参数还包括:溅射功率为60W~100W。
根据本发明的优选实施方式,所述磁控溅射法的生长参数还包括:工作气压为0.01Pa~10Pa。
根据本发明的优选实施方式,所述磁控溅射法的生长参数还包括:薄膜生长温度为室温。
此外,本发明还提出一种非晶氧化镓/石墨烯异质结的零功耗日盲紫外探测器的制造方法,所述零功耗日盲光电探测器包括氧化镓薄膜,所述氧化镓薄膜是通过前述的氧化镓薄膜的制造方法所制造的。
本发明的有益效果是:
1.本发明制备过程简单,采用商业化的制备方法磁控溅射生长薄膜,所用衬底为商业产品,生长温度低、工艺可控性强,易操作,所得薄膜表面致密、厚度稳定均一、可大面积制备、重复性好。
2.本发明所得的非晶氧化镓/石墨烯异质结的日盲紫外探测器暗电流小,表现出良好的栅压调控能力,紫外可见抑制比高,制造工艺简单,所用材料容易获得,具有广阔的发展前景,且所制备的器件结构可在零功耗的情况下探测日盲紫外光,在日盲紫外探测领域具有潜在的应用前景。
附图说明
图1是通过本发明一个实施例的方法制备的非晶氧化镓/石墨烯异质结的日盲紫外探测器结构示意图;
图2是用本发明一个实施例的方法制得的石墨烯单层的拉曼图;
图3是用本发明一个实施例的方法制得的室温生长非晶氧化镓的扫描电子显微镜图;
图4是用本发明一个实施例的方法制得非晶氧化镓/石墨烯异质结日盲紫外探测器在黑暗(图中表示为“dark”)及254nm不同光强下的I-V曲线;
图5是用本发明一个实施例的方法制得的非晶氧化镓/石墨烯异质结日盲紫外探测器在0V偏压及光强为150μW/cm2的254nm光照下的I-t曲线(20个循环)。
具体实施方式
总的来说,本发明提出一种光电探测器及相应的制备方法。所述光电探测器包括依次叠置的衬底、石墨烯层、氧化镓薄膜和电极。本发明的石墨烯层和氧化镓薄膜形成氧化镓/石墨烯异质结。所述的氧化镓/石墨烯异质结为肖特基结,其中氧化镓薄膜与石墨烯之间为肖特基接触,即利用半导体与金属接触形成肖特基势垒的原理制成的具有整流特性的器件。与PN结的两种载流子导电不同,肖特基结是只有一种载流子导电的,所以这就导致了肖特基结存在着与PN结形成的二极管完全不一样的特性。对于肖特基结型的光电探测器,将光信号转换为电信号来实现对光辐射的探测这一过程是通过肖特基结来完成的。当石墨烯与氧化镓接触时,氧化镓的功函数小于石墨烯的功函数,电子就会从氧化镓的一侧流向石墨烯的一侧,同时,石墨烯一侧的负电荷密度也相应增加。由于氧化镓中自由电荷密度的限制,这些正电荷将分布在一定厚度的氧化镓表面层内,即形成空间电荷区,空间电荷区内的电场将导致能带弯曲。随着这一过程的不断进行,石墨烯与氧化镓表面处及其内部的所有电子能级将发生变化,最终达到平衡状态,形成肖特基结。而零损耗光电探测器的原理即基于光伏效应实现对光辐射的探测。
在此,石墨烯层是由单层sp2杂化的碳原子组成的二维晶体,在面内呈六角蜂窝状无限延生。石墨烯层可以是单层石墨烯,也可以是多层石墨烯。由于单层石墨烯构成的石墨烯层对光的吸收仅为2.3%,优于多层石墨烯,非常适合用于光电探测器的透明电极材料。因此,本发明优选为单层石墨烯层。
所述的氧化镓薄膜可以是单晶/多晶的氧化镓薄膜,也可以是非晶的氧化镓薄膜。对于单晶/多晶氧化镓薄膜,需要在高温生长,制备成本较高,,对于非晶氧化镓薄膜,可以在室温生长,避免了石墨烯在高温下发生氧化性能下降,因此,本发明优选为采用非晶氧化镓薄膜。为了获得更为优异的器件性能,且能够降低成本,易于产业化,本发明的氧化镓薄膜的厚度优选为100nm~400nm。
本发明的衬底可为任意刚性衬底,优选含SiO2层的Si衬底,因为Si基衬底价格低廉,且石墨烯在SiO2层的Si衬底上光学对比度高,易于观察。
本发明还提出上述光电探测器的制造方法,包括如下步骤:在衬底上形成石墨烯层;在石墨烯层上生长氧化镓薄膜;在氧化镓薄膜上形成电极。其中,所述石墨烯层和氧化镓薄膜形成如上所述的氧化镓/石墨烯异质结。
本发明优选为采用湿法转移石墨烯,以在衬底上形成石墨烯层。如前所述,所述石墨烯层优选为单层石墨烯,的刚性衬底为衬底,利用磁控溅射方法在室温生长非晶氧化镓薄膜,用非晶氧化镓/石墨烯异质结作为紫外光敏层。
该方法应用磁控溅射技术,生长的条件容易控制,重复性好,稳定性高,适宜进行大规模生产。本发明的光电探测器适合于零功耗的日盲紫外探测器。
本发明在石墨烯层和非晶氧化镓薄膜上再通过磁控溅射的方法溅射金属电极(例如Au层和/或Ti层点电极),从而获得异质结日盲紫外探测器件。通过本发明方法制备得到的日盲紫外探测器,结构为异质结型,从下到上分别是刚性衬底、石墨烯层、非晶氧化镓薄膜、金属电极。
以下结合附图并通过具体实施例进一步说明本发明,该实施例是一种室温制备非晶氧化镓/石墨烯异质结的零功耗日盲紫外探测器的方法,该方法包括如下步骤:
(1)取一片10mm×10mm×0.5mm大小的SiO2(300nm)/Si衬底,将衬底依次浸泡在15毫升的丙酮、无水乙醇、去离子水中分别超声15分钟,取出后再用流动的去离子水冲洗,最后用干燥的N2气吹干,等待下一步使用。
(2)利用标准湿法转移方法,在SiO2/Si衬底上转移一层5mm×5mm大小的单层石墨烯。
(2)将上述已转移单层石墨烯的SiO2/Si衬底遮挡一部分石墨烯层后,放入沉积室,采用磁控溅射在其上生长非晶氧化镓薄膜,以99.99%纯度的Ga2O3陶瓷为靶材,磁控溅射技术的具体生长参数如下:背底真空压强小于1×10-4Pa,工作气氛为Ar气,工作气压为1Pa,衬底温度为室温,溅射功率为80W,溅射时间为100min,得到的非晶氧化镓薄膜的厚度约250nm。
(3)在上述制备的非晶氧化镓/石墨烯异质结表面用镂空的金属掩膜板遮挡,采用磁控溅射方法在石墨烯层和薄膜表面先后溅射金属Ti层(约10nm)和Au层(约20nm)获得Au/Ti电极,厚度约100nm,电极为圆形点电极,直径200μm。溅射工艺条件如下:背底真空为1×10-4Pa,衬底温度为室温,工作气氛为Ar气,工作气压为3Pa,溅射功率为40W,Ti层的溅射时间为10s,Au层的溅射时间为20s。
通过上述步骤制备获得非晶氧化镓/石墨烯异质结的日盲紫外探测器如图1所示,包括SiO2(300nm)/Si衬底1、石墨烯层2、非晶氧化镓薄膜3和金属电极4。在叉指电极4两侧外加5V偏压,电流则从正电极流入,通过非晶氧化镓/石墨烯异质结,从负电极流出,构成异质结型日盲紫外探测器。
图2给出了石墨烯层的拉曼图,可以看出2D峰和G峰比约为2.2,且在1344波数位置的D峰非常弱,证明湿法转移的单层石墨烯结晶质量非常高。
图3给出了非晶氧化镓薄膜的扫描电子显微镜图,可以看出薄膜表面都呈现出颗粒状,颗粒与颗粒存在清晰的界面,且颗粒较小。
图4给出了日盲紫外探测器在黑暗(图中表示为“Dark”)和254nm不同强度光照下的I-V曲线。在黑暗条件下,非晶氧化镓/石墨烯异质结表现出非常明显的正向导通,反向关闭的整流特性。在254nm的光强下,无论正向和反向电压下,光电流有着明显的增加。在5V时,探测器的电流从黑暗情况下的9μA增加至205nA,光暗比I254/Idark为22.8。在-5V时,探测器的电流从黑暗情况下的1.5μA增加至15.9nA,光暗比I254/Idark为10。表明薄膜材料对254nm的紫外光具有强烈的响应。
该非晶氧化镓/石墨烯异质结日盲紫外探测器可工作在0V偏压下,具有零功耗工作的特点。图5给出了在0V偏压及150mW/cm2光强下的254nm光照下通过不断灯开灯关测得的I-t曲线。本实施例中重复了20个I-t循环,该器件表现出很好的重复性。在黑暗情况下,该探测器的暗电流为-0.67nA,当光强为150μW/cm2的254nm紫外光照射后,电流迅速增加至-21.24nA,光暗比Iphoto/Idark约为31.7。
对于上述实施例公开的具体实施方式,本领域的技术人员可在一定的范围内变化,具体如下:根据本发明的优选实施方式,所述靶材为99.99%纯度的Ga2O3陶瓷靶材。所用石墨烯层为单层石墨烯。所述磁控溅射沉积过程工作气氛为Ar气,薄膜生长工作气压为0.01Pa~10Pa,优选1Pa。所述衬底温度为室温。溅射功率为60W~100W,优选为80W,溅射时间优选为100分钟。得到的β-Ga2O3薄膜的厚度优选为250nm。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种光电探测器,包括依次叠置的衬底、石墨烯层、氧化镓薄膜和电极,其特征在于:所述石墨烯层和氧化镓薄膜形成氧化镓/石墨烯异质结,所述石墨烯层为单层石墨烯,所述氧化镓薄膜为非晶氧化镓薄膜,厚度为100nm至400nm。
2.如权利要求1所述的光电探测器,其特征在于:所述衬底为含SiO2层的Si衬底。
3.一种光电探测器的制造方法,包括:在衬底上形成石墨烯层;在石墨烯层上生长氧化镓薄膜;在氧化镓薄膜上形成电极,其特征在于:所述石墨烯层和氧化镓薄膜形成氧化镓/石墨烯异质结,所述石墨烯层为单层石墨烯,所述氧化镓薄膜为非晶氧化镓薄膜,厚度为100nm至400nm。
4.如权利要求3所述的光电探测器的制造方法,其特征在于:所述形成石墨烯层的步骤采用湿法转移石墨烯层。
5.如权利要求3所述的光电探测器的制造方法,其特征在于:所述在石墨烯层上生长氧化镓薄膜的步骤是在室温下采用磁控溅射法生长非晶氧化镓薄膜。
CN201811121634.7A 2018-09-26 2018-09-26 氧化镓/石墨烯异质结零功耗光电探测器及其制造方法 Active CN109461790B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811121634.7A CN109461790B (zh) 2018-09-26 2018-09-26 氧化镓/石墨烯异质结零功耗光电探测器及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811121634.7A CN109461790B (zh) 2018-09-26 2018-09-26 氧化镓/石墨烯异质结零功耗光电探测器及其制造方法

Publications (2)

Publication Number Publication Date
CN109461790A CN109461790A (zh) 2019-03-12
CN109461790B true CN109461790B (zh) 2020-08-14

Family

ID=65606915

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811121634.7A Active CN109461790B (zh) 2018-09-26 2018-09-26 氧化镓/石墨烯异质结零功耗光电探测器及其制造方法

Country Status (1)

Country Link
CN (1) CN109461790B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323303B (zh) * 2019-07-09 2021-05-11 北京镓族科技有限公司 一种Ga2O3-CuSCN核壳异质结日盲紫外探测器及其制备方法
CN110429026B (zh) * 2019-08-15 2022-05-06 西安电子科技大学 一种打开石墨烯带隙的方法
CN111048402A (zh) * 2019-10-14 2020-04-21 西安电子科技大学 基于SiC和Ga2O3的半导体结构的制备方法及半导体结构
CN113013282B (zh) * 2019-12-20 2023-03-21 中国电子科技集团公司第四十八研究所 高响应PbSe/C60异质结光敏薄膜红外探测芯片及其制备方法、红外探测器
CN112038427B (zh) * 2020-06-16 2022-06-28 杭州紫芯光电有限公司 氧化镓基异质结集成光电芯片、远程紫外阵列监测器及其制作方法
CN112563353B (zh) * 2020-12-29 2023-01-03 中国科学院长春光学精密机械与物理研究所 一种异质结紫外探测器及其制备方法
CN113097336B (zh) * 2021-03-22 2022-09-06 西安邮电大学 一种非对称电极msm结构氧化镓紫外探测器
CN113314628B (zh) * 2021-05-20 2022-11-04 西安电子科技大学 一种导电沟道日盲光电探测器
CN113517366B (zh) * 2021-05-20 2023-06-20 西安电子科技大学 一种新型异质结光电探测器及其制备方法
CN113410330B (zh) * 2021-06-22 2022-07-22 金华紫芯科技有限公司 一种石墨烯非晶氧化镓薄膜的日盲紫外探测器
CN114497277A (zh) * 2021-12-30 2022-05-13 昆明物理研究所 基于石墨烯/氧化镓异质结的二极管及其制备方法
CN115621344B (zh) * 2022-12-19 2023-03-17 无锡麟力科技有限公司 异质结日盲探测器及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108963027A (zh) * 2017-05-19 2018-12-07 中国科学院物理研究所 一种非晶Ga2O3日盲紫外探测器及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206689B (zh) * 2015-09-18 2017-06-27 中国科学院上海微系统与信息技术研究所 一种基于薄膜半导体‑石墨烯异质结的光电探测器制备方法
CN105576073B (zh) * 2016-02-02 2017-04-12 合肥工业大学 一种基于石墨烯/β‑Ga2O3的肖特基结深紫外光光电探测器及其制备方法
CN106531824A (zh) * 2016-11-25 2017-03-22 罗雷 一种异质结型光电探测器及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108963027A (zh) * 2017-05-19 2018-12-07 中国科学院物理研究所 一种非晶Ga2O3日盲紫外探测器及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Room-Temperature Fabricated Amorphous Ga2O3 High-Response-Speed Solar-Blind Photodetector on Rigid and Flexible Substrates;Cui, SJ 等;《ADVANCED OPTICAL MATERIALS》;20171002;第5卷(第19期);全文 *

Also Published As

Publication number Publication date
CN109461790A (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
CN109461790B (zh) 氧化镓/石墨烯异质结零功耗光电探测器及其制造方法
Xu et al. Gallium oxide solar-blind ultraviolet photodetectors: a review
Ahmed et al. Fabrication and characterization of high performance MSM UV photodetector based on NiO film
CN106169516B (zh) 一种基于石墨烯的硅基紫外光电探测器及其制备方法
Hu et al. Oxides/graphene heterostructure for deep-ultraviolet photovoltaic photodetector
Shiau et al. Ultraviolet photodetectors based on MgZnO thin film grown by RF magnetron sputtering
Li et al. Thickness effect of NiO on the performance of ultraviolet sensors with p-NiO/n-ZnO nanowire heterojunction structure
CN110061089B (zh) 蓝宝石斜切衬底优化氧化镓薄膜生长及日盲紫外探测器性能的方法
CN109256438A (zh) 一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法
CN109037374A (zh) 基于NiO/Ga2O3的紫外光电二极管及其制备方法
CN108630782B (zh) 一种宽探测波段双重等离子工作光电探测器的制备方法
CN110112233B (zh) 基于银纳米线-石墨烯/氧化镓纳米柱的光电探测结构、器件及制备方法
Ghosh et al. High performance broad-band ultraviolet-B to visible photodetection based on planar Al-Zn2SnO4-Al structure
CN108231953B (zh) 一种MSM结构4H-SiC紫外光电探测器的制备方法
Du et al. High performance ultraviolet A/ultraviolet C detector based on amorphous Ga2O3/ZnO Nanoarrays/GaN structure
CN102569486B (zh) 一种肖特基栅场效应紫外探测器及其制备方法
CN110350043B (zh) 一种自组装结晶/非晶氧化镓相结光电探测器及其制造方法
CN110491966B (zh) 碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器及其制作方法
CN113193069B (zh) 一种hBN/BAlN异质结紫外探测器及其制备方法
Zheng et al. Boosting the performance of deep-ultraviolet photodetector arrays based on phase-transformed heteroepitaxial β-Ga2O3 films for solar-blind imaging
Liu Fabrication and photovoltaic effect of ZnO/silicon nanopillars heterojunction solar cell
CN113113499A (zh) 一种pn结型氧化镓基自供电紫外探测器及其制备方法
CN112117346B (zh) 一种微米线阵列、雪崩紫外探测器和雪崩紫外探测器系统
Maity et al. Reduction in defect levels and improvement in optical and structural properties by modifying ZnO based thin film into nanorods
Fu et al. Al-nanoparticle sensitized β-Ga 2 O 3-based solar-blind photodetector fabricated via focused ion beam micro/nano processing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210427

Address after: 101300 Room 102, 1st floor, building 1, No.1 shunqiang Road, Shunyi District, Beijing

Patentee after: Beijing mingga Semiconductor Co.,Ltd.

Address before: 101300 Beijing Shunyi District, Renhe Town, Shunqiang Road, No. 1 Building 2, North West Side of Floor 2

Patentee before: BEIJING JIAZU TECHNOLOGY Co.,Ltd.