CN110350043B - 一种自组装结晶/非晶氧化镓相结光电探测器及其制造方法 - Google Patents
一种自组装结晶/非晶氧化镓相结光电探测器及其制造方法 Download PDFInfo
- Publication number
- CN110350043B CN110350043B CN201910535134.6A CN201910535134A CN110350043B CN 110350043 B CN110350043 B CN 110350043B CN 201910535134 A CN201910535134 A CN 201910535134A CN 110350043 B CN110350043 B CN 110350043B
- Authority
- CN
- China
- Prior art keywords
- gallium oxide
- amorphous
- crystalline
- oxide film
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 title claims abstract description 85
- 229910001195 gallium oxide Inorganic materials 0.000 title claims abstract description 85
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 42
- 239000010408 film Substances 0.000 claims abstract description 41
- 239000010409 thin film Substances 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000001755 magnetron sputter deposition Methods 0.000 claims abstract description 16
- 229910052594 sapphire Inorganic materials 0.000 claims description 12
- 239000010980 sapphire Substances 0.000 claims description 12
- 238000002425 crystallisation Methods 0.000 claims description 11
- 230000008025 crystallization Effects 0.000 claims description 11
- 238000004544 sputter deposition Methods 0.000 claims description 10
- 238000005516 engineering process Methods 0.000 claims description 5
- 239000013077 target material Substances 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 3
- 230000004044 response Effects 0.000 abstract description 10
- 230000008569 process Effects 0.000 abstract description 7
- 238000000825 ultraviolet detection Methods 0.000 abstract description 6
- 230000035945 sensitivity Effects 0.000 abstract description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 abstract 1
- 229910052733 gallium Inorganic materials 0.000 abstract 1
- 238000005286 illumination Methods 0.000 description 10
- 239000010410 layer Substances 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02565—Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/032—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0376—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0392—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/102—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
- H01L31/109—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明提供了一种自组装结晶/非晶氧化镓相结光电探测器及其制造方法。所述的光电探测器包括依次为衬底、氧化镓薄膜和电极。氧化镓薄膜包括混合的结晶区域和非晶区域,结晶区域和非晶区域之间形成相结。氧化镓薄膜为在衬底温度为400~500℃条件下通过磁控溅射工艺生长。本发明工艺可控性强、容易操作,制作成本低,且重复性好,获得的氧化镓相结薄膜表面平整致密。本发明制得的光电探测器具有很好的光电响应,极快的灵敏度,较低的暗电流,在日盲紫外探测领域具有潜在的应用前景。
Description
技术领域
本发明属于光电探测器技术领域,特别涉及一种自组装结晶/非晶氧化镓相结光电探测器及其制造方法。
背景技术
大气中的平流臭氧层对波长在200nm到280nm之间的紫外光具有强烈的吸收作用,到达地面的处在该波段的紫外光辐射在海平面附近几乎衰减至零,故被称作日盲区,这就为工作于该波段的日盲-紫外光电探测系统提供了一个良好的信号背景。随着日盲-紫外探测技术的发展,其在日盲- 紫外通信、导弹预警跟踪、火箭尾焰探测、天基紫外预警、紫外超光谱侦察、着舰引导、电晕探测、海上搜救等军用与民用领域有着广泛的应用前景。要实现日盲紫外探测,器件核心半导体材料的禁带宽度要大于4.4 eV(对应探测波长280nm),Ga2O3的禁带宽度约为4.9eV,正好对应于日盲区,室温下激子束缚能高达40~50meV,远高于室温热离化能(26meV),并具有优异的热稳定性和化学稳定性,是制备光电探测器,特别是日盲紫外探测器件的天然理想材料。
目前报道的氧化镓薄膜基日盲-紫外探测器的结构主要有金属-半导体 -金属型、肖特基结型、异质结和雪崩二极管型。金属-半导体-金属型器件具有工艺简单、方便集成的优势,但没有内部增益、对微弱光信号的探测能力差、难以获得高的光电响应度。肖特基、异质结和雪崩型器件利用了结效应的光生载流子倍增效果和对载流子输运的调制作用,往往能够获得较高的光电流增益和较快的响应速度。
目前基于氧化镓薄膜的具有增益的结型日盲紫外探测的研究还处于起步阶段,且主要集中在基于高温条件下生长的单晶或多晶Ga2O3薄膜与其他半导体材料结合成异质结,但由于氧化镓薄膜与其他半导体材料存在的晶格失配,制备工艺复杂,难以实现产业化。如何开发出制备工艺简单、成本较低且具有增益的氧化镓日盲探测器制备方法,仍是业界极待解决的问题。
发明内容
(一)要解决的技术问题
本发明旨在解决现有的日盲紫外光探测器的制备工艺复杂的问题,以及灵敏度等综合性能在不增加工艺复杂度的情况下如何提高的问题。
(二)技术方案
为解决上述技术问题,本发明提出一种光电探测器,包括衬底、氧化镓薄膜和电极,所述氧化镓薄膜包括混合的结晶区域和非晶区域,所述结晶区域和非晶区域之间形成相结。
根据本发明的优选实施方式,所述相结是作为n型同质结的结晶/非晶 Ga2O3相结。
根据本发明的优选实施方式,所述氧化镓薄膜的厚度为100~300nm。
根据本发明的优选实施方式,所述氧化镓薄膜的厚度为200nm。
根据本发明的优选实施方式,所述衬底为c面蓝宝石衬底。
此外,本发明还提出一种制备光电探测器的方法,包括:在衬底上形成氧化镓薄膜,并在在氧化镓薄膜上形成电极,所述氧化镓薄膜包括混合的结晶区域和非晶区域,所述结晶区域和非晶区域之间形成相结。
根据本发明的优选实施方式,在衬底上形成氧化镓薄膜的步骤包括:采用磁控溅射技术,在温度为400℃~500℃的衬底上溅射生长所述氧化镓薄膜。
根据本发明的优选实施方式,所述衬底温度为450℃。
(三)有益效果
1.本发明制备过程简单,采用商业化的制备方法磁控溅射生长薄膜,所用衬底为商业产品,生长温度低、工艺可控性强,易操作,所得薄膜表面致密、厚度稳定均一、可大面积制备、重复性好。
2.本发明所得的结晶/非晶氧化镓相结的日盲紫外探测器暗电流小,响应速度快,紫外可见抑制比高,工作稳定,制造工艺简单,生产成本低等优点,在日盲紫外探测领域具有潜在的应用前景。
附图说明
图1是通过本发明一个实施例的方法制备的自组装结晶/非晶氧化镓相结日盲紫外探测器结构示意图;
图2是用本发明实施例一的方法制得的分别在非晶相[25℃,图(a)]、结晶/非晶相结[450℃,图(b)]、结晶相[750℃,图(c)]氧化镓薄膜的 X射线衍射图;
图3是用本发明实施例一的方法制得非晶相、结晶/非晶相结、结晶相氧化镓薄膜日盲紫外探测器在黑暗(DARK)以及光强为1mW/cm2时254 nm、365nm光照下的I-V特性曲线;
图4是用本发明实施例一的方法制得的结晶/非晶氧化镓相结日盲紫外探测器在5V偏压时的响应时间及光强为1mW/cm2的254nm光照下的 I-t曲线(~20个周期)。
图5是用本发明实施例二的方法制得的结晶/非晶相结氧化镓薄膜日盲紫外探测器在黑暗(DARK)以及光强为1mW/cm2时254nm、365nm 光照下的I-V特性曲线;
图6是用本发明实施例三的方法制得的结晶/非晶相结氧化镓薄膜日盲紫外探测器在黑暗(DARK)以及光强为1mW/cm2时254nm、365nm 光照下的I-V特性曲线;
具体实施方式
如前所述,自组装氧化镓相结日盲紫外探测器有着美好的发展前景,因此,本发明提出一种新的光电探测器及相应的制备方法。所述光电探测器包括依次为衬底、氧化镓薄膜和电极。
其中,氧化镓薄膜包括结晶区域和非晶区域,氧化镓薄膜中的结晶区域和非晶区域形成结晶/非晶氧化镓相结。结晶氧化镓与非晶氧化镓由于存在的氧缺陷,均为n型半导体,所述的结晶/非晶氧化镓相结为同质n-n结。对于同质结光电探测器,将光信号转换为电信号来实现对光辐射的探测这一过程是通过n-n结来完成的。当结晶区域与非晶区域接触时,结晶区的导带底高于非晶区,电子就会从结晶区的一侧流向非晶区的一侧,同时,非晶区一侧的负电荷密度也相应增加。由于氧化镓结晶区中自由电荷密度的限制,这些正电荷将分布在一定厚度的氧化镓晶区(与非晶区相邻的) 表面层内,即形成空间电荷区,空间电荷区内的电场将导致能带弯曲。随着这一过程的不断进行,结晶与非晶区氧化镓表面处及其内部的所有电子能级将发生变化,最终达到平衡状态,形成n-n结。
所述氧化镓薄膜包括结晶区域和非晶区域的比例会影响相结探测器的响应度,随着生长温度变化,结晶区域和非晶区域的比例也会发生变化,在较低温度制备的氧化镓薄膜中非晶区域较多,而较高温度制备的氧化镓薄膜中结晶区域较多,在探索了不同生长温度条件下结晶/非晶氧化镓相结日盲探测器件性能后,获得了本发明的氧化镓薄膜的生长温度为400℃~ 500℃之间,优选温度为450℃。
为了获得更为优异的器件性能,且为了降低成本,易于产业化,本发明的氧化镓薄膜的厚度优选为100nm~300nm。
本发明的衬底为c面蓝宝石衬底,因为蓝宝石衬底价格低廉,且透明度高,在200nm-1000nm波段几乎不吸收,对薄膜探测无影响。
本发明还提出上述光电探测器的制造方法,包括如下步骤:在蓝宝石衬底上生长氧化镓薄膜;在氧化镓薄膜上形成电极。其中,所述氧化镓薄膜包括结晶区域和非晶区域,所述结晶区域和非晶区域之间形成作为n型同质结的相结。
该方法应用磁控溅射技术,生长的条件容易控制,重复性好,稳定性高,适宜进行大规模生产。本发明的光电探测器适合于低功耗的日盲紫外探测器。
本发明在结晶/非晶氧化镓薄膜上再通过磁控溅射的方法溅射金属电极(例如Ti层或Au层电极),从而获得相结日盲紫外探测器件。通过本发明方法制备得到的日盲紫外探测器,结构从下到上分别是蓝宝石衬底、结晶/非晶氧化镓相结薄膜紫外吸收层、金属电极。
以下结合附图并通过具体实施例进一步说明本发明。
<实施例一>
实施例一是一种自组装结晶/非晶氧化镓相结的日盲紫外探测器的制备方法以及该方法制备的光电探测器,该方法包括如下步骤:
(1)取一片10mm×10mm×0.5mm大小的蓝宝石衬底,将衬底依次浸泡在15毫升的丙酮、无水乙醇、去离子水中分别超声15分钟,取出后再用流动的去离子水冲洗,最后用干燥的N2气吹干,等待下一步使用。
(2)将上述待用的洁净蓝宝石衬底,放入沉积室,采用磁控溅射在其上生长氧化镓薄膜,以99.99%纯度的Ga2O3陶瓷为靶材,磁控溅射技术的具体生长参数如下:背底真空压强小于1×10-4Pa,工作气氛为Ar气和 O2,比例为6:1,工作气压为1Pa,衬底温度为450℃,溅射功率为70W,溅射时间为120min,得到的结晶/非晶氧化镓薄膜的厚度约200nm。
(3)在上述制备的结晶/非晶氧化镓相结薄膜表面用镂空的金属掩膜板遮挡,采用磁控溅射方法在石墨烯层和薄膜表面先后溅射金属Ti层(约 20nm)和Au层(约100nm)获得Ti/Au电极,厚度约120nm,电极为叉指电极,长为500μm,宽为10μm,指间距为10μm,共25对。溅射工艺条件如下:背底真空约为1×10-4Pa,衬底温度为室温,工作气氛为Ar气,工作气压为2Pa,溅射功率为40W,Ti层的溅射时间为20s,Au层的溅射时间为60s。
通过上述步骤制备获得结晶/非晶氧化镓相结的日盲紫外探测器如图 1所示,包括蓝宝石衬底1、结晶/非晶氧化镓相结薄膜2和金属电极3。在电极3两侧外加5V偏压,电流则从正电极流入,通过结晶/非晶氧化镓相结,从负电极流出,构成n型同质结日盲紫外探测器。
图2给出了实施例一非晶相、结晶/非晶相结、结晶相氧化镓薄膜的X 射线衍射图,可以看出非晶相的氧化镓薄膜未有出现特征衍射峰,而结晶相的氧化镓在18.8゜,38.1゜和58.8゜,有明显的特征峰出现,分别对应于β相Ga2O3的(),(),()晶面,表明晶体薄膜延()晶面方向生长且方向单一,证明结晶相氧化镓薄膜结晶质量非常好,对于结晶/非晶氧化镓相结薄膜,只有在()晶面位置出现了明显的衍射峰,在()似乎有峰,()则没有出现衍射峰,证明该薄膜出现了少量微晶,为结晶、非晶共存状态。
图3给出了实施例一非晶相、结晶/非晶相结、结晶相氧化镓薄膜日盲紫外探测器在黑暗(DARK)以及光强为1mW/cm2时254nm、365nm光照下的I-V特性曲线。无论是黑暗条件还是在365nm紫外光照射下,三种相的氧化镓薄膜皆未出现明显的电流变化。在254nm的光强下,三种氧化镓薄膜无论正向和反向电压下,光电流有着明显的增加,表明氧化镓薄膜响应波段在日盲区,具有特定的选择波长。非晶相和结晶相氧化镓表现出良好的欧姆特性曲线,结晶/非晶氧化镓相结薄膜存在明显的整流特性,在5V时,探测器的电流从黑暗情况下的2.71×10-4nA增加至966nA,光暗比I254/Idark为3.56×10-6。表明薄膜材料对254nm的紫外光具有强烈的响应,该结晶/非晶氧化镓相结日盲紫外探测器暗电流小,具有低功耗工作的特点。
图4给出了实施例一结晶/非晶氧化镓相结日盲紫外探测器在5V偏压时的响应时间及光强为500μW/cm2的254nm光照下的I-t曲线。通过激光光源测试探测器响应速度可得,上升时间为0.012μs,下降时间为42μs (上升时间为最大值的10%~90%所经历的时间,下降时间为最大值的 90%~10%所经历的时间),表明所获得的自组装相结探测器响应速度极快,在5V偏压及500mW/cm2光强下的254nm光照下通过不断灯开灯关测得的I-t曲线。本实施例一中重复了约20个I-t循环,该器件表现出很好的重复性。
<实施例二>
实施例二与实施例一类似,其也是一种自组装结晶/非晶氧化镓相结的日盲紫外探测器的制备方法以及该方法制备的光电探测器。实施例二的区别在于:在进行磁控溅射时的衬底温度为400℃。图5给出了相应衬底温度条件下氧化镓薄膜日盲紫外探测器在黑暗(DARK)以及光强为1 mW/cm2时254nm、365nm光照下的I-V特性曲线。可以看出在254nm 光照下曲线虽具有明显的结效应,但光电流约400nA,低于衬底温度为 450℃生长的探测器。
<实施例三>
实施例三也与实施例一类似,其也是一种自组装结晶/非晶氧化镓相结的日盲紫外探测器的制备方法以及该方法制备的光电探测器。实施例三的区别在于:在进行磁控溅射时的衬底温度为500℃。图6给出了相应衬底温度条件下氧化镓薄膜日盲紫外探测器在黑暗(DARK)以及光强为1 mW/cm2时254nm、365nm光照下的I-V特性曲线。可已看出在254nm 光照下曲线结效应变弱,有逐渐变为欧姆接触的趋势,说明随着温度的升高,氧化镓薄膜的结晶质量提高,非晶区域变小了,同时由于结效应的削弱,光电流也低于衬底温度为450℃生长的探测器。
对于上述实施例公开的具体实施方式,本领域的技术人员可在一定的范围内变化,具体如下:所述靶材为99.99%纯度的Ga2O3陶瓷靶材。所用衬底为c面蓝宝石衬底。所述磁控溅射沉积过程工作气氛为Ar气和O2气,优选比例为6:1,薄膜生长工作气压为0.01Pa~10Pa,优选1Pa。所述衬底温度为维持在400℃~500℃,温度优选为450℃,溅射功率为50W~80W,优选为70W,溅射时间优选为120分钟。得到的结晶/非晶相结薄膜的厚度一般可在100nm和300nm之间,更优选为200nm。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (5)
1.一种光电探测器,包括c面蓝宝石衬底、氧化镓薄膜和电极,其特征在于:所述氧化镓薄膜采用磁控溅射形成在所述c面蓝宝石衬底上,包括混合的结晶区域和非晶区域,所述结晶区域和非晶区域之间形成作为n型同质结的结晶/非晶Ga2O3相结,所述氧化镓薄膜的厚度为100~300nm。
2.如权利要求1所述的光电探测器,其特征在于:所述氧化镓薄膜的厚度为200nm。
3.一种制备光电探测器的方法,包括:
采用磁控溅射在c面蓝宝石衬底上形成氧化镓薄膜,并在氧化镓薄膜上形成电极;
磁控溅射得到的所述氧化镓薄膜包括混合的结晶区域和非晶区域,所述结晶区域和非晶区域之间形成作为n型同质结的结晶/非晶Ga2O3相结;所述氧化镓薄膜的厚度为100~300nm。
4.如权利要求3所述的制备光电探测器的方法,其特征在于:在衬底上形成氧化镓薄膜的步骤包括:采用磁控溅射技术,以99.99%纯度的Ga2O3陶瓷为靶材,在温度为400℃~500℃的衬底上溅射生长所述氧化镓薄膜;其中,磁控溅射技术的具体生长参数如下:背底真空压强小于1×10-4Pa,工作气氛为Ar气和O2,比例为6:1,工作气压为1Pa,溅射功率为70W,溅射时间为120min。
5.如权利要求4所述的制备光电探测器的方法,其特征在于:所述衬底温度为450℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910535134.6A CN110350043B (zh) | 2019-06-20 | 2019-06-20 | 一种自组装结晶/非晶氧化镓相结光电探测器及其制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910535134.6A CN110350043B (zh) | 2019-06-20 | 2019-06-20 | 一种自组装结晶/非晶氧化镓相结光电探测器及其制造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110350043A CN110350043A (zh) | 2019-10-18 |
CN110350043B true CN110350043B (zh) | 2021-09-07 |
Family
ID=68182481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910535134.6A Active CN110350043B (zh) | 2019-06-20 | 2019-06-20 | 一种自组装结晶/非晶氧化镓相结光电探测器及其制造方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110350043B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112885907B (zh) * | 2020-11-27 | 2022-09-20 | 西北工业大学 | 一种与半导体Si集成的人工神经元及其应用 |
CN115810694B (zh) * | 2022-12-19 | 2024-10-18 | 吉林大学 | 一种低噪声、高响应Ga2O3基雪崩光电二极管及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105655434A (zh) * | 2016-03-13 | 2016-06-08 | 金旺康 | 一种基于氧化镓纳米线阵列的紫外探测器件及其制备方法 |
CN107819045A (zh) * | 2017-10-27 | 2018-03-20 | 张香丽 | 基于氧化镓异质结结构的紫外光电探测器及其制备方法 |
CN107841785A (zh) * | 2017-10-27 | 2018-03-27 | 浙江理工大学 | 一种氧化镓相结纳米柱阵列及其制备方法 |
CN108666395A (zh) * | 2018-05-24 | 2018-10-16 | 北京邮电大学 | 基于非晶氧化镓薄膜的日盲紫外光电探测器及其制备方法 |
KR20180129698A (ko) * | 2018-07-16 | 2018-12-05 | 아주대학교산학협력단 | 태양광-블라인드 uv-c 광센서 및 이의 제조 방법 |
-
2019
- 2019-06-20 CN CN201910535134.6A patent/CN110350043B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105655434A (zh) * | 2016-03-13 | 2016-06-08 | 金旺康 | 一种基于氧化镓纳米线阵列的紫外探测器件及其制备方法 |
CN107819045A (zh) * | 2017-10-27 | 2018-03-20 | 张香丽 | 基于氧化镓异质结结构的紫外光电探测器及其制备方法 |
CN107841785A (zh) * | 2017-10-27 | 2018-03-27 | 浙江理工大学 | 一种氧化镓相结纳米柱阵列及其制备方法 |
CN108666395A (zh) * | 2018-05-24 | 2018-10-16 | 北京邮电大学 | 基于非晶氧化镓薄膜的日盲紫外光电探测器及其制备方法 |
KR20180129698A (ko) * | 2018-07-16 | 2018-12-05 | 아주대학교산학협력단 | 태양광-블라인드 uv-c 광센서 및 이의 제조 방법 |
Non-Patent Citations (2)
Title |
---|
"Preparation of Ga2O3 thin film solar-blind photodetectors based on mixed-phase structure by pulsed laser deposition";Y M Lu等;《Chinese Physics B》;20181212;第28卷(第1期);摘要,正文第2页左栏第3段-第7页左栏第1段,附图6 * |
"Structure, Morphology, and Optical Properties of Amorphous and Nanocrystalline Gallium Oxide Thin Films";S. Sampath Kumar等;《The Journal of Physical Chemistry》;20130215;第117卷(第8期);摘要,正文第4194页左栏第1段-第4199页左栏第1段,附图1-10 * |
Also Published As
Publication number | Publication date |
---|---|
CN110350043A (zh) | 2019-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109461790B (zh) | 氧化镓/石墨烯异质结零功耗光电探测器及其制造方法 | |
Hu et al. | Oxides/graphene heterostructure for deep-ultraviolet photovoltaic photodetector | |
CN109037374B (zh) | 基于NiO/Ga2O3的紫外光电二极管及其制备方法 | |
CN103943720A (zh) | 一种自驱动式氧锌镁紫外探测器及其制备方法 | |
CN109920875A (zh) | 日盲紫外探测器、其制作方法与应用 | |
CN110350043B (zh) | 一种自组装结晶/非晶氧化镓相结光电探测器及其制造方法 | |
WO2014071353A1 (en) | Solution-processed ultraviolet light detector based on p-n junctions of metal oxides | |
CN112103354A (zh) | 透明Ga2O3的p-i-n异质结构日盲型紫外光探测器及其制备方法 | |
CN114220878A (zh) | 一种具有载流子传输层的Ga2O3/GaN日盲紫外探测器及其制备方法 | |
CN109256438A (zh) | 一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法 | |
CN108346712B (zh) | 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法 | |
CN103227230A (zh) | 一种侧向生长ZnMgO纳米线日盲区紫外探测器及其制备方法 | |
CN113659029A (zh) | 一种氧化镓日盲紫外探测器 | |
CN113707760A (zh) | 一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法 | |
Al-Hardan et al. | Low power consumption UV sensor based on n-ZnO/p-Si junctions | |
Zheng et al. | Boosting the performance of deep-ultraviolet photodetector arrays based on phase-transformed heteroepitaxial β-Ga2O3 films for solar-blind imaging | |
CN110491966B (zh) | 碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器及其制作方法 | |
Chen et al. | Amorphous MgInO ultraviolet solar-blind photodetectors | |
Yang | An introduction to ultraviolet detectors based on III group-nitride semiconductor | |
CN113193069B (zh) | 一种hBN/BAlN异质结紫外探测器及其制备方法 | |
Liu | Fabrication and photovoltaic effect of ZnO/silicon nanopillars heterojunction solar cell | |
CN113113499A (zh) | 一种pn结型氧化镓基自供电紫外探测器及其制备方法 | |
Liu et al. | Performance improvement of co-sputtering AlGaZnO solar-blind photodetectors | |
CN112071942B (zh) | 基于NiFe2O4/SiC紫外光电二极管及制备方法 | |
CN115642197A (zh) | 一种Ga2O3基PIN结构异质结日盲紫外探测器及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |