CN111188021A - 一种石墨烯生长基底的预处理方法 - Google Patents

一种石墨烯生长基底的预处理方法 Download PDF

Info

Publication number
CN111188021A
CN111188021A CN202010061013.5A CN202010061013A CN111188021A CN 111188021 A CN111188021 A CN 111188021A CN 202010061013 A CN202010061013 A CN 202010061013A CN 111188021 A CN111188021 A CN 111188021A
Authority
CN
China
Prior art keywords
substrate
graphene
polishing
growth
pretreatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010061013.5A
Other languages
English (en)
Inventor
郝玉峰
牛唯昱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202010061013.5A priority Critical patent/CN111188021A/zh
Publication of CN111188021A publication Critical patent/CN111188021A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • C23C16/0218Pretreatment of the material to be coated by heating in a reactive atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种石墨烯生长基底的预处理方法,该方法以铜箔或铜镍合金箔作为基底,对其进行初步抛光,再将其置于管式炉内进行退火,退火后的基底从炉内取出,再次对其进行抛光,再将其置于加热台上加热氧化,即可完成预处理,预处理后的基底可用于石墨烯的化学气相沉积生长。该预处理方法可以降低铜或铜镍合金基底的粗糙度,提高基底纯度,降低基底表面的活性位点,最终达到降低石墨烯成核密度的效果,从而实现大单晶石墨烯以及大面积2‑5层范围内均匀厚度的少层石墨烯的制备。

Description

一种石墨烯生长基底的预处理方法
技术领域
本发明属于石墨烯制备技术领域,具体涉及一种石墨烯生长基底的预处理方法。
背景技术
二维材料石墨烯由于具有独特的光学、电学、机械性能等,在电子器件、光电子器件、储能器件、化学生物传感器等应用领域都发挥着巨大的作用。
化学气相沉积技术由于其具有的薄膜成份容易控制、重复性好、操作维护方便等优点被广泛应用于石墨烯的制备,但是化学气相沉积法制备的石墨烯薄膜往往表现为具有高密度晶界的多晶膜,其优异的物理性能在晶界上存在一定程度的降低,因此,降低石墨烯生长的成核密度,获得石墨烯大单晶及大面积的2-5层均匀厚度石墨烯薄膜非常有必要。
发明内容
针对上述现有技术的不足,本发明提供一种石墨烯生长基底的预处理方法,用以降低铜或铜镍合金基底上石墨烯成核密度的方法,实现石墨烯大单晶及大面积的2-5层均匀厚度石墨烯薄膜的制备。
为了实现上述发明目的,本发明采用以下技术手段:
先对铜箔或铜镍合金箔基底进行第一次电化学抛光,初步降低基底表面的粗糙度,再将其置于管式炉内进行退火,使基底内部的杂质析出到基底表面,退火后的铜基底从炉内取出后对其进行第二次电化学抛光,将基底表面的杂质除去,再将其置于加热台上加热氧化。最后将处理好的基底用于进行石墨烯的化学气相沉积生长。
进一步地,所述预处理中第一次电化学抛光和第二次电化学抛光的处理条件为:电压3-10V、抛光时间20-180秒;抛光液的成分包括磷酸、乙醇、异丙醇、去离子水、尿素。
进一步地,所述预处理中退火的条件为:退火时间0.5-12小时、退火温度1000℃-1050℃,退火气氛为氢气和氩气。
进一步地,所述预处理中加热氧化的条件为:加热温度100-180℃、加热时间1-30分钟。
进一步地,所述化学气相沉积的生长条件为:生长温度为1000℃-1050℃,生长时间为10-30分钟,采用流量为0.1-100sccm的甲烷作为碳源,采用流量为1-500sccm的氩气和流量为0.1-200sccm的氢气作为辅助气体。
有益效果:本发明提供了的石墨烯生长基底预处理方法,可以有效降低石墨烯成核密度,有利于石墨烯大单晶及大面积的2-5层均匀厚度石墨烯薄膜的制备。初次电化学抛光可降低基底的表面粗糙度,退火可以使基底内的杂质析出,再次抛光可去除基底表面杂质并降低基底粗糙度,加热氧化可降低基底表面的活性位点。
附图说明
图1为实施例1中未处理基底和处理后基底的原子力显微镜测试结果,(a)为未处理基底的原子力显微镜测试结果,(b)为处理后基底的原子力显微镜测试结果。
图2为实施例1中未处理基底和处理后基底上石墨烯生长的光学显微镜图像对比,(a)为未处理基底上石墨烯的生长情况,(b)为处理后基底上石墨烯的生长情况。
图3为实施例1中处理后基底上生长的石墨烯的扫描电子显微镜图像,(a)为处理后基底上生长的大单晶石墨烯,(b)为处理后基底上生长的大面积双层、三层石墨烯。
具体实施方式
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改或替换,均属于本发明的范围。实施例中未注明具体条件的实验方法及未说明配方的试剂均为按照本领域常规条件。
下面结合附图,对本发明提供的单晶石墨烯的制备方法的具体实施方式进行详细的说明。
实施例1
本发明提供了一种石墨烯生长基底的预处理方法,以铜箔为研究对象,对其进行初步抛光,再将其置于管式炉内进行退火,退火后的基底从炉内取出,再次对其进行抛光,再将其置于加热台上加热氧化,最后进行石墨烯的化学气相沉积生长。
首先对铜基底进行第一次电化学抛光,初步降低基底表面的粗糙度,电化学抛光的电压为10V,抛光时间为20-180秒,抛光液的成分为:磷酸100mL、乙醇100mL、异丙醇20mL、去离子水200mL、尿素2g。
将抛光后的铜基底置于管式炉内进行退火,使铜基底内部的杂质析出到基底表面,退火时间为0.5-12个小时,退火温度为1000℃-1050℃,退火气氛为氢气和氩气,氢气流量为0.1-200sccm,氩气的流量为1-500sccm。
将退火后的铜基底进行第二次电化学抛光,以去除析出在铜基底表面的杂质,同时提高基底表面的平整度,电化学抛光的条件同第一次电化学抛光。
将抛光后的铜基底置于加热台上,在空气环境中进行加热氧化,来减少铜基底表面的活性位点,加热温度为100-180℃,加热时间为1-30分钟。
全部处理结束后,将铜基底置于管式炉中进行石墨烯的化学气相沉积生长。
为了防止加热氧化的效果被减弱,在生长过程中的升温和退火中仅使用氩气气氛,氩气的流量为1-500sccm。
当石墨烯生长开始时,同时通入辅助气氛氢气和碳源甲烷,氢气流量为0.1-200sccm,甲烷流量为0.1-100sccm。
生长温度为1000℃-1050℃,生长时间为0.1-12小时。
图1为原子力显微镜的测试结果,未进行处理的基底(a)表面起伏很大,非常粗糙,而处理后的基底(b)表面更为平整,衬底的预处理有降低基底表面粗糙度的作用。
图2为未处理基底与处理后基底上生长的石墨烯光学显微镜图像,未进行处理的基底(a)上石墨烯成核密度很大,晶体尺寸很小,而处理后的基底(b)上石墨烯单晶分布比较稀疏,晶体尺寸较大。
在处理后的衬底上生长石墨烯,生长时间延长可以使石墨烯晶粒的尺寸增大。
在形核密度较低的前提下,合理调控生长温度、辅助气体与碳源的流量比例等条件也可以帮助增大石墨烯晶粒的尺寸。
图3是使用本发明提出的基底预处理方法,并合理调控石墨烯生长的实验参数后,制备出的大单晶石墨烯(a)和大面积双层、三层石墨烯等(b)。

Claims (5)

1.一种石墨烯生长基底的预处理方法,其特征在于:以铜箔或铜镍合金箔作为基底,首先对基底进行第一次抛光,再将其置于管式炉内进行退火,退火后的基底从管式炉内取出,对其进行第二次抛光,再将其置于加热台上加热氧化,即可完成预处理,预处理后的基底可用于进行石墨烯的化学气相沉积生长。
2.根据权利要求1所述的预处理方法,其特征在于:所述第一次电化学抛光和第二次电化学抛光的处理条件为:电压3-10V、抛光时间20-180秒;抛光液的成分包括磷酸、乙醇、异丙醇、去离子水、尿素。
3.根据权利要求1所述的预处理方法,其特征在于:所述退火的条件为:退火时间0.5-12小时、退火温度1000℃-1050℃,退火气氛为氢气和氩气。
4.根据权利要求1所述的预处理方法,其特征在于:所述加热氧化的条件为:加热温度100-180℃、加热时间1-30分钟。
5.根据权利要求1所述的预处理方法,其特征在于:所述化学气相沉积生长的条件为:生长温度为1000℃-1050℃,生长时间为10-30分钟,采用流量为0.1-100sccm的甲烷作为碳源,采用流量为1-500sccm的氩气,以流量为0.1-200sccm的氢气作为辅助气体。
CN202010061013.5A 2020-01-19 2020-01-19 一种石墨烯生长基底的预处理方法 Pending CN111188021A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010061013.5A CN111188021A (zh) 2020-01-19 2020-01-19 一种石墨烯生长基底的预处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010061013.5A CN111188021A (zh) 2020-01-19 2020-01-19 一种石墨烯生长基底的预处理方法

Publications (1)

Publication Number Publication Date
CN111188021A true CN111188021A (zh) 2020-05-22

Family

ID=70706459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010061013.5A Pending CN111188021A (zh) 2020-01-19 2020-01-19 一种石墨烯生长基底的预处理方法

Country Status (1)

Country Link
CN (1) CN111188021A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876703A (zh) * 2020-07-28 2020-11-03 江南大学 真空中通过步进电机制备石墨烯生长的单晶铜衬底的方法
CN112818835A (zh) * 2021-01-29 2021-05-18 南京大学 一种利用机器学习方法快速识别和分析二维材料的方法
CN112919454A (zh) * 2021-01-29 2021-06-08 南京大学 一种控制双层石墨烯堆叠角度的方法
CN114836828A (zh) * 2021-02-01 2022-08-02 北京石墨烯研究院 一种大畴区石墨烯单晶的制备方法
CN115963151A (zh) * 2022-10-25 2023-04-14 绍兴市特种设备检测院 一种氢气传感器及智能监测系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140014030A1 (en) * 2012-07-10 2014-01-16 William Marsh Rice University Methods for production of single-crystal graphenes
CN106637391A (zh) * 2016-08-15 2017-05-10 复旦大学 化学气相沉积法合成单晶石墨烯过程中降低晶核密度的方法
CN108441951A (zh) * 2018-04-28 2018-08-24 华中科技大学 一种快速制备大尺寸单晶石墨烯的方法
CN108839407A (zh) * 2018-06-04 2018-11-20 南京大学 一种石墨烯基pcb覆铜板及制备方法
CN108950683A (zh) * 2017-05-24 2018-12-07 北京大学 一种高迁移率氮掺杂大单晶石墨烯薄膜及其制备方法
CN109609924A (zh) * 2019-01-15 2019-04-12 中国航发北京航空材料研究院 一种降低石墨烯晶片形核密度的方法
CN110205603A (zh) * 2019-07-10 2019-09-06 北京石墨烯研究院 多层石墨烯及其制备方法
CN110699749A (zh) * 2018-07-09 2020-01-17 中国科学院化学研究所 一种制备大面积连续单层单晶石墨烯薄膜的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140014030A1 (en) * 2012-07-10 2014-01-16 William Marsh Rice University Methods for production of single-crystal graphenes
CN106637391A (zh) * 2016-08-15 2017-05-10 复旦大学 化学气相沉积法合成单晶石墨烯过程中降低晶核密度的方法
CN108950683A (zh) * 2017-05-24 2018-12-07 北京大学 一种高迁移率氮掺杂大单晶石墨烯薄膜及其制备方法
CN108441951A (zh) * 2018-04-28 2018-08-24 华中科技大学 一种快速制备大尺寸单晶石墨烯的方法
CN108839407A (zh) * 2018-06-04 2018-11-20 南京大学 一种石墨烯基pcb覆铜板及制备方法
CN110699749A (zh) * 2018-07-09 2020-01-17 中国科学院化学研究所 一种制备大面积连续单层单晶石墨烯薄膜的方法
CN109609924A (zh) * 2019-01-15 2019-04-12 中国航发北京航空材料研究院 一种降低石墨烯晶片形核密度的方法
CN110205603A (zh) * 2019-07-10 2019-09-06 北京石墨烯研究院 多层石墨烯及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAN, LONGLONG: "Preparation of Ultra-Smooth Cu Surface for High-Quality Graphene Synthesis", 《NANOSCALE RESERACH LETTERS》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876703A (zh) * 2020-07-28 2020-11-03 江南大学 真空中通过步进电机制备石墨烯生长的单晶铜衬底的方法
CN112818835A (zh) * 2021-01-29 2021-05-18 南京大学 一种利用机器学习方法快速识别和分析二维材料的方法
CN112919454A (zh) * 2021-01-29 2021-06-08 南京大学 一种控制双层石墨烯堆叠角度的方法
CN112919454B (zh) * 2021-01-29 2023-10-13 南京大学 一种控制双层石墨烯堆叠角度的方法
CN114836828A (zh) * 2021-02-01 2022-08-02 北京石墨烯研究院 一种大畴区石墨烯单晶的制备方法
CN114836828B (zh) * 2021-02-01 2023-08-29 北京石墨烯研究院 一种大畴区石墨烯单晶的制备方法
CN115963151A (zh) * 2022-10-25 2023-04-14 绍兴市特种设备检测院 一种氢气传感器及智能监测系统
CN115963151B (zh) * 2022-10-25 2024-01-19 绍兴市特种设备检测院 一种氢气传感器及智能监测系统

Similar Documents

Publication Publication Date Title
CN111188021A (zh) 一种石墨烯生长基底的预处理方法
CN107539976B (zh) 一种二氧化碳制备超洁净石墨烯的方法
CN108069416B (zh) 超洁净石墨烯及其制备方法
CN112430803A (zh) 一种自支撑超薄金刚石膜的制备方法
CN109609924B (zh) 一种降低石墨烯晶片形核密度的方法
GB2592513A (en) Method for efficiently eliminating graphene wrinkles formed by chemical vapor deposition
CN115305571B (zh) 氧化镓外延结构及其制备方法
CN113564699B (zh) 基于Cu2O介质层生长单层单晶石墨烯的方法
CN111620325A (zh) 一种制备石墨烯纳米带阵列的方法
CN109941991B (zh) 一种直接在绝缘衬底表面制备石墨烯的方法
CN110055589B (zh) 大尺寸单层六方氮化硼单晶或薄膜及制备方法
CN106637391A (zh) 化学气相沉积法合成单晶石墨烯过程中降低晶核密度的方法
CN110422841B (zh) 平面结构的不对称氧、硫通道实现ab堆积型双层石墨烯的逐层生长方法
CN113658852A (zh) 硅基尺寸可控β-Ga2O3纳米线的制备方法
CN109830413B (zh) GaN微米棒阵列/石墨烯场发射阴极复合材料制备方法
CN112919822A (zh) 基于刻蚀辅助机制的石墨烯玻璃制备方法
CN110453280B (zh) 一种高质量晶圆级石墨烯单晶的制备方法
CN115433920B (zh) 生长单层石墨烯的工艺方法
US20200312659A1 (en) Method for the preparation of gallium oxide/copper gallium oxide heterojunction
CN112725746A (zh) 一种提高氧化亚铜薄膜晶粒度的方法及其应用
CN115011922B (zh) 一种石墨烯薄膜及由原位非晶碳转为石墨烯薄膜的方法
CN115806288B (zh) 一种促进石墨烯二次生长的方法和在制备双层石墨烯中的应用
CN116022777B (zh) 一种易剥离近自由态石墨烯及其制备方法和应用
CN114836828B (zh) 一种大畴区石墨烯单晶的制备方法
CN116525535B (zh) 一种多层化soi基板的制备方法及soi基板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination