CN109609924B - 一种降低石墨烯晶片形核密度的方法 - Google Patents

一种降低石墨烯晶片形核密度的方法 Download PDF

Info

Publication number
CN109609924B
CN109609924B CN201910038017.9A CN201910038017A CN109609924B CN 109609924 B CN109609924 B CN 109609924B CN 201910038017 A CN201910038017 A CN 201910038017A CN 109609924 B CN109609924 B CN 109609924B
Authority
CN
China
Prior art keywords
copper foil
graphene wafer
nucleation density
cleaning
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910038017.9A
Other languages
English (en)
Other versions
CN109609924A (zh
Inventor
张儒静
何利民
许振华
李娜
汤智慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Graphene Technology Research Institute Co Ltd
Original Assignee
AECC Beijing Institute of Aeronautical Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Beijing Institute of Aeronautical Materials filed Critical AECC Beijing Institute of Aeronautical Materials
Priority to CN201910038017.9A priority Critical patent/CN109609924B/zh
Publication of CN109609924A publication Critical patent/CN109609924A/zh
Application granted granted Critical
Publication of CN109609924B publication Critical patent/CN109609924B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明是一种降低石墨烯晶片形核密度的方法,该方法的步骤是首先对铜箔表面进行抛光和氧化预处理,然后在处理后的铜箔表面制备石墨烯晶片。本发明提出了新的降低石墨烯晶片形核密度的方法,简便易行、效果好。同时,在本方法的基础上可探究铜基底的粗糙度及氧化程度对石墨烯晶片形核密度的影响,以便进一步增加石墨烯晶片的尺寸,提高石墨烯薄膜的质量。

Description

一种降低石墨烯晶片形核密度的方法
技术领域
本发明是一种降低石墨烯晶片形核密度的方法,属于碳纳米材料合成领域。
背景技术
石墨烯薄膜是由多个晶片生长联合形成的多晶薄结构。大量晶界和旋转错配的存在限制了电子在材料中的高效传输,同时也降低了材料的力学性能。因此,增大晶片的尺寸能够极大提升石墨烯材料的电学、力学等性能,有利于拓展其在电子器件、复合材料等领域的应用。
从晶片的形核和生长机理出发,大尺寸石墨烯晶片的制备需要晶片具有较低的形核密度。目前通过化学气相沉积法降低石墨烯晶片形核密度的方法主要有以下几种:①降低铜基底表面的污染物和粗糙度。该方法主要通过对基底电化学抛光、长时间氢气高温退火、熔融铜基底等方法实现。②控制气态碳源在基底处的浓度。该方法常用的方法有折叠铜信封、铜箔堆叠、将基底放入与进气方向相反的石英套管等影响碳源的扩散。③在铜基底表面形成含氧钝化层,如用含微量氧的氩气对基底退火、体系中通入少量氧、基底在空气中加热、水蒸气处理等途径。该方法不仅能够降低形核密度,还能够降低气态碳源裂解所需的能量,提高晶片的生长速度。
现有的降低铜基底表面污染物和粗糙度的方法、以及控制基底表面气态碳源浓度的方法效率低、操作性差、不利于材料的大规模生长。现有的在铜基底表面形成钝化层的方法多采用直接获得的铜,不经过前处理,无法降低基底表面的粗糙度和微结构缺陷。另外几种降低形核密度的方法需要分开进行和操作,不能同步实现。
发明内容
本发明针对上述现有技术中的问题,提供一种降低石墨烯晶片形核密度的方法,其目的是通过简单便捷的基底调控方法以降低石墨烯晶片的形核密度。
本发明的目的是通过以下技术方案来实现的:
该种降低石墨烯晶片形核密度的方法,其特征在于:该方法的步骤如下:
步骤一、对铜箔表面进行抛光和氧化预处理:
1.1抛光液的配制:选择醋酸体系的电化学抛光溶液;
1.2样品前处理:将铜箔置于重量百分比浓度为5%的盐酸水溶液中超声清洗5~10min,然后用去离子水清洗,再置于异丙醇或挥发性有机溶剂中超声清洗5~10min,最后用冷风吹干;
1.3电化学抛光和氧化:采用三电极循环伏安法对铜箔表面进行同步抛光和氧化;
1.4样品清洗:将经电化学抛光和氧化处理后的铜箔取出立即放于去离子水中清洗,然后放于异丙醇中清洗,干燥;
步骤二、在处理后的铜箔表面制备石墨烯晶片:
2.1铜箔放置于石英舟上,置于管式炉中心区域,通入流量为200~500sccm的氩气10~20min,之后将体系进行升温;
2.2温度升至950~1050℃时,通入流量为10~50sccm的H2,保温0~2h;
2.3保温结束后在体系中通入浓度为0.1%~100%的CH4/Ar混合气,流量为0.5~20sccm,反应时间为10~120min;
2.4关闭CH4/Ar混合气体和H2,将石英舟拖出反应区,进行快速降温,在铜箔表面得到石墨烯晶片。
所述的抛光液为重量百分比浓度为10~90%的醋酸水溶液。
所述的抛光液为添加了粘度调节剂、配合物、光亮剂以及缓蚀剂的醋酸体系的电化学抛光溶液。
所述的挥发性有机溶剂为乙醇或丙酮。
所述的三电极循环伏安法采用的参比电极为Ag/AgCl,对电极为铂,工作电极为铜,三电极循环伏安法采用的电压范围为-3V~3V,扫描速率为1~100mV/s,循环次数为1~30,停止电位为0.5~3V。
步骤二中,在处理后的铜箔表面制备石墨烯晶片时的体系内的压强为102~105Pa。
100mV/s,循环次数为1~30,停止电位为0.5~3V。
本发明技术方案采用弱酸电解液,采用循环伏安法,通过扫描电压、扫描速度和循环次数的相互匹配调控铜表面粗糙度,通过停止电位调控铜表面氧化膜的厚度,实现抛光和氧化铜表面的过程结合,提升材料制备效率。
本发明方法具有以下有益效果:
(1)在三电极循环伏安法的电化学过程中同时实现铜表面的抛光和氧化,简单便捷,效率高;
(2)在三电极循环伏安法的电化学过程中,当氧化膜的生成速度大于弱酸对氧化膜的消耗速度时,氧化层厚度不断增加,通过停止电位的改变调控铜表面氧化膜的厚度;
(3)通过扫描电压、扫描速度及循环次数的匹配调控铜表面的粗糙度;
(4)能够完成复杂形状铜构件表面的抛光和氧化。
(5)基底的抛光和氧化在降低石墨烯晶片形核密度方面具有协同作用,两个过程同步进行,效率高,且铜基底的粗糙度和氧化膜厚度可控;
(6)反应系统中不同时涉及氢气和氧气的引入,减少了反应过程中的危险因素;
(7)该基底处理方法可联合其他方法(如控制碳源流量等)共同对形核点密度进行控制,将形核点密度控制在需求范围。
具体实施方式
实施例1:
该种降低石墨烯晶片形核密度的方法的步骤如下:
步骤一、抛光液的配制:将醋酸与去离子水混合均匀,得到重量百分比浓度为10~90%的醋酸水溶液;
步骤二、样品前处理:剪取尺寸为1cm*3cm的铜箔,将铜箔置于重量百分比浓度为5%的盐酸水溶液中超声清洗5min,然后用去离子水清洗,再置于异丙醇或挥发性有机溶剂中超声清洗5min,最后用压缩氮气吹干;
所述的挥发性有机溶剂为乙醇或丙酮;
步骤三、电化学抛光和氧化:以醋酸水溶液为电解液、Ag/AgCl为参比电极、铂片为对电极、清洗后的铜箔为工作电极进行三电极循环伏安法同步抛光和氧化,设置循环测试的参数为:初始电位为-1V、高电位为1V、低电位为-1V、终止电位为0.6V、循环扫描速度为10mV/s、循环段数为5。
步骤四、样品清洗:将经电化学抛光和氧化处理后的铜箔取出立即放于去离子水中清洗,再放入异丙醇中超声处理3min,取出用压缩氮气吹干。
步骤五、将所述经抛光和氧化预处理后的铜箔放置于石英舟上,置于管式炉中心区域,通入流量为500sccm的氩气15min,之后在400sccm氩气下将体系进行升温;
步骤六、温度升至1000℃时,通入流量为20sccm的H2,保温30min;
步骤七、保温结束后在体系中通入体积浓度为0.5%的CH4/Ar混合气,流量为10sccm,反应时间为30min;
步骤八、关闭CH4/Ar混合气体和H2,将石英舟拖出反应区,快速降温后在铜箔表面得到石墨烯晶片。
实施例2:
该种降低石墨烯晶片形核密度的方法的步骤如下:
步骤一、抛光液的配制:将100mL水、50mL醋酸、50mL酒精、10mL异丙醇和1g尿素混合搅拌均匀,制备醋酸体系的电化学抛光液;
步骤二、样品前处理:剪取尺寸为1cm*2cm的铜箔,将铜箔置于重量百分比浓度为5%的盐酸水溶液中超声清洗5min,然后用去离子水清洗,再置于异丙醇或挥发性有机溶剂中超声清洗5min,最后用压缩氮气吹干;
所述的挥发性有机溶剂为乙醇或丙酮;
步骤三、电化学抛光和氧化:以电化学抛光液为电解液、Ag/AgCl为参比电极、铂片为对电极、清洗后的铜箔为工作电极进行三电极循环伏安法同步抛光和氧化,设置循环测试的参数为:初始电位为-0.8V、高电位为0.8V、低电位为-0.8V、终止电位为0.8V、循环扫描速度为5mV/s、循环段数为7。
步骤四、样品清洗:将经电化学抛光和氧化处理后的铜箔取出立即放于去离子水中清洗,再放入异丙醇中超声处理3min,取出用压缩氮气吹干。
步骤五、将所述经清洗和氧化预处理后的铜箔放置于石英舟上,置于管式炉中心区域,通入流量为500sccm的氩气15min,之后在300sccm氩气下将体系进行升温;
步骤六、温度升至1050℃时,通入流量为10sccm的H2,保温60min;
步骤七、保温结束后在体系中通入体积浓度为5%的CH4/Ar混合气,流量为0.5sccm,反应时间为15min;
步骤八、关闭CH4/Ar混合气体和H2,将石英舟拖出反应区,快速降温后在铜箔表面得到石墨烯晶片。

Claims (4)

1.一种降低石墨烯晶片形核密度的方法,其特征在于:该方法的步骤如下:
步骤一、对铜箔表面进行抛光和氧化预处理:
1.1抛光液的配制:选择醋酸体系的电化学抛光溶液;
1.2样品前处理:将铜箔置于重量百分比浓度为5%的盐酸水溶液中超声清洗5~10min,然后用去离子水清洗,再置于异丙醇或挥发性有机溶剂中超声清洗5~10min,最后用冷风吹干;
1.3电化学抛光和氧化:采用三电极循环伏安法对铜箔表面进行同步抛光和氧化;
1.4样品清洗:将经电化学抛光和氧化处理后的铜箔取出立即放于去离子水中清洗,然后放于异丙醇中清洗,干燥;
步骤二、在处理后的铜箔表面制备石墨烯晶片:
2.1铜箔放置于石英舟上,置于管式炉中心区域,通入流量为200~500sccm的氩气10~20min,之后将体系进行升温;
2.2温度升至950~1050℃时,通入流量为10~50sccm的H2,保温0~2h;
2.3保温结束后在体系中通入浓度为0.1%~100%的CH4/Ar混合气,流量为0.5~20sccm,反应时间为10~120min;
2.4关闭CH4/Ar混合气体和H2,将石英舟拖出反应区,进行快速降温,在铜箔表面得到石墨烯晶片;
所述的抛光液为添加了粘度调节剂、配合物、光亮剂以及缓蚀剂的醋酸体系的电化学抛光溶液,所述的抛光液的重量百分比浓度为10~90%。
2.根据权利要求1所述的降低石墨烯晶片形核密度的方法,其特征在于:所述的挥发性有机溶剂为乙醇或丙酮。
3.根据权利要求1所述的降低石墨烯晶片形核密度的方法,其特征在于:所述的三电极循环伏安法采用的参比电极为Ag/AgCl,对电极为铂,工作电极为铜,三电极循环伏安法采用的电压范围为-3V~3V,扫描速率为1~100mV/s,循环次数为1~30,停止电位为0.5~3V。
4.根据权利要求1所述的降低石墨烯晶片形核密度的方法,其特征在于:步骤二中,在处理后的铜箔表面制备石墨烯晶片时的体系内的压强为102~105Pa。
CN201910038017.9A 2019-01-15 2019-01-15 一种降低石墨烯晶片形核密度的方法 Active CN109609924B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910038017.9A CN109609924B (zh) 2019-01-15 2019-01-15 一种降低石墨烯晶片形核密度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910038017.9A CN109609924B (zh) 2019-01-15 2019-01-15 一种降低石墨烯晶片形核密度的方法

Publications (2)

Publication Number Publication Date
CN109609924A CN109609924A (zh) 2019-04-12
CN109609924B true CN109609924B (zh) 2020-12-29

Family

ID=66017552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910038017.9A Active CN109609924B (zh) 2019-01-15 2019-01-15 一种降低石墨烯晶片形核密度的方法

Country Status (1)

Country Link
CN (1) CN109609924B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110438470A (zh) * 2019-07-22 2019-11-12 中国航发北京航空材料研究院 一种增加石墨烯晶畴尺寸的方法
CN111188021A (zh) * 2020-01-19 2020-05-22 南京大学 一种石墨烯生长基底的预处理方法
CN114836828B (zh) * 2021-02-01 2023-08-29 北京石墨烯研究院 一种大畴区石墨烯单晶的制备方法
CN113564699B (zh) * 2021-07-16 2022-09-02 山东大学 基于Cu2O介质层生长单层单晶石墨烯的方法
CN114438579B (zh) * 2021-12-22 2022-12-09 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 铜箔粗化液、单面粗化铜箔及其制备方法、集流体及电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103924287A (zh) * 2014-05-04 2014-07-16 大连理工大学 电致化学抛光方法
CN109019571A (zh) * 2017-06-12 2018-12-18 中国科学院上海高等研究院 层数可控氮掺杂石墨烯的制备方法
CN109082697A (zh) * 2018-09-12 2018-12-25 河北工业大学 一种柱状铜颗粒膜的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050279964A1 (en) * 2004-06-17 2005-12-22 Ming-Tseh Tsay Chemical mechanical polishing slurry for polishing copper layer on a wafer
CN101665665A (zh) * 2009-09-27 2010-03-10 大连三达奥克化学股份有限公司 降低铜化学机械抛光粗糙度的抛光液
CN108085687A (zh) * 2017-12-01 2018-05-29 东方电气集团东方汽轮机有限公司 含铜零件表面处理用抛光剂

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103924287A (zh) * 2014-05-04 2014-07-16 大连理工大学 电致化学抛光方法
CN109019571A (zh) * 2017-06-12 2018-12-18 中国科学院上海高等研究院 层数可控氮掺杂石墨烯的制备方法
CN109082697A (zh) * 2018-09-12 2018-12-25 河北工业大学 一种柱状铜颗粒膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基底处理抑制成核生长大晶畴石墨烯的研究;白晓航等;《真空与低温》;20140821;第20卷(第4期);第219-223页 *
石墨烯生长所需的自清洁基底-氧化铜;孔祥华;《中国化学会第29届学术年会摘要集——第30分会:低维碳材料》;20140804;第1页 *

Also Published As

Publication number Publication date
CN109609924A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
CN109609924B (zh) 一种降低石墨烯晶片形核密度的方法
CN107777674B (zh) 一种利用常压等离子体制备二维材料的方法
WO2018120601A1 (zh) 一种制备石墨烯增强三维多孔碳自支撑薄膜的方法
CN104651899B (zh) 一种用于碳纳米管生长的金属基底的阳极化工艺
WO2020168819A1 (zh) 一种高效消除化学气相沉积法石墨烯褶皱的方法
CN111188021A (zh) 一种石墨烯生长基底的预处理方法
WO2023169017A1 (zh) 一种氧化锌纳米棒阵列光阳极及其制备方法
CN102963883A (zh) 一种制备石墨烯的方法
CN110697695A (zh) 一种石墨烯增强金属基泡沫骨架结构复合材料的制备方法
CN110310891A (zh) 金属纳米线导电薄膜的制备方法及薄膜晶体管
CN107937969A (zh) 一种GN‑Sb2Se3复合薄膜的制备方法
CN109207961B (zh) 一种管式炉及利用该管式炉制备石墨烯/六方氮化硼异质结的方法
CN114477144B (zh) 一种碳纳米管阵列的制备方法
CN105088301B (zh) 一种由硝酸铜制备氧化亚铜光电薄膜的方法
CN112827500B (zh) 一种碳化钨薄膜催化材料及其制备方法
CN106830072B (zh) 一种二氧化钛纳米线阵列的制备方法
CN112746263B (zh) 一种常压化学气相沉积制备少层石墨烯膜的方法
CN105039942B (zh) 仙人掌结构的银枝晶/硅针尖纳米复合材料的制备方法
CN105118888A (zh) 一种由硫酸铜制备氧化亚铜光电薄膜的方法
CN106340545A (zh) Cis及cigs薄膜太阳能电池吸光层的制备及新溶剂在其中的应用
CN109811389B (zh) 一种氮化钛铌纳米管阵列及渗氮层复合结构的制备方法
CN113620279A (zh) 一种在绝缘衬底上制备石墨烯的方法
CN111293324B (zh) 一种燃料电池抗氧化气体扩散层及其制备方法
CN113421978B (zh) 一种弱磁场作用的磁性钙钛矿薄膜的制备方法
CN115744965B (zh) 一种分步激光处理制备氮掺杂石墨烯复合多孔薄膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211206

Address after: No. 108, 1f, building 1, yard 3, Fengzhi East Road, Haidian District, Beijing 100094

Patentee after: BEIJING GRAPHENE TECHNOLOGY RESEARCH INSTITUTE Co.,Ltd.

Address before: Science and technology development department, No.81 box, Haidian District, Beijing 100095

Patentee before: AECC BEIJING INSTITUTE OF AERONAUTICAL MATERIALS