CN117568925A - 一种金刚石-类金刚石结构晶圆的制备方法 - Google Patents

一种金刚石-类金刚石结构晶圆的制备方法 Download PDF

Info

Publication number
CN117568925A
CN117568925A CN202311604706.4A CN202311604706A CN117568925A CN 117568925 A CN117568925 A CN 117568925A CN 202311604706 A CN202311604706 A CN 202311604706A CN 117568925 A CN117568925 A CN 117568925A
Authority
CN
China
Prior art keywords
diamond
cavity
pressure
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311604706.4A
Other languages
English (en)
Inventor
赵立山
祁青
李汶泽
陈英豪
易弘毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202311604706.4A priority Critical patent/CN117568925A/zh
Publication of CN117568925A publication Critical patent/CN117568925A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02376Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种金刚石‑类金刚石结构晶圆的制备方法,涉及半导体晶圆设计制备技术领域,其技术方案要点是:包括:将金刚石衬底或晶种放到到衬底托上,并放置于微波等离子增强化学气相沉积系统腔体内。在本发明中,本发明采用具有优异导热性能的金刚石,同时还采用既具有优异导热性能而且与III‑IV族半导体具有相似晶体结构的类金刚石,采用MPCVD制备金刚石‑类金刚石晶圆,在金刚石衬底上外延生长一层sp3‑sp2杂化成键组成的类金刚石层,既可以解决器III‑IV族半导体的外延质量,从而实现III‑IV族半导体器件整体性能的提升。

Description

一种金刚石-类金刚石结构晶圆的制备方法
技术领域
本发明涉及半导体晶圆设计制备技术领域,更具体地说,它涉及一种金刚石-类金刚石结构晶圆的制备方法。
背景技术
单晶金刚石具有很多优异的性能,金刚石的热导率高约20W·cm-1·K-1、比热高约515Jkg-1·K-1、热膨胀系数约1.0×10-5K-1、熔点高达4000K、硬度约为100GPa、杨氏模量大于1000GPa,但金刚石价格昂贵的缺点限制了金刚石的应用领域。近几年随着人造大面积单晶金刚石的诞生,金刚石的生产成本降低,金刚石的应用范围也愈加广阔。在半导体应用领域,金刚石的禁带宽度达到5.47eV,与Si(1.1eV)、4H-SiC(3.2eV)和GaN(3.44eV)相比具有更大的优势,可应用于高温、高功率和高频率等极端环境。因此,金刚石既可以作为高热导率衬底也可以作为高击穿场强的半导体已成为众多学者的研究热点,因此金刚石为基础的半导体器件将在电子器件领域拥有广阔的应用前景。
类金刚石膜(Diamond-like Carbon),是一种非晶态的碳材料。由于具有许多同金刚石相近的性质,类金刚石膜技术已经在很多领域得到应用。掺杂的DLC膜作为一种半导体材料,其禁带宽度在1-4e V内可调,可以在太阳能电池、光电探测器等光电器件领域得到应用。类金刚石的高热导率和电绝缘性能使其成为半导体器件中的散热材料和绝缘层。它可以用作高功率电子器件中的散热基板,提供良好的热管理,并降低器件温度。同时类金刚石的制备过程的结构调控可以拓宽其在机械切割、光学应用、电子器件和电极材料领域的应用。
在电子器件领域,因为类金刚石中sp3和sp2键的含量是可以通过工艺条件进行调控,其中所述混合成键杂化碳原子层既有sp3结构又有sp2结构为混合成键碳结构,其中在类金刚石中sp2结构中,碳原子以类似于六角形的花环形式连接在一起,形成平面的连续网络。这种结构也被称为芳香性结构与III-V族化合物半导体材料的六方最密堆积结构(每个原子由六个最近邻原子包围,形成一个六边形的平面)相似。
因此类金刚石中sp2结构,对III-IV半导体外延生长有利于解决金刚石与III-V族半导体存在晶格失配的问题。
发明内容
本发明的目的是提供一种金刚石-类金刚石结构晶圆的制备方法,以解决上述提到的金刚石与III-V族半导体存在晶格失配的问题。
本发明的上述技术目的是通过以下技术方案得以实现的:一种金刚石-类金刚石结构晶圆的制备方法,所述制备方法包括以下步骤:
S1:将金刚石籽晶或金刚石衬底焊接到钼衬底托上,并放置于微波等离子增强化学气相沉积系统腔体内;
S2:在金刚石衬底上长金刚石层过程中,需要对表面进行刻蚀,将腔体内的真空度抽至第一真空度,然后向腔内通入H2,待压强升至第一压强值后,启动微波源,进行起辉,功率为第一功率值;保持H2流量不变,将压强升高至第二压强值,同时控制微波功率升高至第二功率值;向腔体中通入流量为2-10sccm的氧气,对金刚石衬底刻蚀5-15分钟,然后降低腔体内压强和微波源功率,然后关闭微波源;
S3:在金刚石籽晶或者刻蚀过的金刚石层上长金刚石层过程中,对腔体抽真空至第一真空值和第一功率值,起辉操作,再将压强和功率升高至生长纯金刚石和所需的条件(第三压强值,第三功率值);
S4:向腔体中通入2~8%的甲烷,开始单晶金刚石的外延生长,得到单晶金刚石层;
S5:降低腔内压强降至第四压强值并降低温度(600-1000℃),不改变甲烷气体通入量的情况下同时向腔内通入H2,开始沉积并控制沉积条件,最终生长得到类金刚石层;
S6:得到类金刚石层后,停止生长,关闭微波源,对设备抽真空,再充入空气,待腔体内压强达到大气压后打开腔体,即获得金刚石-类金刚石结构晶圆。
本发明设置为:所述第一压强值范围为5×10-5mbar以下、所述第二真空值范围为1×10-5以下;所述第一压强值范围为20mbar、第二压强值范围为200mbar、第三压强值为5-15Pa、第四压强范围为5-12kPa;以及第一功率值范围为1.5-2.5kW,第二功率值为2.5-4.0kW,第三功率值为3.0-5.0kW,第四功率值为2.5-4.0kW。
本发明设置为:在步骤S5中所述沉积条件为氢气通量保持在160mL/min,沉积时间为1-3h,生长温度控制在600-800℃。
本发明进一步设置为:在步骤S5生长类金刚石层过程中,可同时引入NH3和N2等,从而得到掺杂氮的类金刚石层。
本发明进一步设置为:所述金刚石层厚度为100-400μm,所述类金刚石单晶层厚度10-500μm。
本发明进一步设置为:在步骤S1中将金刚石衬底或者金刚石籽晶焊接到到钼衬底托上,并放置于微波等离子增强化学气相沉积系统腔体内。
本发明还提供一种金刚石-类金刚石结构晶圆。
本发明还提供一种金刚石-类金刚石结构晶圆的应用,其能够用于III-V族半导体器件产生的热传导到导热性能优异的金刚石衬底,以解决III-V族半导体器件散热问题。
综上所述,本发明具有以下有益效果:在本发明中,本发明采用具有优异导热性能的金刚石,同时还采用既具有优异导热性能而且与III-IV族半导体具有相似晶体结构的类金刚石,采用MPCVD制备金刚石-类金刚石晶圆,在金刚石衬底上外延生长一层sp3-sp2杂化成键组成的类金刚石层,使得类金刚石上外延III-IV族半导体后的位错更小,具有更好的晶格匹配度,既可以解决器件散热问题又可以解决衬底上外延III-IV族半导体是存在的晶格适配问题,提升III-IV族半导体的外延质量,避免温度升高使器件损坏甚至失效,从而实现III-IV族半导体器件整体性能的提升。
附图说明
图1是本发明实施例1中一种金刚石-类金刚石结构晶圆的制备流程图;
图2是本发明实施例2中金刚石-类金刚石-GaN/AlGaN晶体管的制备流程图;
图3是本发明实施例2中金刚石-类金刚石-GaN/AlGaN晶体管的结构示意图。
附图标记:1、金刚石层;2、类金刚石层;3、缓冲层;4、GaN层;5、AlGaN层。
具体实施方式
以下结合附图1-3对本发明作进一步详细说明。
实施例1:一种金刚石-类金刚石结构晶圆的制备方法,采用微波等离子增强化学气相沉积系统(MPCVD),通过改变通入气体种类和实验工艺过程制备金刚石-类金刚石结构晶圆。如图1所示,制备方法包括以下步骤:
S1:将金刚石籽晶或金刚石衬底焊接到钼衬底托上,并放置于微波等离子增强化学气相沉积系统腔体内;
S2:在金刚石衬底上长金刚石层过程中,需要对表面进行刻蚀,将腔体内的真空度抽至1×10-5mbar以下,然后向腔内通入H2,待压强升至20mbar后,启动微波源,进行起辉,功率为1.5-2.5kW;保持H2流量不变,将压强升高至200mbar,同时控制微波功率升高至3.5kW;向腔体中通入流量为2-10sccm的氧气,对金刚石衬底刻蚀10分钟,然后降低腔体内压强和微波源功率,然后关闭微波源;
需要说明的是,通入氧气是为了去除衬底表面因暴露在空气中产生的污染。
S3:在金刚石籽晶或者刻蚀过的金刚石层上长金刚石层过程中,对腔体抽真空至1×10-5mbar和1.5-2.5kW,起辉操作,再将压强和功率升高至生长纯金刚石和所需的条件(5-15Pa,3.0-5.0kW);
S4:向腔体中通入5%的甲烷,开始单晶金刚石的外延生长,得到厚度为10-500μm的单晶金刚石层;
S5:降低腔内压强降至6×10-5mbar并降低温度(600-1000℃),不改变甲烷气体通入量的情况下同时向腔内通入H2,开始沉积并控制沉积条件,最终生长得到类金刚石层;
在上述中沉积条件为氢气通量保持在160mL/min,腔内压力维持在11kPa,沉积时间为3h,生长温度控制在600-800℃。
S6:得到类金刚石层后,停止生长,关闭微波源,对设备抽真空,再充入空气,待腔体内压强达到大气压后打开腔体,即获得金刚石-类金刚石结构晶圆。
实施例2
在实施例1得到金刚石-类金刚石结构晶圆的基础上,若需要探讨解决器件散热问题又可以解决衬底上外延III-IV族半导体(本实施例以GaN/AlGaN为例)是存在的晶格适配问题,则需要制备金刚石-类金刚石-GaN/AlGaN晶体管,其制备方法如下:
A1:对金刚石-类金刚石结构晶圆单面精抛,使表面粗糙度小于3nm,然后清洗去除表面有机物污染和颗粒杂质;
A2:采用石英玻璃制作好掩膜板;
A3:进行光刻处理:首先在清洗好的金刚石-类金刚石结构晶圆表面采用旋转覆盖式的方法,利用高速旋转的离心力将光刻胶均匀涂布在表面上,然后进行带胶样品的软烤,除去光刻胶中残余的溶剂,之后采用对准曝光的方法将掩膜版上的图形曝光到表面上,最后采用显影液去除不必要的光刻胶,使图形显现;
A4:欧姆接触:采用典型的Au,利用电子束蒸发方式进行金属淀积,各层金属厚度依次200nm。在蒸发后将其放入金属剥离液中进行剥离,从而形成欧姆接触图形,最后在快速退火炉中经830℃高温环境进行30s的高温退火以形成性能良好的欧姆接触;
A5:器件隔离:采用RIE反应离子刻蚀法,采用Cl2作为刻蚀气体,Cl2流量控制在15sccm,腔体压力10mTorr,刻蚀功率50W,刻蚀时间2.5min,同时,为保证可以完全将导电沟道隔断开来,刻蚀深度设为120nm;
A6:钝化沉积:采用等离子体强化化学气相淀积法(PECVD)来进行钝化层生长。本实验中氮(N)源由氨气(NH3)提供,硅源由硅烷(SiH4)提供,气体流量比设定为SiH4:NH3=2:1,设置的压强为600mTorr,温度为250℃,功率22W,利用PECVD法进行Si3N4钝化层的淀积。钝化分为两步,第一层钝化薄膜较薄,厚度主要用来钝化势垒层表面,在栅槽刻蚀之前完成。第二层钝化层较厚,/>用以削弱环境气氛对器件的影响,实现对器件的保护,在栅金属淀积完成后进行。在完成淀积之后,对钝化层的质量可以通过椭偏仪来进行评估,检测内容主要包括Si3N4层的折射率、生长厚度以及漏电,要确保将这些参数在预设值范围内,达到所需的器件性能;
A7:栅极形成:采用过刻蚀的方法进行槽栅刻蚀,相应的刻蚀条件为:射频功率50W,刻蚀气体采用CF4和O2,其对应气体流量分别为20sccm和2sccm,气压控制在5mTorr。互联开孔仍然为F基刻蚀,为了提高刻蚀速度,CF4和O2的流量分别增加到45sccm和5sccm,压力为10mTorr,刻蚀时间设定为180s。栅金属采用电子束蒸发镀膜工艺,蒸发的金属Au,厚度为采用Ni材料作为栅金属电极的底层金属,以保证栅金属与AlGaN势垒层具有很好的粘附性。第二层金属通常选用高功函数金属如Au,使肖特基栅具有好的整流特性;
A8:互连:由于栅金属淀积完成后需要进行保护钝化,整个圆片都被钝化层覆盖,所以在进行电极引出之前,首先要对电极所在位置上方的钝化薄膜进行互连开孔刻蚀。刻蚀条件与前述栅槽刻蚀时相同。在开孔刻蚀完成之后,进行互连金属蒸发镀膜。材料仍选用Au,典型厚度为最终得到金刚石-类金刚石-GaN/AlGaN晶体管,示意图如下图2所示。
在本实施例中,金刚石-单晶类金刚石-GaN/AlGaN结构晶体管器件广泛应用于射频及微波HEMT器件、开关类晶体管器件、LED等应用。
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

Claims (8)

1.一种金刚石-类金刚石结构晶圆的制备方法,其特征在于,所述制备方法包括以下步骤:
S1:将金刚石籽晶或金刚石衬底放到衬底托上,并放置于微波等离子增强化学气相沉积系统腔体内;
S2:在金刚石衬底上长金刚石层过程中,需要对表面进行刻蚀,将腔体内的真空度抽至第一真空度,然后向腔内通入H2,待压强升至第一压强值后,启动微波源,进行起辉,功率为第一功率值;保持H2流量不变,将压强升高至第二压强值,同时控制微波功率升高至第二功率值;向腔体中通入流量为2-10sccm的氧气,对金刚石衬底刻蚀5-15分钟,然后降低腔体内压强和微波源功率,然后关闭微波源;
S3:在金刚石籽晶或者刻蚀过的金刚石层上长金刚石层过程中,对腔体抽真空至第一真空值和第一功率值,起辉操作,再将压强和功率升高至生长纯金刚石和所需的条件(第三压强值,第三功率值);
S4:向腔体中通入2~8%的甲烷,开始单晶金刚石的外延生长,得到单晶金刚石层;
S5:降低腔内压强降至第四压强值并降低温度(600-1000℃),不改变甲烷气体通入量的情况下同时向腔内通入H2,开始沉积并控制沉积条件,最终生长得到类金刚石层;
S6:得到类金刚石层后,停止生长,关闭微波源,对设备抽真空,再充入空气,待腔体内压强达到大气压后打开腔体,即获得金刚石-类金刚石结构晶圆。
2.根据权利要求1所述的一种金刚石-类金刚石结构晶圆的制备方法,其特征在于,所述第一压强值范围为5×10-5mbar以下、所述第二真空值范围为1×10-5以下;所述第一压强值范围为20mbar、第二压强值范围为200mbar、第三压强值为5-15Pa、第四压强范围为5-12kPa;以及第一功率值范围为1.5-2.5kW,第二功率值为2.5-4.0kW,第三功率值为3.0-5.0kW,第四功率值为2.5-4.0kW。
3.根据权利要求1所述的一种金刚石-类金刚石结构晶圆的制备方法,其特征在于,在步骤S5中所述沉积条件为氢气通量保持在160mL/min,沉积时间为1-3h,生长温度控制在600-800℃。
4.根据权利要求1所述的一种金刚石-类金刚石结构晶圆的制备方法,其特征在于,在步骤S5生长类金刚石层过程中,可同时引入NH3和N2等,从而得到掺杂氮的类金刚石层。
5.根据权利要求1所述的一种金刚石-类金刚石结构晶圆的制备方法,其特征在于,所述金刚石层厚度为100-400μm,所述类金刚石单晶层厚度10-500μm。
6.根据权利要求1所述的一种金刚石-类金刚石结构晶圆的制备方法,其特征在于,在步骤S1中将金刚石衬底或者金刚石籽晶焊接到钼衬底托上,并放置于微波等离子增强化学气相沉积系统腔体内。
7.一种根据权利要求1-6任意一项所述的制备方法所制备的金刚石-类金刚石结构晶圆。
8.一种根据权利要求7所述的金刚石-类金刚石结构晶圆的应用,其特征在于,其能够用于III-V族半导体器件产生的热传导到导热性能优异的金刚石衬底,以解决III-V族半导体器件散热问题。
CN202311604706.4A 2023-11-28 2023-11-28 一种金刚石-类金刚石结构晶圆的制备方法 Pending CN117568925A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311604706.4A CN117568925A (zh) 2023-11-28 2023-11-28 一种金刚石-类金刚石结构晶圆的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311604706.4A CN117568925A (zh) 2023-11-28 2023-11-28 一种金刚石-类金刚石结构晶圆的制备方法

Publications (1)

Publication Number Publication Date
CN117568925A true CN117568925A (zh) 2024-02-20

Family

ID=89891553

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311604706.4A Pending CN117568925A (zh) 2023-11-28 2023-11-28 一种金刚石-类金刚石结构晶圆的制备方法

Country Status (1)

Country Link
CN (1) CN117568925A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843224A (en) * 1994-08-05 1998-12-01 Daimler-Benz Aktiengesellschaft Composite structure comprising a semiconductor layer arranged on a diamond or diamond-like layer and process for its production
CN113257675A (zh) * 2021-05-12 2021-08-13 智程半导体设备科技(昆山)有限公司 一种具有高散热性的半导体器件制备方法及半导体器件
CN113889411A (zh) * 2021-09-14 2022-01-04 北京科技大学 一种带金刚石微柱阵列的金刚石基GaN材料制备方法
CN116247017A (zh) * 2023-02-06 2023-06-09 中国人民解放军国防科技大学 一种金刚石衬底sp3-sp2杂化成键网络层制备方法及应用
RU2802796C1 (ru) * 2020-07-24 2023-09-04 Общество С Ограниченной Ответственностью "Вандер Технолоджис" Гетероэпитаксиальная структура с алмазным теплоотводом для полупроводниковых приборов и способ ее изготовления
US20230307249A1 (en) * 2020-07-24 2023-09-28 Obshchestvo S Ogranichennoy Otvetstvennostiyu "Vander Tekhnolodzhis" Heteroepitaxial structure with a diamond heat sink
CN117080183A (zh) * 2023-06-30 2023-11-17 中国人民解放军国防科技大学 一种金刚石-单晶AlN-GaNAlGaN复合晶圆及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843224A (en) * 1994-08-05 1998-12-01 Daimler-Benz Aktiengesellschaft Composite structure comprising a semiconductor layer arranged on a diamond or diamond-like layer and process for its production
RU2802796C1 (ru) * 2020-07-24 2023-09-04 Общество С Ограниченной Ответственностью "Вандер Технолоджис" Гетероэпитаксиальная структура с алмазным теплоотводом для полупроводниковых приборов и способ ее изготовления
US20230307249A1 (en) * 2020-07-24 2023-09-28 Obshchestvo S Ogranichennoy Otvetstvennostiyu "Vander Tekhnolodzhis" Heteroepitaxial structure with a diamond heat sink
CN113257675A (zh) * 2021-05-12 2021-08-13 智程半导体设备科技(昆山)有限公司 一种具有高散热性的半导体器件制备方法及半导体器件
CN113889411A (zh) * 2021-09-14 2022-01-04 北京科技大学 一种带金刚石微柱阵列的金刚石基GaN材料制备方法
CN116247017A (zh) * 2023-02-06 2023-06-09 中国人民解放军国防科技大学 一种金刚石衬底sp3-sp2杂化成键网络层制备方法及应用
CN117080183A (zh) * 2023-06-30 2023-11-17 中国人民解放军国防科技大学 一种金刚石-单晶AlN-GaNAlGaN复合晶圆及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP6078620B2 (ja) ダイヤモンド上の窒化ガリウム型ウェーハ並びに製造設備及び製造方法
KR100306527B1 (ko) 박막반도체장치의제조방법,박막반도체장치
CN111682061B (zh) 氮化物外延片及其制备方法和半导体器件
JP2009088223A (ja) 炭化珪素半導体基板およびそれを用いた炭化珪素半導体装置
US7411274B2 (en) Silicon semiconductor substrate and its manufacturing method
US20120056201A1 (en) Insulated gate bipolar transistor
CN111540684A (zh) 一种金刚石基异质集成氮化镓薄膜与晶体管的微电子器件及其制备方法
JP5651467B2 (ja) 大領域SiC基板の製造方法
CN113690298A (zh) 半导体复合衬底、半导体器件及制备方法
US20130119406A1 (en) Silicon carbide substrate, semiconductor device, and methods for manufacturing them
JP4631499B2 (ja) ダイヤモンド基板及びその製造方法
JPH02177368A (ja) 薄膜トランジスタ及びその製造方法
CN110211880B (zh) 金刚石基氮化镓hemt结构制造方法
JP3956487B2 (ja) 炭化けい素半導体素子の製造方法
US9691616B2 (en) Method of manufacturing silicon carbide semiconductor device by using protective films to activate dopants in the silicon carbide semiconductor device
CN117080183A (zh) 一种金刚石-单晶AlN-GaNAlGaN复合晶圆及其制备方法和应用
EP4187576A1 (en) Heteroepitaxial structure with a diamond heat sink
CN110828291A (zh) 基于单晶金刚石衬底的GaN/AlGaN异质结材料及其制备方法
CN117672815A (zh) 一种SiC外延片及其制备方法
CN109285894B (zh) 一种金刚石基多通道势垒调控场效应晶体管及其制备方法
JP2000001398A (ja) 炭化けい素半導体基板の製造方法
CN111540710A (zh) 一种高导热氮化镓高功率hemt器件的制备方法
CN117568925A (zh) 一种金刚石-类金刚石结构晶圆的制备方法
CN115074825A (zh) 碳化硅外延结构、脉冲式生长方法及其应用
CN113871473A (zh) 一种控制范德瓦耳斯外延与远程外延生长模式的装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination