CN113658852A - 硅基尺寸可控β-Ga2O3纳米线的制备方法 - Google Patents

硅基尺寸可控β-Ga2O3纳米线的制备方法 Download PDF

Info

Publication number
CN113658852A
CN113658852A CN202110853195.4A CN202110853195A CN113658852A CN 113658852 A CN113658852 A CN 113658852A CN 202110853195 A CN202110853195 A CN 202110853195A CN 113658852 A CN113658852 A CN 113658852A
Authority
CN
China
Prior art keywords
beta
nanowire
substrate
silicon
controllable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110853195.4A
Other languages
English (en)
Inventor
黄健
顾克云
尚艺
邓洁
刘尊
张志洛
丁可可
张子龙
唐可
王林军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202110853195.4A priority Critical patent/CN113658852A/zh
Publication of CN113658852A publication Critical patent/CN113658852A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种硅基尺寸可控β‑Ga2O3纳米线的制备方法,所述硅基尺寸可控β‑Ga2O3纳米线的制备工艺是:首先在单晶Si(100)衬底上沉积不同厚度的金(Au)催化层,并对催化层进行原位球化退火,得到不同尺寸的Au纳米颗粒,然后进行磁控溅射生长β‑Ga2O3纳米线并原位退火,得到不同尺寸的β‑Ga2O3纳米线。本发明通过调控β‑Ga2O3纳米线的尺寸可得到具有缺陷少、电阻率高、均匀致密等优点的β‑Ga2O3纳米线。本发明制备的不同的尺寸的β‑Ga2O3纳米线在日盲紫外探测器应用中表现出优异的性能,在军事领域可应用于导弹逼近预警系统、紫外通信、紫外成像导航等,在民用领域的汽车尾气检测、火焰检测、指纹检测等方面有广阔的应用前景。

Description

硅基尺寸可控β-Ga2O3纳米线的制备方法
技术领域
本发明涉及一种调控氧化镓(Ga2O3)纳米线直径尺寸的方法,属于半导体材料制造工艺技术领域。
背景技术
Ga2O3是一种重要的化合物半导体材料。其具有热稳定性好、光吸收系数大、化学稳定性高、巴利加尤值高、制备成本较低等优点。Ga2O3有着多种同分异构体,分别被记为α-Ga2O3、β-Ga2O3、γ-Ga2O3、δ-Ga2O3、ε-Ga2O3。它们之间的差异不仅在于晶体空间型,还在于晶格中镓离子的配位数。通过不同的制备方法和特殊的条件,可以对不同相的Ga2O3进行调控。在这些Ga2O3的同分异构体中,只有单斜晶系β-Ga2O3是稳态相。β-Ga2O3能够通过其它亚稳态相在空气中进行长时间高温处理转化而来。因此,β-Ga2O3是最具光泛应用前景的稳定结构。
β-Ga2O3的制备的主要方法有:磁控溅射、金属有机化学气相沉积、脉冲激光沉积、分子束外延等。相对于其它生长技术而言,磁控溅射技术操作简单、可实现大面积镀膜。制备的材料具有强的附着力和较为均匀的结构。目前生长Ga2O3的衬底有SiC、蓝宝石、金刚石、GaN、Si等。其中,SiC、蓝宝石、金刚石、GaN等作为衬底价格较高、衬底制备工艺不成熟。聚对苯二甲酸乙二醇酯(PET)作为柔性衬底可以加大器件的弯曲特性,但是不能承受高温,具有良好结晶性的Ga2O3需要在高温环境下生长。硅衬底材料丰富,具有很好的热稳定性及器件集成性。因此,以硅作为衬底制备高质量Ga2O3有利于Ga2O3基器件的制备与集成应用。
迄今为止,硅基β-Ga2O3具有不同形式:单晶、薄膜等结构等。这些结构已经应用于日盲紫外探测器的制备,但是制备工艺尚不成熟。虽然单晶β-Ga2O3具有优异的性能,但其制备难度大且对设备要求高。β-Ga2O3薄膜虽然容易制备,但由于内应力的存在,其内部结构具有缺陷较多和致密性较差的缺点,从而导致制备的器件漏电流较大。而且β-Ga2O3薄膜基探测器与入射光接触面积较小。因此,为改善β-Ga2O3日盲紫外探测器的光电探测性能,我们提出通过采用Au层作为催化剂来制备硅基β-Ga2O3纳米线,从而提升β-Ga2O3的结构致密性和光接触面积,并通过控制Au催化层厚度来调控纳米线的尺寸,通过前球化退火处理以及后退火处理等工艺改善纳米线质量,进而减少晶界和缺陷的影响。高质量的β-Ga2O3纳米线可用于制备响应度更高,响应速度更快的日盲紫外紫外探测器,可广泛应用于军事领域:导弹逼近预警系统、紫外通信、紫外成像辅助导航等,也可广泛应用于民用领域:汽车尾气的监测、火焰检测、DNA测试等。
发明内容
为了解决现有技术问题,本发明的目的在于克服已有技术存在的不足,提供一种硅基尺寸可控β-Ga2O3纳米线的制备方法,通过调控β-Ga2O3纳米线的尺寸可得到具有缺陷少、电阻率高、均匀致密等优点的β-Ga2O3纳米线。
为达到上述发明创造目的,本发明采用如下技术方案:
一种硅基尺寸可控β-Ga2O3纳米线的制备方法,包括如下步骤:
(1)Au催化层的制备:
采用电子束溅射沉积方法,在经清洗和表面态处理的单晶(100)Si衬底上生长一层厚度为10~40nm的Au催化层,通过控制催化层厚度来调控β-Ga2O3纳米线的尺寸;所用的Au为高纯Au,按照金属所含杂质浓度比例作为金属纯度的计算方法,金属纯度为99~99.99999%;
(2)β-Ga2O3纳米线的生长过程:
采用磁控溅射方法,在所述步骤(1)中所制备的带有Au催化层的衬底上生长β-Ga2O3纳米线;选取Ga2O3靶材的纯度不低于99.99%;在正式溅射前,先对Au催化层在不低于600℃预处理至少30mins,对Au催化层进行原位球化退火,使其变成Au纳米颗粒;然后进行正式溅射,将衬底温度继续升温至不低于700℃,通入Ar气产生辉光等离子体,从而制备出β-Ga2O3纳米线;
(3)β-Ga2O3纳米线的原位退火处理:
将所述步骤(2)中制备的β-Ga2O3纳米线进行原位后退火处理,退火温度不低于700℃,从而获得结构均匀致密的β-Ga2O3纳米线,退火结束后,待样品冷却至室温,取出硅基β-Ga2O3纳米线成品。
优选地,在所述步骤(1)中,采用电子束溅射沉积方法,在衬底上生长Au催化层。
优选地,在所述步骤(1)中,获得在衬底上制备的Au催化层厚度为10~30nm。
优选地,在所述步骤(1)中,对单晶(100)Si衬底酸洗后,再进行不低于300℃预处理至少30mins,得到洁净干燥的衬底表面态。
优选地,在所述步骤(1)中,对单晶(100)Si衬底酸洗时,按照体积比例计算,采用HF:H2O的比例为1:9的溶液进行酸洗,从而去除Si衬底表面的氧化物。
优选地,在所述步骤(2)中,采用射频磁控的制备方法,控制溅射腔体的本底真空不高于10-7Torr,溅射气压不高于10-3Torr,溅射功率不低于200W,溅射时间至少为300mins。
优选地,在所述步骤(2)中,控制各加热阶段升温速率不低于10℃/min。
优选地,在所述步骤(2)中,氩气为纯度不低于99.999%的高纯氩气,流量至少为32sccm。
优选地,在所述步骤(3)中,退火时间至少为1h。
优选地,在所述步骤(2)中,对Au催化层进行原位球化退火,球化退火后Au纳米颗粒宽度尺寸为100-200nm;则在所述步骤(3)中,硅基β-Ga2O3纳米线成品的β-Ga2O3纳米线结构直径为100-200nm。
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:
1.本发明在单晶(100)Si衬底上生长β-Ga2O3纳米线,相比其他取向Si衬底上生长的β-Ga2O3纳米线,相比其他取向Si衬底上生长的β-Ga2O3纳米线,具有较好的晶格匹配度,所制备的纳米结构较为致密且表面粗糙度较低;
2.本发明采用射频磁控的制备工艺,相比其他生长工艺操作简单、成本更低、可大面积制备、批量生长可行性高;
3.本发明通过设定不同的Au催化层厚度来调控β-Ga2O3纳米线的尺寸,减少晶界和缺陷的影响,实现制备的日盲紫外探测器时具有较快的载流子传输速度,实现较快的响应;
4.本发明方法简单易行,成本低,适合推广使用。
附图说明
图1为本发明的β-Ga2O3纳米线制备流程图。
图2为本发明实施例一制备的硅基β-Ga2O3纳米线的表面形貌图。
具体实施方式
以下结合具体的实施例子对上述方案做进一步说明,本发明的优选实施例详述如下:
实施例一:
在本实施例中,在单晶(100)Si衬底上制备10nm的Au催化层,按照金属所含杂质浓度比例作为金属纯度的计算方法,选取纯度为99.999%的高纯Au作为电子束蒸发的材料;溅射前对Au催化层进行600℃球化退火处理,然后升温至700℃正式溅射Ga2O3;Ga2O3靶材纯度为99.99%,最后进行700℃原位退火。
一种硅基β-Ga2O3纳米线尺寸可控制备方法,包括如下步骤:
(1)衬底清洗及预处理:
选取单晶(100)Si衬底,尺寸为20mm×20mm,厚度为0.5mm;该衬底依次在去离子水、丙酮、无水乙醇和去离子水中分别超声5min后,然后再在稀释过的HF溶液中进行酸洗2min,最后在去离子水中清洗5mins,用高纯氮气吹干,得到洁净干燥的衬底;为了弥补因为酸洗去除表面氧化物带来的衬底表面态的改变,将洗净的衬底迅速移入真空腔体内,在300℃的温度下处理30mins,改善衬底表面态;
(2)Au催化层的制备
采用电子束溅射沉积方法,在所述步骤(1)中进行表面态处理过的Si衬底上生长厚度为10nm的Au催化层;所用的金属为高纯Au,按照金属所含杂质浓度比例作为金属纯度的计算方法,金属纯度为99.999%;电子束电压为9.7keV,功率设定为39.6%,速率为0.6A/s生长温度为室温;
(3)β-Ga2O3纳米线的生长
将所述步骤(2)中制备所得的带有10nm厚的Au催化层衬底放进真空腔体内,打开旋转,旋转速率为5rpm,将衬底温度升至600℃,升温速率为10℃/min,保温30min;此目的是为了将Au催化层进行原位球化退火,使其变成Au纳米颗粒;然后将衬底温度升温至700℃,往腔体内充入高纯氩气进行正式沉积,流量控制为32sccm,溅射功率设为200W,控制溅射时间为300mins;
(4)β-Ga2O3纳米线的原位退火处理
样品生长结束后,在700℃原位退火1h;目的是让原子获取足够的时间和能量进行扩散融合,获得更为均匀致密的样品;退火结束后,以10℃/min的降温速率降至室温,关闭旋转,取出样品。
实验测试分析:
本实施例中球化退火后Au纳米颗粒尺寸为100nm,制备的β-Ga2O3纳米线结构直径为100nm。在该样品上生长Ti/Au复合电极后制备成日盲紫外探测器,测试暗电流为1.99E-10A,光电流为3.5E-6A,响应上升时间为0.34s,下降时间为0.57s。本发明为了适应日盲紫外探测器的应用,在单晶(100)Si衬底上制备高质量β-Ga2O3纳米线,能显著弥补薄膜的缺陷。这种β-Ga2O3纳米线与多晶β-Ga2O3薄膜相比,具有缺陷少、电阻率高、光接触面积大等优点,适合制作日盲紫外探测器。
实施例二:
本实施例与实施例一基本相同,特别之处在于:
在本实施例中,在单晶(100)Si衬底上制备20nm厚的Au催化层,按照金属所含杂质浓度比例作为金属纯度的计算方法,选取纯度为99.999%的高纯Au作为电子束蒸发的材料;溅射前对Au催化层进行600℃球化退火处理,然后升温至700℃正式溅射Ga2O3;Ga2O3靶材纯度为99.99%,最后进行700℃原位退火。
一种硅基β-Ga2O3纳米线尺寸可控制备方法,包括如下步骤:
(1)衬底清洗及预处理:
选取单晶(100)Si衬底,尺寸为20mm×20mm,厚度为0.5mm;该衬底依次在去离子水、丙酮、无水乙醇和去离子水中分别超声5min后,然后再在稀释过的HF溶液中进行酸洗2min,最后在去离子水中清洗5mins,用高纯氮气吹干,得到洁净干燥的衬底;为了弥补因为酸洗去除表面氧化物带来的衬底表面态的改变,将洗净的衬底迅速移入真空腔体内,在300℃的温度下处理30mins,改善衬底表面态;
(2)Au催化层的制备
采用电子束溅射沉积方法,在所述步骤(1)中进行表面态处理过的Si衬底上生长厚度为20nm的Au催化层;所用的金属为高纯Au,按照金属所含杂质浓度比例作为金属纯度的计算方法,金属纯度为99.999%;电子束电压为9.7keV,功率设定为39.6%,速率为0.6A/s生长温度为室温;
(3)β-Ga2O3纳米线的生长
将所述步骤(2)中制备所得的带有20nm厚的Au催化层衬底放进真空腔体内,打开旋转,旋转速率为5rpm,将衬底温度升至600℃,升温速率为10℃/min,保温30min;此目的是为了将Au催化层进行原位球化退火,使其变成Au纳米颗粒;然后将衬底温度升温至700℃,往腔体内充入高纯氩气进行正式沉积,流量控制为32sccm,溅射功率设为200W,控制溅射时间为300mins;
(4)β-Ga2O3纳米线的原位退火处理
样品生长结束后,在700℃原位退火1h;目的是让原子获取足够的时间和能量进行扩散融合,获得更为均为致密的样品;退火结束后,以10℃/min的降温速率降至室温,关闭旋转,取出样品。
实验测试分析:
本实施例中球化退火后Au纳米颗粒尺寸为150nm,制备的β-Ga2O3纳米线结构直径为150nm。在该样品上生长Ti/Au复合电极后制备成日盲紫外探测器,测试暗电流为8.7E-11A,光电流为9.6E-6A,响应上升时间为0.21s,下降时间为0.33s。与实施例一相比,纳米线尺寸较大幅度上升,制备的日盲紫外探测器性能更优,纳米结构更为致密,减少了晶界和缺陷的影响。本发明为了适应日盲紫外探测器的应用,在单晶(100)Si衬底上制备高质量β-Ga2O3纳米线,能显著弥补薄膜的缺陷。这种β-Ga2O3纳米线与多晶β-Ga2O3薄膜相比,具有缺陷少、电阻率高、光接触面积大等优点,适合制作日盲紫外探测器。
实施例三:
本实施例与实施例一基本相同,特别之处在于:
在本实施例中,在单晶(100)Si衬底上制备30nm的Au催化层,按照金属所含杂质浓度比例作为金属纯度的计算方法,选取纯度为99.999%的高纯Au作为电子束蒸发的材料。溅射前对Au催化层进行600℃球化退火处理,然后升温至700℃正式溅射Ga2O3。Ga2O3靶材纯度为99.99%,最后进行700℃原位退火。
一种硅基β-Ga2O3纳米线尺寸可控制备方法,包括如下步骤:
(1)衬底清洗及预处理:
选取单晶(100)Si衬底,尺寸为20mm×20mm,厚度为0.5mm;该衬底依次在去离子水、丙酮、无水乙醇和去离子水中分别超声5min后,然后再在稀释过的HF溶液中进行酸洗2min,最后在去离子水中清洗5mins,用高纯氮气吹干,得到洁净干燥的衬底;为了弥补因为酸洗去除表面氧化物带来的衬底表面态的改变,将洗净的衬底迅速移入真空腔体内,在300℃的温度下处理30mins,改善衬底表面态;
(2)Au催化层的制备
采用电子束溅射沉积方法,在所述步骤(1)中进行表面态处理过的Si衬底上生长厚度为30nm的Au催化层;所用的金属为高纯Au,按照金属所含杂质浓度比例作为金属纯度的计算方法,金属纯度为99.999%;电子束电压为9.7keV,功率设定为39.6%,速率为0.6A/s生长温度为室温;
(3)β-Ga2O3纳米线的生长
将所述步骤(2)中制备所得的带有30nm厚的Au催化层衬底放进真空腔体内,打开旋转,旋转速率为5rpm,将衬底温度升至600℃,升温速率为10℃/min,保温30min;此目的是为了将Au催化层进行原位球化退火,使其变成Au纳米颗粒;然后将衬底温度升温至700℃,往腔体内充入高纯氩气进行正式沉积,流量控制为32sccm,溅射功率设为200W,控制溅射时间为300mins;
(4)β-Ga2O3纳米线的原位退火处理
样品生长结束后,在700℃原位退火1h;目的是让原子获取足够的时间和能量进行扩散融合,获得更为均为致密的样品;退火结束后,以10℃/min的降温速率降至室温,关闭旋转,取出样品。
实验测试分析:
本实施例中球化退火后Au纳米颗粒尺寸为200nm,制备的β-Ga2O3纳米线结构直径为200nm。在该样品上生长Ti/Au复合电极后制备成日盲紫外探测器,测试暗电流为1.73E-11A,光电流为8.9E-5A,响应上升时间为0.16s,下降时间为0.27s。与实施例一相比,纳米线尺寸较大幅度上升,制备的日盲紫外探测器性能更优,纳米结构更为致密,减少了晶界和缺陷的影响。本发明为了适应日盲紫外探测器的应用,在单晶(100)Si衬底上制备高质量β-Ga2O3纳米线,能显著弥补薄膜的缺陷。这种β-Ga2O3纳米线与多晶β-Ga2O3薄膜相比,具有缺陷少、电阻率高、光接触面积大等优点,适合制作日盲紫外探测器。
实施例四:
本实施例与实施例一基本相同,特别之处在于:
在本实施例中,在单晶(100)Si衬底上制备40nm的Au催化层,按照金属所含杂质浓度比例作为金属纯度的计算方法,选取纯度为99.999%的高纯Au作为电子束蒸发的材料。溅射前对Au催化层进行600℃球化退火处理,然后升温至700℃正式溅射Ga2O3。Ga2O3靶材纯度为99.99%,最后进行700℃原位退火。
一种硅基β-Ga2O3纳米线尺寸可控制备方法,包括如下步骤:
(1)衬底清洗及预处理:
选取单晶(100)Si衬底,尺寸为20mm×20mm,厚度为0.5mm;该衬底依次在去离子水、丙酮、无水乙醇和去离子水中分别超声5min后,然后再在稀释过的HF溶液中进行酸洗2min,最后在去离子水中清洗5mins,用高纯氮气吹干,得到洁净干燥的衬底;为了弥补因为酸洗去除表面氧化物带来的衬底表面态的改变,将洗净的衬底迅速移入真空腔体内,在300℃的温度下处理30mins,改善衬底表面态;
(2)Au催化层的制备
采用电子束溅射沉积方法,在所述步骤(1)中进行表面态处理过的Si衬底上生长厚度为40nm的Au催化层;所用的金属为高纯Au,按照金属所含杂质浓度比例作为金属纯度的计算方法,金属纯度为99.999%;电子束电压为9.7keV,功率设定为39.6%,速率为0.6A/s生长温度为室温;
(3)β-Ga2O3纳米线的生长
将所述步骤(2)中制备所得的带有40nm厚的Au催化层衬底放进真空腔体内,打开旋转,旋转速率为5rpm,将衬底温度升至600℃,升温速率为10℃/min,保温30min;此目的是为了将Au催化层进行原位球化退火,使其变成Au纳米颗粒;然后将衬底温度升温至700℃,往腔体内充入高纯氩气进行正式沉积,流量控制为32sccm,溅射功率设为200W,控制溅射时间为300mins;
(4)β-Ga2O3纳米线的原位退火处理
样品生长结束后,在700℃原位退火1h;目的是让原子获取足够的时间和能量进行扩散融合,获得更为均为致密的样品;退火结束后,以10℃/min的降温速率降至室温,关闭旋转,取出样品。
实验测试分析:
本实施例中球化退火后Au纳米颗粒尺寸分布不均,大小不一,制备的纳米结构开始出现簇状堆积。出现此现象的原因是由于Au催化层过厚,影响了β-Ga2O3的立体结构生长。在该样品上生长Ti/Au复合电极后,测试暗电流为9.3E-6A,未能测出光电流。由于制备的样品内部缺陷太多,致密性较差,不适合制作日盲紫外探测器。
总而言之,Au催化层厚度从10nm~30nm时,纳米线直径尺寸出现增大趋势,所制备的日盲紫外探测器性能逐渐优化,Au催化层厚度为40nm时,由于催化层厚度较大,阻碍了β-Ga2O3的立体结构生长。故可在10nm~30nm内控制Au催化层厚度实现对β-Ga2O3纳米线直径尺寸的调控,进而制备出高性能的日盲紫外探测器。
综上所述,本发明上述实施例硅基尺寸可控β-Ga2O3纳米线的制备工艺,所述硅基尺寸可控β-Ga2O3纳米线的制备工艺是:首先在单晶Si(100)衬底上沉积不同厚度的金(Au)催化层,并对催化层进行原位球化退火,得到不同尺寸的Au纳米颗粒,然后进行磁控溅射生长β-Ga2O3纳米线并原位退火,得到不同尺寸的β-Ga2O3纳米线。本发明上述实施例通过调控β-Ga2O3纳米线的尺寸可得到具有缺陷少、电阻率高、均匀致密等优点的β-Ga2O3纳米线。本发明制备的不同的尺寸的β-Ga2O3纳米线在日盲紫外探测器应用中表现出优异的性能,在军事领域可应用于导弹逼近预警系统、紫外通信、紫外成像导航等,在民用领域的汽车尾气检测、火焰检测、指纹检测等方面有广阔的应用前景。
上面结合附图对本发明实施例进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合或简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明采用的制备方法技术原理和发明构思,都属于本发明的保护范围。

Claims (9)

1.一种硅基尺寸可控β-Ga2O3纳米线的制备方法,其特征在于,包括如下步骤:
(1)Au催化层的制备:
采用电子束溅射沉积方法,在经清洗和表面态处理的单晶(100)Si衬底上生长一层厚度为10~40nm的Au催化层,通过控制催化层厚度来调控β-Ga2O3纳米线的尺寸;所用的Au为高纯Au,按照金属所含杂质浓度比例作为金属纯度的计算方法,金属纯度为99~99.99999%;
(2)β-Ga2O3纳米线的生长过程:
采用磁控溅射方法,在所述步骤(1)中所制备的带有Au催化层的衬底上生长β-Ga2O3纳米线;选取Ga2O3靶材的纯度不低于99.99%;在正式溅射前,先对Au催化层在不低于600℃预处理至少30mins,对Au催化层进行原位球化退火,使其变成Au纳米颗粒;然后进行正式溅射,将衬底温度继续升温至不低于700℃,通入Ar气产生辉光等离子体,从而制备出β-Ga2O3纳米线;
(3)β-Ga2O3纳米线的原位退火处理:
将所述步骤(2)中制备的β-Ga2O3纳米线进行原位后退火处理,退火温度不低于700℃,从而获得结构均匀致密的β-Ga2O3纳米线,退火结束后,待样品冷却至室温,取出硅基β-Ga2O3纳米线成品。
2.根据权利要求1所述硅基尺寸可控β-Ga2O3纳米线的制备方法,其特征在于:在所述步骤(1)中,采用电子束溅射沉积方法,在衬底上生长Au催化层。
3.根据权利要求1所述硅基尺寸可控β-Ga2O3纳米线的制备方法,其特征在于:在所述步骤(1)中,获得在衬底上制备的Au催化层厚度为10~30nm。
4.根据权利要求1所述硅基尺寸可控β-Ga2O3纳米线的制备方法,其特征在于:在所述步骤(1)中,对单晶(100)Si衬底酸洗后,再进行不低于300℃预处理至少30mins,得到洁净干燥的衬底表面态。
5.根据权利要求1所述硅基尺寸可控β-Ga2O3纳米线的制备方法,其特征在于:在所述步骤(1)中,对单晶(100)Si衬底酸洗时,按照体积比例计算,采用HF:H2O的比例为1:9的溶液进行酸洗,从而去除Si衬底表面的氧化物。
6.根据权利要求1所述硅基尺寸可控β-Ga2O3纳米线的制备方法,其特征在于:在所述步骤(2)中,采用射频磁控的制备方法,控制溅射腔体的本底真空不高于10-7Torr,溅射气压不高于10-3Torr,溅射功率不低于200W,溅射时间至少为300mins。
7.根据权利要求1所述硅基尺寸可控β-Ga2O3纳米线的制备方法,其特征在于:在所述步骤(2)中,氩气为纯度不低于99.999%的高纯氩气,流量至少为32sccm。
8.根据权利要求1所述硅基尺寸可控β-Ga2O3纳米线的制备方法,其特征在于:在所述步骤(3)中,退火时间至少为1h。
9.根据权利要求1所述硅基尺寸可控β-Ga2O3纳米线的制备方法,其特征在于:在所述步骤(2)中,对Au催化层进行原位球化退火,球化退火后Au纳米颗粒宽度尺寸为100-200nm;则在所述步骤(3)中,硅基β-Ga2O3纳米线成品的β-Ga2O3纳米线结构直径为100-200nm。
CN202110853195.4A 2021-07-27 2021-07-27 硅基尺寸可控β-Ga2O3纳米线的制备方法 Pending CN113658852A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110853195.4A CN113658852A (zh) 2021-07-27 2021-07-27 硅基尺寸可控β-Ga2O3纳米线的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110853195.4A CN113658852A (zh) 2021-07-27 2021-07-27 硅基尺寸可控β-Ga2O3纳米线的制备方法

Publications (1)

Publication Number Publication Date
CN113658852A true CN113658852A (zh) 2021-11-16

Family

ID=78490715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110853195.4A Pending CN113658852A (zh) 2021-07-27 2021-07-27 硅基尺寸可控β-Ga2O3纳米线的制备方法

Country Status (1)

Country Link
CN (1) CN113658852A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172512A (zh) * 2022-07-22 2022-10-11 上海电机学院 一种β-Ga2O3基紫外探测器及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172512A (zh) * 2022-07-22 2022-10-11 上海电机学院 一种β-Ga2O3基紫外探测器及其制备方法
CN115172512B (zh) * 2022-07-22 2023-10-27 上海电机学院 一种β-Ga2O3基紫外探测器及其制备方法

Similar Documents

Publication Publication Date Title
CN110676339B (zh) 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法
CN105826362A (zh) 一种氧化镓纳米线阵列及其制备方法
CN109411328B (zh) 一种通过掺杂铁降低结晶温度的氧化镓薄膜制备方法
CN112126897B (zh) 一种alpha相氧化镓薄膜的制备方法
CN105239156A (zh) 一种外延定向生长、转移和集成平面半导体纳米线的方法
CN104962858A (zh) 基于GaAs衬底的氧化镓薄膜及其生长方法
CN112831768B (zh) 一种高结晶质量的氮化铪薄膜制备方法及应用
CN102623521A (zh) 一种氧化亚铜薄膜的制备方法
CN111188021A (zh) 一种石墨烯生长基底的预处理方法
CN101325227A (zh) ZnO/纳米金刚石共面栅紫外光探测器的制备方法
CN113658852A (zh) 硅基尺寸可控β-Ga2O3纳米线的制备方法
CN101671846A (zh) 降低立方氮化硼薄膜应力的方法
CN105118853A (zh) 基于MgO衬底的氧化镓薄膜及其生长方法
CN115101404A (zh) 一种二维碲烯的局部减薄方法
CN110993505B (zh) 基于碳化硅衬底的半导体结构制备方法及半导体结构
CN100459046C (zh) 一种在硅晶片上制备硅化镁薄膜的方法
RU2599769C2 (ru) Способ получения фотоактивной многослойной гетероструктуры на основе микрокристаллического кремния
CN112376113B (zh) 一种硒化锑晶体、其制备方法及应用
CN116219544B (zh) 一种基于激光干涉技术制备单晶硅薄膜的方法
WO2023163078A1 (ja) 単結晶半導体膜の製造方法、単結晶半導体膜の積層膜の製造方法及び半導体素子
CN114108087B (zh) 一种正交相五氧化二钽单晶薄膜的制备方法
Chu et al. Fabrication of large-grain thick polycrystalline silicon thin films via aluminum-induced crystallization for application in solar cells
CN106835041A (zh) 一种低温诱导制备硅纳米线的方法
JP4031021B2 (ja) 薄膜トランジスタの作製方法
Kong et al. Studies of RF magnetron sputtered amorphous HgCdTe films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination