WO2023163078A1 - 単結晶半導体膜の製造方法、単結晶半導体膜の積層膜の製造方法及び半導体素子 - Google Patents

単結晶半導体膜の製造方法、単結晶半導体膜の積層膜の製造方法及び半導体素子 Download PDF

Info

Publication number
WO2023163078A1
WO2023163078A1 PCT/JP2023/006605 JP2023006605W WO2023163078A1 WO 2023163078 A1 WO2023163078 A1 WO 2023163078A1 JP 2023006605 W JP2023006605 W JP 2023006605W WO 2023163078 A1 WO2023163078 A1 WO 2023163078A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
semiconductor film
crystal semiconductor
manufacturing
film
Prior art date
Application number
PCT/JP2023/006605
Other languages
English (en)
French (fr)
Inventor
剛文 赤塚
良幸 須田
信光 広瀬
啓 玉生
耀介 青柳
翔太 野崎
貴広 塚本
憲人 池野
大也 江▲崎▼
Original Assignee
マッハコーポレーション株式会社
国立大学法人東京農工大学
国立研究開発法人情報通信研究機構
国立大学法人電気通信大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マッハコーポレーション株式会社, 国立大学法人東京農工大学, 国立研究開発法人情報通信研究機構, 国立大学法人電気通信大学 filed Critical マッハコーポレーション株式会社
Publication of WO2023163078A1 publication Critical patent/WO2023163078A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/08Epitaxial-layer growth by condensing ionised vapours
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/08Germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy

Definitions

  • the present invention relates to a method for manufacturing a single crystal semiconductor film, a method for manufacturing a laminated film of single crystal semiconductor films, and a semiconductor element.
  • the impurity doping process is one of the most important. With the miniaturization of device dimensions, steep impurity profiles and lower process temperatures are required. Conventionally, techniques such as thermal diffusion, chemical vapor deposition (CVD), ion implantation and activation annealing have been used as impurity doping means.
  • CVD chemical vapor deposition
  • ion implantation and activation annealing have been used as impurity doping means.
  • the substrate is usually heated to 600° C. or higher, and the raw material gas is decomposed on the substrate to form a Si layer or the like. If the growth temperature is less than 600° C., the decomposition efficiency of the raw material gas is reduced, the film formation rate is significantly reduced, and hydrogen derived from the raw material gas remains in the film. On the other hand, if the growth temperature is raised, the impurities are likely to diffuse and the controllability of the impurity profile is low.
  • Non-Patent Document 1 silicon (Si) crystals doped with impurities by a CVD method using monosilane (SiH 4 ), disilane (Si 2 H 6 ), phosphine (PH 3 ), and diborane (B 2 H 6 ) as source gases.
  • monosilane SiH 4
  • disilane Si 2 H 6
  • phosphine PH 3
  • diborane B 2 H 6
  • Non-Patent Document 2 discloses techniques related to ion implantation and activation annealing. An example of an activation annealing temperature of 720°C to 950°C is shown, and the issue of impurity diffusion is pointed out in combination with the ion implantation method, which is essentially a stochastic process.
  • the thermal diffusion method is a thermal diffusion process, the controllability of the impurity profile is low, and the process temperature is generally as high as 800°C or higher.
  • Patent Document 1 discloses a sputtering epitaxy method for forming a SiGe semiconductor thin film using Si and Ge targets. In order to deposit a doped semiconductor thin film, it is stated that these targets should contain B, Al, Ga, In, N, P, Sb, etc. as semiconductor doping elements. , no specific growth conditions such as growth temperature and growth rate are disclosed.
  • Patent Document 2 when forming a SiGe semiconductor layer by a sputtering epitaxy method, a dopant may be included for imparting conductivity to the laminated semiconductor film. Although the growth temperature is described as 350° C. or higher, no data supporting this is disclosed.
  • Non-Patent Documents 1 to 4 With the methods described in Non-Patent Documents 1 to 4, conventional doping methods include high-temperature processes of 700°C or higher, and cannot cope with the low-temperature processes required for semiconductor manufacturing processes that are becoming increasingly miniaturized. In the method described in Non-Patent Document 4, diffusion of impurities is inevitable in a high-temperature process, and it is difficult to ensure steepness of the impurity profile. Furthermore, in the ion implantation process, which is essentially a stochastic process, there is a problem that the impurity distribution spreads before thermal diffusion.
  • the present inventors used a magnetron sputtering apparatus to discharge-sputter one or more targets obtained by doping a group 14 element such as silicon (Si) with boron (B) as an impurity in an inert gas atmosphere. Therefore, by using a target with a predetermined plane orientation, a boron-doped single crystal semiconductor film on a Si substrate can be obtained at a temperature lower than that of the conventional method with a sufficient impurity activation rate.
  • a group 14 element such as silicon (Si) with boron (B)
  • One of the objects according to some embodiments of the present invention is to have a sufficient activation rate at a much lower temperature than conventional methods in manufacturing a Group 14 single crystal semiconductor film containing impurities, and to have a steep impurity profile.
  • An object of the present invention is to provide a method for manufacturing a single crystal semiconductor film and a semiconductor device manufactured by the method.
  • the present invention relates to a method for manufacturing a single crystal semiconductor film by crystal growth using a magnetron sputtering apparatus equipped with a Group 14 semiconductor target doped with an impurity, wherein the film formation temperature is is 300°C or higher, and the growth rate is 10 nm or less per minute.
  • FIG. 4 is a diagram showing the relationship between the growth temperature and the activation rate of a semiconductor crystal film crystal-grown using boron-doped silicon targets with plane orientations (100) and (111).
  • FIG. 4 shows the impurity profile of a silicon crystal film crystal-grown using a boron-doped (100) silicon target;
  • FIG. 4 is a diagram showing the relationship between the growth rate of a semiconductor crystal film doped with phosphorus and the impurity activation rate;
  • FIG. 4 is a diagram showing the relationship between the growth rate of a semiconductor crystal film doped with phosphorus and the impurity activation rate;
  • FIG. 4 is a diagram showing the relationship between the growth rate of a phosphorus-doped SiGe semiconductor crystal film and the impurity activation rate;
  • FIG. 4 is a diagram showing the relationship between growth temperature, carrier density, and activation rate of a silicon crystal film crystal-grown using a silicon target doped with phosphorus.
  • FIG. 4 is a graph showing the relationship between growth temperature and carrier mobility of a silicon crystal film crystal-grown using a phosphorus-doped silicon target;
  • FIG. 1 shows the overall configuration of the growth apparatus.
  • the apparatus comprises a vacuum chamber 10, a target 20, a target 21, a Si substrate 30, a substrate mounting table 40 with a heater, a DC power supply 50, a high frequency power supply 51, a matching box 52, and a radiation thermometer 60.
  • the vacuum chamber 10 is equipped with an exhaust pump (not shown).
  • the exhaust pump is desirably a contamination-free pump such as a turbomolecular pump, a sputter ion pump, a cryopump, or a dry pump.
  • Targets 20 and 21 are either high-purity Group 14 element targets, or Group 14 element targets doped with Group 15 elements, or Group 14 element targets doped with boron, respectively.
  • a Si substrate 30 on which crystals are grown is placed at a position facing the targets 20 and 21 .
  • the targets 20 and 21 can be placed with their surfaces tilted with respect to the Si substrate 30 .
  • a mechanism for tilting and holding the surfaces of the targets 20 and 21 is realized, for example, by directing the target mounting flange of the vacuum chamber 10 in a desired direction or by an equivalent method.
  • a high-frequency power supply 51 for applying a high-frequency voltage (for example, a frequency of 13.56 MHz) is connected to the target 20 via a matching box 52, and a DC power supply 50 for applying a DC voltage is connected to the target 21, respectively.
  • the heater-equipped substrate mounting table 40 measures the substrate temperature by, for example, a radiation thermometer 60 provided outside the vacuum chamber, and is temperature-controlled by a controller (not shown) so that the Si substrate 30 reaches a predetermined temperature.
  • This apparatus is a magnetron sputtering apparatus in which magnets (not shown) are arranged behind targets 20 and 21 .
  • FIG. 1 shows an embodiment having two targets as an example, the number of targets may be three or more, or one.
  • the target may be single crystal.
  • the structure of this embodiment has three single crystal targets or four single crystal targets.
  • the high-frequency voltage and the DC voltage may be switched and applied to each target, or the two may be superimposed and applied.
  • the same targets When the same two or more targets are sputtered at the same time, the same targets may be placed symmetrically with respect to a straight line passing through the centers of the opposing substrates in order to improve the uniformity of the grown film.
  • the vacuum chamber 10 is first evacuated to an ultra-high vacuum (approximately 10 -10 Torr).
  • the Si substrate 30 is introduced onto the substrate mounting table 40 with heater.
  • the Si substrate 30 may be immersed in dilute hydrofluoric acid to remove the natural oxide film before introduction.
  • the Si substrate 30 is heated by the substrate mounting table 40 with heater. At this time, the substrate temperature may be once made higher than the growth temperature, heated and cleaned, and then lowered to the growth temperature.
  • an inert gas is introduced into the vacuum chamber 10 while adjusting the flow rate so as to reach the growth pressure.
  • the inert gas is argon (Ar), but any inert gas may be used.
  • the sputtering gas pressure in the vacuum chamber 10 is set to a value between 1.2 [mTorr] and 5 [mTorr]. In the following embodiment, it is set to 3 [mTorr] or 5 [mTorr].
  • high-frequency power or DC voltage is applied to the target 20 or the target 21, or simultaneously to the target 20 and the target 21, respectively.
  • the target 20 or the target 21 or simultaneously the target 20 and the target 21 are sputtered to grow a crystal on the Si substrate 30 .
  • the atoms contained in the target 20 and the target 21 are sputtered by ions of the inert gas which are converted into plasma by applying DC voltage and high frequency power in an inert gas atmosphere, and the opposing Si substrate is formed. Crystal growth on 30.
  • FIG. 3 is a cross-sectional view schematically showing the semiconductor crystal film 100 according to this embodiment.
  • the semiconductor crystal film 100 includes an N-type Si substrate 110, a Si crystal layer 120 containing no impurities, and a semiconductor crystal film 130 containing boron.
  • a single crystal Si substrate is used as the Si substrate 110 in this embodiment, it may be an SOI (Silicon on Insulator) substrate or an SOQ (Silicon on Quartz) substrate in which a single crystal Si thin film is formed on an insulator.
  • the N-type Si substrate 110 may be a (100) substrate, for example.
  • the Si crystal layer 120 containing no impurities is provided on the N-type Si substrate 110 by the sputter epitaxy method. good too.
  • a mixed crystal of Si and Ge may be provided by a sputter epitaxy method or another crystal growth method.
  • a mixed crystal of Si and C may be grown.
  • the target used has a plane orientation tolerance of ⁇ 1° (JEITA). In addition, within the range of about ⁇ 6° (tan 6° ⁇ 1/10), there is no significant difference in the lattice state of the crystals on the outermost surface of the target and it can be used.
  • FIG. 4 shows the difference in impurity activation rate with respect to the growth temperature due to the difference in plane orientation of the target. When a target with a plane orientation (100) was used, the impurity was activated by about 50% at a growth temperature of 580°C, and was activated by 100% at a growth temperature of 612°C. It can be seen that a growth temperature of 732°C is required to reach the impurity activation rate of 100%.
  • FIG. 5 shows the boron concentration in the depth direction when the target (100) containing boron as an impurity is used and the growth (substrate) temperature is 580°C.
  • the slope from the vicinity of the depth of 100 nm in the figure is 13 [nm/decade]. This indicates the depth at which the boron concentration is reduced by a factor of ten.
  • the gradient of the boron concentration in the depth direction is approximately one-third the value of Non-Patent Document 4, and it can be seen that a steep impurity profile can be formed.
  • FIG. 6 is a cross-sectional view schematically showing a semiconductor crystal film 200 according to this embodiment.
  • the semiconductor crystal laminated film includes a Si substrate 210, a Si crystal layer 220 containing no impurities, a semiconductor crystal film 230 containing a Group 15 element as an impurity, and a Si crystal layer 240 containing no impurities.
  • the Si substrate 210 may be a single crystal Si substrate.
  • the Si substrate 210 may be an SOI (Silicon on Insulator) substrate or an SOQ (Silicon on Quartz) substrate in which a single crystal Si thin film is formed on an insulator.
  • the Si substrate 210 may be, for example, a (100) Si substrate.
  • the Si crystal layer 220 containing no impurities is provided on the Si substrate 210 by the sputter epitaxy method, but a similar Si crystal layer or a mixed crystal of Si and Ge may be provided by another method such as the CVD method. may be
  • a Si crystal film 230 containing a Group 15 element is provided on the Si crystal layer 220 containing no impurities.
  • phosphorus (P) is used as the group 15 element in the present embodiment described below, any group 15 element may be used.
  • a Si crystal layer 240 containing no impurities is provided on the Si crystal film 230 containing a Group 15 element.
  • the Si crystal layer 240 containing no impurities is grown by the sputter epitaxy method, but a similar Si crystal layer may be provided by other methods such as the CVD method.
  • All the crystal layers of the Si crystal layer 220 containing no impurities, the semiconductor crystal film 230 containing Group 15 elements as impurities, and the Si crystal layer 240 containing no impurities are grown at the same temperature.
  • a phosphorus (P)-doped Si crystal film is grown by sputtering epitaxy using a target (face orientation: 100, phosphorus concentration: 6 ⁇ 10 19 /cm 3 ) containing phosphorus (P) as an impurity.
  • Ar was used as an inert gas, and its pressure was set to 5 [mTorr].
  • FIG. 7A shows the activation rate of the impurity in the crystal film when the growth rate of the semiconductor crystal film is changed at the growth temperature of 400.degree. It can be seen that the impurity activation rate tends to decrease linearly as the growth rate increases. As specific values, the growth rate is 2.7 nm per minute (20 atomic layers per minute), the activation rate is 72%, and the growth rate is 0.66 nm per minute (5 atomic layers per minute), and the activation rate is 81% have been obtained. From this, it can be seen that slowing down the growth rate increases the impurity activation rate.
  • the impurity activation rate is 72%, and if the growth rate is 7 nm/min or less, the impurity activation rate is 50%. % of the semiconductor crystal film can be formed.
  • FIG. 7B shows the activation rate of impurities in the crystal film when the growth rate of phosphorus-doped SiGe is varied. At a growth rate of 3.5 nm/min, the activation rate was 94%, and at a growth rate of 0.9 nm/min, the activation rate was 100%, showing the same tendency as the phosphorus-doped Si crystal film.
  • FIG. 8A(a) shows the relationship between growth temperature and carrier density
  • FIG. 8A(b) shows the relationship between growth temperature and impurity activation rate.
  • the growth rate was 2.7 nm/min. Even if the growth temperature is raised, the impurity concentration in the semiconductor crystal film 230 only slightly decreases, so the carrier density and the impurity activation rate show roughly the same changes. activation rate is low.
  • the carrier density and the impurity activation rate gradually increase at growth temperatures between 300°C and 450°C, and become almost constant at 450°C and above.
  • the carrier density was 3 ⁇ 10 19 /cm 3 and the activation rate was 59%, indicating that a crystal film of sufficiently high quality was obtained.
  • the carrier density and the activation rate increased further, and at the growth temperature of 448°C, a carrier density of 3.6 x 1019 / cm3 and an activation rate of 75% were obtained.
  • FIG. 8B shows the relationship between growth temperature and carrier mobility.
  • the growth rate was also 2.7 nm/min.
  • Carrier mobility is low below 250°C.
  • the rate of increase in carrier mobility decreases, and when the growth temperature is 400° C. or higher, the mobility becomes substantially constant.
  • This electron mobility approximately agrees with the universal mobility, and it can be seen that a high-quality semiconductor crystal film is obtained at a temperature higher than this.
  • This tendency shows the same tendency as the aforementioned impurity activation rate.
  • 8A(a), (b), and FIG. 8B(c) when the growth temperature is at least 300° C. or higher, preferably 400° C. or higher, Si containing impurities having a mobility capable of operating as a semiconductor device It can be seen that the semiconductor crystal film can be grown by the sputter epitaxy method.
  • FIG. 9 shows the phosphorus concentration in the depth direction when using a target containing phosphorus as an impurity and growing at temperatures of 320° C., 400° C., 450° C., 500° C., 550° C. and 600° C.
  • the growth rate was also 2.7 nm/min. For samples grown at 320° C. and 400° C., the slope near a depth of 175 [nm] in the figure is 10 [nm/decade].
  • the backward diffusion means that the concentration of impurities diffused exponentially decreasing in the depth direction from the semiconductor crystal film 230 containing group 15 in the semiconductor layer 220 grown using a target containing no impurities.
  • Forward diffusion refers to the depth of impurity diffused from the semiconductor crystal film 230 containing group 15 into the semiconductor layer 240 grown using a target that does not contain impurities from a depth of about 15 nm.
  • the impurity concentration at 35 nm represents the average value of the impurity concentration in a substantially constant portion.
  • the non-doped semiconductor crystal film underlying the impurity-doped semiconductor crystal film does not diffuse into the underlying film at a growth temperature of less than 600° C., more preferably 500° C. or less.
  • a non-doped Si semiconductor crystal film is grown on an impurity-doped semiconductor crystal film at a growth temperature range of 320° C. to 600° C., the lower the temperature, the more forward the non-doped Si semiconductor crystal film. It can be seen that there is little diffusion. From the above experimental results, it is found that the growth temperature should be in the range of 320.degree. C. to 500.degree.
  • FIG. 10 is an example of a cross-sectional TEM (transmission electron microscope) photograph of the grown film.
  • the Si substrate and the Si growth layer shown in the figure although there are usually particles that interfere with crystal growth, when the Si crystal layer is grown to 30 nm, the upper surface is at the atomic layer level. becomes flat at
  • the subsequent processes such as the formation of a SiO2 film by oxidation and the titanium , nickel, tungsten or the like, or a laminated film thereof, is convenient for forming an ohmic electrode.
  • an intrinsic semiconductor crystal film of Si or SiGe can be similarly grown. Then, using this crystal growth method capable of laterally forming the steep impurity profile, a P-type semiconductor film, an N-type semiconductor film, and an I-type semiconductor film are formed, and various semiconductor junctions such as PN junctions and PIN junctions are formed. can be formed. If the I layer of the PIN junction is made of SiGe, the bandgap becomes narrower than the bandgap of Si depending on the composition ratio, so that a photodiode capable of responding to longer wavelengths can be manufactured.
  • a target doped to a concentration D1 and a target containing no dopant may be sputtered simultaneously.
  • the impurity concentration (however, D1 or less ) of the grown crystal film can be controlled.
  • a target doped to a concentration D1 , a target doped to a concentration D2 , and a target containing no dopant may be sputtered simultaneously.
  • the impurity concentration (however, D 1 and D 2 or less) of the grown crystal film can be controlled.
  • the impurity elements contained in the target doped to the concentration D1 and the target doped to the concentration D2 may be the same or different.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

【課題】半導体結晶膜中に不純物をイオン注入する場合や、熱拡散による場合には、高温工程を必要とするため急峻な不純物プロファイルを形成することが困難であった。 【解決手段】1もしくは複数の14族半導体ターゲットを装着したマグネトロンスパッタ装置を用いた結晶成長による単結晶半導体膜の製造方法であって、少なくともターゲットの1つは不純物がドープされ、成膜温度は300℃以上であり、成長速度は毎分10 nm以下であり、スパッタガスは不活性ガスであり、1もしくは複数のターゲットを同時にスパッタすることを特徴とする。

Description

単結晶半導体膜の製造方法、単結晶半導体膜の積層膜の製造方法及び半導体素子
 本発明は、単結晶半導体膜の製造方法、単結晶半導体膜の積層膜の製造方法及び半導体素子に関する。
 半導体製造工程において,不純物ドーピング工程は最も重要なものの1つである。素子寸法の微細化に伴い,急峻な不純物プロファイルと工程の低温化が求められている。不純物ドープの手段として,従来は熱拡散法,化学的気相成長法(CVD法),イオン打込と活性化アニール等の技術が用いられてきた。
 CVD方法は、基板を通常600℃以上に加熱し、原料ガスを基板上で分解してSi層等を成膜するものである。成長温度を600℃未満にすると原料ガスの分解効率が減少し、成膜速度が著しく低下し、原料ガスに由来する水素が膜中に残留する。一方、成長温度を高くすると、不純物が拡散しやすくなり、不純物プロファイルの制御性が低い。
 例えば非特許文献1にはモノシラン(SiH),ジシラン(Si),ホスフィン(PH),ジボラン(B)を原料ガスとしてCVD法により不純物ドープされたシリコン(Si)結晶膜を成長する技術が開示されている。そして、成長温度として800~900℃以上とすることも記載されている。
 イオン打込法は、打込み前に基板上に適切なマスクを設けることにより、不純物が打ち込まれる領域を制限できるが、その飛程は結晶格子への確率的衝突過程であるため、不純物プロファイルは原理的にガウス分布となる。また、結晶格子への衝突により結晶が破壊されるため、一般に1000℃程度の結晶回復アニール(活性化アニール)が不可欠で、これが不純物を拡散する原因となっている。
 非特許文献2,非特許文献3及び非特許文献4にはイオン打込と活性化アニールに関する技術が開示されている。活性化アニールの温度は720℃~950℃の例が示され、本質的に確率過程であるイオン打込法と相まって不純物の拡散という課題が指摘されている。
 熱拡散法は、熱拡散過程であるため、不純物プロファイルの制御性が低く、プロセス温度も一般的に800℃以上と高温である。
 別の半導体結晶の成膜方法として、スパッタッリングによる成膜(スパッタエピタキシ)法がある。
 特許文献1(本発明者等による)にはSi,Geのターゲットを用いてSiGeの半導体薄膜を成膜するスパッタエピタキシ法について開示されている。ドーピングされた半導体薄膜を成膜するためには、半導体のドーピング元素として、B、Al、Ga、In、N、P、Sbなどがこれらのターゲットに含有していればよいと記されているが,成長温度や成長速度といった具体的な成長条件についてはなんら開示されていない。
 特許文献2(本発明者等による)には,SiGeの半導体層をスパッタエピタキシ法により成膜するにあたり、積層した半導体膜に導電性を付与するためのドーパントを含んでいてもよく,その際の成長温度は350℃以上と記されているが,それを裏付ける何らのデータも開示されていない。
特開2006―100834号公報 国際公開2018/012546
VLSIとCVD,1997年,槇書店 応用物理69巻4号427-434頁 信学技報 SDM2015-71 Journal of Applied Physics,82巻,2228頁(1997年)
 非特許文献1~4に記載されている方法では、従来のドーピング手法は700℃以上の高温工程を含み、ますます微細化が進む半導体製造工程に求められる工程の低温化に対応できない。非特許文献4に記載の方法では、高温工程では不純物の拡散が不可避であり不純物プロファイルの急峻性の確保が困難である。さらに本質的に確率過程であるイオン打込工程では,熱拡散以前に不純物分布に広がりを生じるという課題があった。
 本発明者らはマグネトロンスパッタリング装置を用いて、シリコン(Si)等の14族元素に不純物としてホウ素(B)をドープした1つもしくは2つ以上のターゲットを不活性ガス雰囲気中で放電スパッタリングすることにより,所定の面方位のターゲットを用いることにより、Si基板上にホウ素ドーピングされた単結晶半導体膜を従来法よりも低い温度で十分な不純物活性化率が得られるという知見を得た。
 本発明のいくつかの態様にかかる目的の1つは,不純物を含む14族単結晶半導体膜の製造において従来法よりもはるかに低温で十分な活性化率を有し、急峻な不純物プロファイルを有する単結晶半導体膜の製造方法、及びその方法により製造される半導体装置を提供することにある。
 本発明は、単結晶半導体膜の製造方法であって、不純物がドープされた14族半導体ターゲットを装着したマグネトロンスパッタ装置を用いた結晶成長による単結晶半導体膜の製造方法であって、成膜温度は300℃以上、成長速度は毎分10 nm以下であることを特徴とする。
 本発明の製造方法によれば、低温で十分な活性化率を有する不純物を含む14族半導体単結晶膜を提供することができる。
半導体結晶成長装置の全体構成 半導体結晶膜の成膜手順 ホウ素をドープした半導体結晶膜の模式的断面構造図 ホウ素がドープされた面方位(100)及び(111)のシリコンターゲットを用いて結晶成長した半導体結晶膜の成長温度と活性化率の関係を示す図 ホウ素ドープされた面方位(100)シリコンターゲットを用いて結晶成長したシリコン結晶膜の不純物プロファイルを示す図 15族元素(リン)をドープした半導体結晶膜の模式的断面構造図 リンをドープした半導体結晶膜の成長速度と不純物活性化率の関係を示す図 リンをドープしたSiGe半導体結晶膜の成長速度と不純物活性化率の関係を示す図 リンがドープされたシリコンターゲットを用いて結晶成長したシリコン結晶膜の成長温度とキャリア密度、活性化率の関係を示す図 リンがドープされたシリコンターゲットを用いて結晶成長したシリコン結晶膜の成長温度とキャリア移動度の関係を示す図 シリコン結晶膜の不純物(P)プロファイルを示す図(成長温度320℃,400℃,450℃,500℃,550℃,600℃) 成長膜のTEM写真
 以下、本発明を実施するための形態について図面を用いて例示的に詳しく説明する。ただし、この実施の形態に記載されている構成要素はあくまで例示であり、この発明の範囲をそれらのみに限定する趣旨のものではない。また、実施の形態で説明されている特徴の組み合わせの全てが発明の解決手段に必須のものとは限らない。
1.半導体結晶膜成長装置の構成
(実施形態)
 まず,本実施形態にかかる半導体結晶膜成長装置の構成について、図面を参照しながら説明する。図1は成長装置の全体構成を示したものである。装置は真空槽10,ターゲット20,ターゲット21,Si基板30,ヒータ付基板載置台40,直流電源50,高周波電源51,整合器52,放射温度計60からなる。
 真空槽10は不図示の排気ポンプを備える。排気ポンプは例えばターボ分子ポンプ、スパッタイオンポンプ、クライオポンプ、ドライポンプなどのコンタミネーションフリーのポンプが望ましい。ターゲット20とターゲット21は,それぞれ高純度14族元素のターゲットもしくは15族元素がドープされた14族元素のターゲットもしくはホウ素がドープされた14族元素のターゲットのいずれかである。結晶を成長させるSi基板30は、ターゲット20,ターゲット21に対向する位置に載置される。ターゲット20,ターゲット21は表面の方位をSi基板30に対して傾けて載置可能としている。ターゲット20,ターゲット21の表面を傾けて保持する機構は、例えば、真空槽10のターゲット取付フランジを所望の方向に向ける又は等価の方法により実現される。
 ターゲット20には高周波電圧(例えば周波数13.56MHz)を印可するための高周波電源51が整合器52を介して、ターゲット21には、直流電圧を印加するための直流電源50がそれぞれ接続される。
 また、ヒータ付基板載置台40は、例えば真空槽外に設けられた放射温度計60により基板温度を計測し,制御装置(不図示)により、Si基板30が所定の温度になるよう温度制御される。
 本装置には、ターゲット20,ターゲット21の背後に磁石(不図示)を配置したマグネトロンスパッタ装置としている。
 なお,図1には例として2つのターゲットを有する実施形態を示したが,ターゲットの個数は3以上でもよいし,1つでもよい。ターゲットは単結晶であってもよい。本実施形態のものでは、3個の単結晶ターゲットもしくは4個の単結晶ターゲットを有する構成になっている。また、それぞれのターゲットに対して、高周波電圧と直流電圧を切り替えて印加できるようにしてもよいし、両者を重畳して印加してもよい。
 同一の2つ以上のターゲットを同時にスパッタする場合には、成長膜の均一性を向上せしめるため、対向する基板の中心を通る直線に対し同一のターゲットを対称に載置してもよい。
2.単結晶半導体膜の成長手順
 次に、本発明の実施形態にかかる半導体結晶膜成長の手順について図2を参照して説明する。なお、以下手順の各ステップを“S”で表記する。
 まず、S21にて、最初に真空槽10を一旦超高真空(およそ10-10Torrくらい)にまで排気する。
 次のS22で、Si基板30をヒータ付基板載置台40上に導入する。なお、Si基板30は導入前に希フッ酸に浸滲し,自然酸化膜を除去しておいてもよい。
 次にS23にて、ヒータ付基板載置台40によりSi基板30を加熱する。この時、基板温度を一旦成長温度より高くし,加熱清浄したのちに成長温度まで下げるようにしてもよい。
 次にS24で、真空槽10に不活性ガスを成長圧力になるよう流量を調整しながら導入する。なお、本実施形態では、不活性ガスはアルゴン(Ar)とするが、不活性ガスであれば何でもよい。不活性ガスの流量を調整して、真空槽10のスパッタガス圧を1.2 [mTorr]~5 [mTorr]の間の値に設定する。以下の本実施形態では、3 [mTorr]もしくは5 [mTorr]に設定している。
 続くS25にてターゲット20もしくはターゲット21あるいは同時にターゲット20とターゲット21にそれぞれ高周波電力もしくは直流電圧を印加する。これにより不活性ガスをプラズマ化することにより,ターゲット20もしくはターゲット21あるいは同時にターゲット20とターゲット21をスパッタし、Si基板30上に結晶成長する。
 以上の手順によりターゲット20やターゲット21に含まれる原子が不活性ガス雰囲気中で、直流電圧や高周波電力を印可されることにより、プラズマ化された不活性ガスのイオンによりスパッタされ、対向するSi基板30上に結晶成長する。
3.単結晶半導体膜成長の例
 まず、本実施形態にかかる半導体積層膜について図面を参照しながら説明する。図3は本実施形態にかかる半導体結晶膜100を模式的に示す断面図である。半導体結晶膜100はN型Si基板110、不純物を含まないSi結晶層120,ホウ素を含む半導体結晶膜130を含んでいる。 
 本実施形態ではSi基板110に単結晶Si基板を用いているが、絶縁体上に単結晶Si薄膜が形成されたSOI(Silicon on Insulator)基板やSOQ(Silicon on Quartz)基板であってもよい。N型Si基板110は,例えば,面方位が(100)基板であってもよい。本実施形態では,N型Si基板110上にスパッタエピタキシ法により不純物を含まないSi結晶層120を設けているが,CVD法等の他の結晶成長法によってこの不純物を含まないSi層を設けてもよい。あるいはスパッタエピタシ法や他の結晶成長法によりSiとGeの混合結晶が設けられているものでもよい。また、SiとCの混合結晶を成長してもよい。
・ターゲットの面方位依存性
 ホウ素を不純物として含む面方位(100)のターゲット(ホウ素濃度2.0×1019/cm3)を用いた場合と,面方位(111)のターゲット(ホウ素濃度2.1×1019/cm3)を用いて、ホウ素を不純物として含む半導体層130の成長を行った。不活性ガスにはArを用い、その圧力は3 [mTorr]とし、不純物を含まないSi結晶層120とホウ素を含む半導体結晶膜130の成長速度はいずれも毎分5nmとした。成長速度をより低速にすれば、後掲図7に示すように活性化率はより向上する。なお、使用されるターゲットの面方位公差は±1°(JEITA)のものが使用されている。また、±6°(tan 6°≒1/10)程度の範囲であれば,ターゲット最表面の結晶の格子状態に大きな差はなく利用可能である。
 図4にターゲットの面方位の違いによる成長温度に対する不純物活性化率の違いを示す。面方位(100)のターゲットを用いた場合は,成長温度580℃で不純物が約50%活性化し、成長温度612℃で不純物が100%活性化したのに対し,面方位(111)のターゲットを用いた場合は,不純物活性化率100%に達せしめるには成長温度732℃を要していることが分かる。
 図5にホウ素を不純物として含むターゲット(100)を用い成長(基板)温度を580℃とした場合の深さ方向のホウ素濃度を示す。図中の深さ100 nm付近からの傾きは、13[nm/decade]である。これは、ホウ素濃度が10分の1に減ずる深さを示したものである。このホウ素濃度の深さ方向への傾きは、非特許文献4のおよそ3分の1の値となっており、急峻な不純物プロファイルが形成できていることが分かる。
 本実施形態にかかる15族元素ドープ半導体結晶積層膜について図面を参照しながら説明する。
 図6は本実施形態にかかる半導体結晶膜200を模式的に示す断面図である。半導体結晶積層膜はSi基板210、不純物を含まないSi結晶層220,不純物として15族元素を含む半導体結晶膜230,不純物を含まないSi結晶層240を含んでいる。
 Si基板210は単結晶Si基板であってもよい。Si基板210は絶縁体上に単結晶Si薄膜が形成されたSOI(Silicon on Insulator)基板やSOQ(Silicon on Quartz)基板であってもよい。Si基板210は,例えば,面方位(100)Si基板であってもよい。
 本実施例では,Si基板210上にスパッタエピタキシ法により不純物を含まないSi結晶層220を設けたが,CVD法等の他の方法によって同様のSi結晶層あるいはSiとGeの混合結晶が設けられていてもよい。
 15族元素を含むSi結晶膜230は不純物を含まないSi結晶層220の上に設けられる。なお、以下の本実施形態では15族元素としてリン(P)を用いたが,15族元素であれば何でも構わない。
 不純物を含まないSi結晶層240は15族元素を含むSi結晶膜230の上に設けられる。本実形態例では,スパッタエピタキシ法により不純物を含まないSi結晶層240を成長したが,CVD法等の他の方法によって同様のSi結晶層を設けてもよいが,半導体結晶積層膜はSi基板210, 不純物を含まないSi結晶層220,不純物として15族元素を含む半導体結晶膜230,不純物を含まないSi結晶層240の全ての結晶層を同一の温度で成長する。
 本実施形態ではある不純物としてリン(P)を含むターゲット(面方位:100,リン濃度6×1019/cm3)を用いてスパッタエピタキシ法によりリン(P)ドープSi結晶膜成長を行った。不活性ガスにはArを用い、その圧力は5 [mTorr]とした。
・不純物活性化率―成長速度
 次に結晶成長速度に対する不純物活性化率の変化について説明する。図7Aには、成長温度400℃において、半導体結晶膜の成長速度を変化させたときの結晶膜中の不純物の活性化率を表している。
 成長速度が速くなるにつれて不純物の活性化率が直線的に下がっていく傾向があることが読み取れる。具体的な値として、成長速度が毎分2.7 nm(毎分あたり20原子層の成長速度)で、活性化率72%、成長速度が毎分0.66nm(同5原子層)で、活性化率81%が得られている。これより、成長速度を遅くすると不純物の活性化率が上昇することが分る。成長温度400℃において半導体結晶膜の成長速度を毎分2.7 nm以下とすれば、不純物の活性化率が72%を、成長速度を毎分7 nm以下とすれば、不純物の活性化率が50%を超える半導体結晶膜が成膜できることが分った。
 図7BにリンドープされたSiGe成長速度を変化させたときの結晶膜中の不純物の活性化率を示す。成長速度毎分3.5 nmでは活性化率94%、成長速度毎分0.9 nmでは活性化率100%であり、リンドープされたSi結晶膜と同様の傾向であった。
・キャリア密度並びに不純物活性化率―成長温度
 図8A(a)は成長温度とキャリア密度の関係を、図8A(b)は成長温度と不純物活性化率の関係をそれぞれ示したものである。成長速度は毎分2.7 nmとした。成長温度を高くしても、半導体結晶膜230中の不純物濃度は、わずかに減少するだけなので、キャリア密度と不純物活性化率は概ね同様の変化を示し、成長温度250℃未満ではキャリア密度と不純物の活性化率は低くなる。成長温度が300℃から450℃では緩やかにキャリア密度と不純物活性化率は高くなり,450℃以上ではほぼ一定となる。
 具体的には、成長温度が300℃において、キャリア密度は3×1019/cm3、活性化率は59%であり、十分に高品質な結晶膜が得られていることが分る。また、更に成長温度を高くするとキャリア密度と活性化率が更に上昇し、成長温度448℃でキャリア密度3.6×1019/cm3、活性化率75%を得た。
・キャリア移動度―成長温度
 図8Bは成長温度とキャリア移動度の関係を示したものである。成長速度は、同じく毎分2.7 nmとした。250℃未満ではキャリア移動度は低い。また、成長温度が300℃以上でキャリア移動度の上昇率が減少し、400℃以上でほぼ一定の移動度となる。この電子移動度はユニバーサル移動度とおよそ一致しており、これ以上の温度で品質の高い半導体結晶膜が得られていることが分かる。この傾向は、前述の前記不純物活性化率と同様の傾向を示す。
 図8A(a),(b), 図8B(c)から成長温度が、少なくとも300℃以上で、望ましくは400℃以上において、半導体素子としての動作が可能な移動度を有する不純物を含んだSi半導体結晶膜がスパッタエピタキシ法により成長できることが分かる。
・不純物プロファイル-成長温度
 次に、リンドープSi結晶膜をノンドープのSi結晶膜上にスパッタエピタキシ法により成長させた場合にドープされた不純物の拡散の程度について測定を行った。図9は、リンを不純物として含むターゲットを用い成長温度を320℃、400℃、450℃、500℃、550℃、600℃とした場合の深さ方向のリン濃度を示す。成長速度は、同じく毎分2.7 nmとした。320℃、400℃で成長した試料については,図中の深さ175 [nm]付近の傾きは、10 [nm/decade]である。成長温度450℃、成長温度500℃の試料では12 [nm/decade]とやや拡散が増加するが、それでも図5に示したホウ素をドープした時以上に急峻な不純物プロファイルが形成できていることが分かる。不純物プロファイルの特徴を数値化したものを表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表において、後方拡散とは、不純物を含まないターゲットを用いて成長した半導体層220中に15族を含む半導体結晶膜230から、深さ方向に指数関数的に減少しつつ拡散した不純物濃度が1/10に減少する深さを表し、前方拡散とは,不純物を含まないターゲットを用いて成長した半導体層240中に15族を含む半導体結晶膜230から拡散した不純物の深さおよそ15 nmから35 nmの不純物濃度が概一定部の不純物濃度の平均値を表す。上記表1を参照すると、不純物ドープの半導体結晶膜の下地のノンドープの半導体結晶膜には、成長温度600℃未満、より望ましくは500℃以下において下地膜への拡散がないことが看取できる。
一方、不純物ドープの半導体結晶膜の上にノンドープのSi半導体結晶膜性を成長温度320℃~600℃の範囲で、成長させた場合には、温度が低いほどノンドープのSi半導体結晶膜への前方拡散が少ないことが分かる。
 以上の実験結果より、リン(P)ドープの半導体結晶膜をスパッタエピタキシ法にて成長させる場合には、成長温度が320℃~500℃の範囲で行うことが良いことが分る。
・成長膜の平坦性
 図10は成長膜の断面TEM(透過型電子顕微鏡)写真の例である。図中に示したSi基板とSi成長層の界面には、通常は結晶成長の妨げとなるパーティクルが存在しているにもかかわらず、Si結晶層を30 nm成長すると、その上面は原子層レベルで平坦となる。所望の半導体積層膜成長終了後も超高真空中にその半導体積層膜を保持することにより、その表面を極めて清浄な状態に維持でき、以降のプロセス、例えば酸化によるSiO膜の形成や、チタン、ニッケル、タングステン等の金属もしくはそれらの積層膜を成膜することによりオーミック電極の形成に好都合である。
(その他の実施例)
 SiターゲットあるいはGeターゲットとして不純物が含まれない真性半導体を用いることにより、SiやSiGeの真性半導体結晶膜が同様に成長できる。そして、上記急峻な不純物プロファイルをラテラルに形成することができる本結晶成長法を用い、P型半導体膜、N型半導体膜、I型半導体膜を形成し、PN接合、PIN接合等の各種半導体接合を形成することが出来る。PIN接合のI層をSiGeとすれば、その組成比に応じバンドギャップがSiのバンドギャップよりも狭くなるため、より長波長域まで応答可能なフォトダイオードを製造できる。
 本発明にかかる半導体結晶膜の製造方法において,濃度Dにドープされたターゲットとドーパントを含まないターゲットを同時にスパッタしてもよい。2つのターゲットに印加する電力を調整することにより,成長結晶膜の不純物濃度(ただしD以下)を制御できる。
 本発明にかかる半導体結晶膜の製造方法において,濃度Dにドープされたターゲットと濃度Dにドープされたターゲットとドーパントを含まないターゲットを同時にスパッタしてもよい。3つのターゲットに印加する電力を調整することにより,成長結晶膜の不純物濃度(ただしD,D以下)を制御できる。
 また、前記濃度Dにドープされたターゲットと濃度Dにドープされたターゲットにそれぞれ含まれる不純物元素は同一でもよいし,異なっていてもよい。
10   真空槽
20,21 ターゲット
30   Si基板

Claims (15)

  1.  1もしくは複数の14族半導体ターゲットを装着したマグネトロンスパッタ装置を用いた結晶成長による単結晶半導体膜の製造方法であって、
     少なくともターゲットの1つは不純物がドープされ、
     成膜温度は300℃以上であり、
     成長速度は毎分10 nm以下であり、
     スパッタガスは不活性ガスであり、
     1もしくは複数のターゲットを同時にスパッタする
    ことを特徴とする単結晶半導体膜の製造方法。
  2.  前記14族半導体はシリコン(Si)、ゲルマニウム(Ge)、シリコン(Si)とゲルマニウム(Ge)の混合単結晶又はシリコン(Si)と炭素(C)の混合単結晶のいずれかである
    ことを特徴とする請求項1に記載の単結晶半導体膜の製造方法。
  3.  前記不活性ガスはアルゴン(Ar)である
    ことを特徴とする請求項2に記載の単結晶半導体膜の製造方法。
  4.  少なくとも1つのターゲットは、不純物としてホウ素がドープされたSi半導体であり、
     ターゲット表面の面方位が(100)±6度以内である
    ことを特徴とする請求項2に記載の単結晶半導体膜の製造方法。
  5.  ターゲット表面の面方位が(100)±1度以内である
    ことを特徴とする請求項4に記載の単結晶半導体膜の製造方法。
  6.  成膜温度は560℃以上である
    ことを特徴とする請求項1~5のいずれか1項に記載の単結晶半導体膜の製造方法。
  7.  成長速度は、毎分5nm以下である
    ことを特徴とする請求項1~5のいずれか1項に記載の単結晶半導体膜の製造方法。
  8.  少なくとも1つのターゲットは、不純物として15族元素がドープされた14族半導体であり、
     成膜温度は300℃以上600℃未満であり、
     成長速度は毎分7nm以下である
    ことを特徴とする請求項1に記載の単結晶半導体膜の製造方法。
  9.  前記15族元素は、リン(P)であり、14族半導体は、Siである
    ことを特徴とする請求項8に記載の単結晶半導体膜の製造方法。
  10.  前記成膜温度は300℃以上500℃以下である
    ことを特徴とする請求項9に記載の単結晶半導体膜の製造方法。
  11.  前記成長速度は毎分2.7 nm以下である
    ことを特徴とする請求項8に記載の単結晶半導体膜の製造方法。
  12.  請求項1~11のいずれか1項に記載の製造方法により形成された単結晶半導体膜を真空槽から取り出さずに表面を酸化すること特徴とする半導体酸化物と単結晶半導体膜の積層膜の製造方法。
  13.  請求項1~11のいずれか1項に記載の製造方法により形成された単結晶半導体膜を真空槽から取り出さずに表面を窒化すること特徴とする半導体窒化物と単結晶半導体膜の積層膜の製造方法。
  14.  請求項1~11のいずれか1項に記載の製造方法により形成された半導体膜を真空槽から取り出さずに金属膜を成膜することを特徴とする金属と単結晶半導体膜の積層膜の製造方法。
  15.  請求項1~11のいずれか1項に記載の製造方法を用いて製造された半導体素子。
PCT/JP2023/006605 2022-02-24 2023-02-23 単結晶半導体膜の製造方法、単結晶半導体膜の積層膜の製造方法及び半導体素子 WO2023163078A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022027293 2022-02-24
JP2022-027293 2022-02-24

Publications (1)

Publication Number Publication Date
WO2023163078A1 true WO2023163078A1 (ja) 2023-08-31

Family

ID=87766011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006605 WO2023163078A1 (ja) 2022-02-24 2023-02-23 単結晶半導体膜の製造方法、単結晶半導体膜の積層膜の製造方法及び半導体素子

Country Status (2)

Country Link
TW (1) TW202344699A (ja)
WO (1) WO2023163078A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171200A (ja) * 1997-08-25 1999-03-16 Ulvac Japan Ltd SiCエピタキシャル成長装置およびSiCエピタキシャル薄膜作成方法
JP2000196101A (ja) * 1998-10-13 2000-07-14 Semiconductor Energy Lab Co Ltd 半導体素子からなる半導体回路を備えた半導体装置およびその作製方法
JP2006100834A (ja) * 2004-08-31 2006-04-13 Tokyo Univ Of Agriculture & Technology 半導体薄膜製造装置および方法
JP2014041987A (ja) * 2012-08-24 2014-03-06 Shimane Univ n+型Ge半導体層形成方法およびオーミック接触構造
JP2015153775A (ja) * 2014-02-10 2015-08-24 国立大学法人東京農工大学 高移動度トランジスタおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171200A (ja) * 1997-08-25 1999-03-16 Ulvac Japan Ltd SiCエピタキシャル成長装置およびSiCエピタキシャル薄膜作成方法
JP2000196101A (ja) * 1998-10-13 2000-07-14 Semiconductor Energy Lab Co Ltd 半導体素子からなる半導体回路を備えた半導体装置およびその作製方法
JP2006100834A (ja) * 2004-08-31 2006-04-13 Tokyo Univ Of Agriculture & Technology 半導体薄膜製造装置および方法
JP2014041987A (ja) * 2012-08-24 2014-03-06 Shimane Univ n+型Ge半導体層形成方法およびオーミック接触構造
JP2015153775A (ja) * 2014-02-10 2015-08-24 国立大学法人東京農工大学 高移動度トランジスタおよびその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HANAFUSA H, ET AL: "Strain-relaxed Si1-xGex and strained Si grown by sputter epitaxy", JAPANESE JOURNAL OF APPLIED PHYSICS, JAPAN SOCIETY OF APPLIED PHYSICS, JP, vol. 47, no. 4, 1 April 2008 (2008-04-01), JP , pages 3020 - 3023, XP001518639, ISSN: 0021-4922, DOI: 10.1143/JJAP.47.3020 *
OTSUKA S, MORI T, MORITA Y, UCHIDA N, LIU Y X, O'UCHI S, FUKETA H, MIGITA S, MASAHARA M, MATSUKAWA T: "Fabrication of Ge thin films on Si(001) by DC magnetron sputtering", PROCEEDINGS OF THE 63RD SPRING ACADEMIC CONFERENCE OF THE JAPAN SOCIETY OF APPLIED PHYSICS (2016 TOKYO INSTITUTE OF TECHNOLOGY, OOKAYAMA CAMPUS), 31 December 2016 (2016-12-31), pages 11 - 448, XP093087247 *
TSUKAMOTO TAKAHIRO, HIROSE NOBUMITSU, KASAMATSU AKIFUMI, MIMURA TAKASHI, MATSUI TOSHIAKI, SUDA YOSHIYUKI: "Effects of boron dopants of Si (001) substrates on formation of Ge layers by sputter epitaxy method", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 103, no. 17, 21 October 2013 (2013-10-21), 2 Huntington Quadrangle, Melville, NY 11747, XP093087245, ISSN: 0003-6951, DOI: 10.1063/1.4826501 *
森山 光,葉 文昌, スパッタエピタキシーによるp+エミッタ型Si太陽電池の開発, 第63回応用物理学会春季学術講演会予稿集(2016年 東京工業大学 大岡山キャンパス), 2016 *

Also Published As

Publication number Publication date
TW202344699A (zh) 2023-11-16

Similar Documents

Publication Publication Date Title
US4579609A (en) Growth of epitaxial films by chemical vapor deposition utilizing a surface cleaning step immediately before deposition
JP4417625B2 (ja) トリシランを用いる混合基板への成膜方法、および、ベース構造の製造方法
WO2005069356A1 (ja) 単結晶薄膜の製造方法及びその単結晶薄膜デバイス
CN112086344B (zh) 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用
Hong et al. Fully Bottom‐Up Waste‐Free Growth of Ultrathin Silicon Wafer via Self‐Releasing Seed Layer
CN110896024B (zh) 碳化硅外延氧化镓薄膜方法及碳化硅外延氧化镓薄膜结构
WO2023163078A1 (ja) 単結晶半導体膜の製造方法、単結晶半導体膜の積層膜の製造方法及び半導体素子
WO2022158148A1 (ja) エピタキシャルウェーハの製造方法
JP4782670B2 (ja) エピタキシャルGe含有膜の成長方法及びエピタキシャル半導体成膜システム
US5286334A (en) Nonselective germanium deposition by UHV/CVD
US20230028127A1 (en) Method for manufacturing epitaxial wafer and epitaxial wafer
JP2010205866A (ja) シリコンエピタキシャルウェーハの製造方法およびシリコンエピタキシャルウェーハ
CN110993505B (zh) 基于碳化硅衬底的半导体结构制备方法及半导体结构
JP2022146664A (ja) エピタキシャルウェーハの製造方法
JP2022125625A (ja) エピタキシャルウェーハの製造方法
CN111607775A (zh) 制备组分可调的二维h-BNC杂化薄膜的方法
CN114525582B (zh) 一种单晶金刚石及制备方法
JP5538104B2 (ja) 基板上に単結晶層を作製する方法
Hsieh et al. Boron‐enhanced low‐temperature Si epitaxy by rapid thermal processing chemical vapor deposition
CN117070917A (zh) 一种掺杂金刚石制备方法
TW202325921A (zh) 磊晶生長方法及磊晶矽片
JP2010262947A (ja) 選択的膜製造方法
JPS63196082A (ja) 太陽電池の製造方法
CN117568925A (zh) 一种金刚石-类金刚石结构晶圆的制备方法
CN116657114A (zh) 一种低电阻的碳化硅基板及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760077

Country of ref document: EP

Kind code of ref document: A1