CN106830072B - 一种二氧化钛纳米线阵列的制备方法 - Google Patents

一种二氧化钛纳米线阵列的制备方法 Download PDF

Info

Publication number
CN106830072B
CN106830072B CN201710165856.8A CN201710165856A CN106830072B CN 106830072 B CN106830072 B CN 106830072B CN 201710165856 A CN201710165856 A CN 201710165856A CN 106830072 B CN106830072 B CN 106830072B
Authority
CN
China
Prior art keywords
titanium dioxide
acid
preparation
nanowire array
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710165856.8A
Other languages
English (en)
Other versions
CN106830072A (zh
Inventor
李鑫
崔千
黄海宁
朱佩
杨隆凯
曹冰冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201710165856.8A priority Critical patent/CN106830072B/zh
Publication of CN106830072A publication Critical patent/CN106830072A/zh
Application granted granted Critical
Publication of CN106830072B publication Critical patent/CN106830072B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种二氧化钛纳米线阵列的制备方法,涉及纳米材料的制备。提供高效、快速、可控的一种二氧化钛纳米线阵列的制备方法。将基底表面清洗;将钛的醇盐溶液分散在乙醇中,并加入盐酸,抑制钛源水解,混合后,涂覆在基底表面铺展成膜,煅烧后生成二氧化钛籽晶层;将涂覆二氧化钛籽晶层的基底放置于密闭的高压水热反应釜体系中,添加丙酮、钛酸四丁酯、混合酸的前驱体溶液,进行水热反应,即得二氧化钛纳米线阵列。采用盐酸复合有机酸作为水热反应的酸性媒介,实现了一维二氧化钛纳米线阵列的定向生长,利用本发明方法所合成的二氧化钛纳米线具有高度取向性、结晶性良好、线径与长度可控、生产速率快、设备简单等特点,具有十分广阔的应用前景。

Description

一种二氧化钛纳米线阵列的制备方法
技术领域
本发明涉及纳米材料的制备,尤其是涉及一种二氧化钛纳米线阵列的制备方法。
背景技术
当今社会经济高速迅猛发展,人们物质生活越来越丰富,但是高速经济发展的同时也给环境生态带来极大的负担,因此绿色友好型能源受到了全世界的广泛关注。而二氧化钛材料在太阳能电池、光催化、传感器、纳米电子以及新能源等方面都存在广泛地应用。
与零维二氧化钛纳米颗粒和三维纳米块相比,一维二氧化钛纳米线阵列在实际应用中具有更多优势,包括:能够取向性生长、比表面积大、尺寸均一可控。更重要的是由于载流子能够在纳米线的轴向距离进行较长距离的快速迁移,减少了载流子的界面复合[1],从而大大提高了光催化性能、光电化学性能等。
目前,一维氧化钛纳米线阵列的制备方法有很多种:电子束蒸发[2],表面活性剂辅助合成法[3]、电喷涂法[4]、电沉积法[5]、强碱水热法[6]、盐酸水热法[7]、硬模板方法等。而在上述方法中,水热法由于成本低,产率高而被广泛应用。
水热法制备氧化钛纳米线的通常工艺为采用浓盐酸和钛的醇盐作为前驱体,溶剂采用水或者水和有机溶剂的混合物,在150~200℃的条件下反应十几个小时获得。盐酸的大量使用,对反应釜设备具有很强的腐蚀作用;同时含量较多的氯离子导致了纳米线阵列的定向性存在一定问题。
参考文献:
[1]Ning Cai,Soo-Jin Moon,LêCevey-Ha.An Organic D-π-A Dye for RecordEfficiency Solid-State Sensitized Heterojunction Solar Cells[J].Nano Lett,2011,11(4):1452-1456.
[2]Yang T-S,Shiu C-B,Wong M-S.Structure and hydrophilicity oftitanium oxide films prepared by electron beam evaporation[J].SurfaceScience,2004,548(1):75-82.
[3]Adachi M,Murata Y,Takao J,et al.Highly efficient dye-sensitizedsolar cells with a titania thin-film electrode composed of a networkstructure of single-crystal-like TiO2 nanowires made by the“orientedattachment”mechanism[J].Journal of the American Chemical Society,2004,126(45):14943-14949.
[4]Ahn Y R,Song M Y,Jo S M,et al.Electrochemical capacitors based onelectrodeposited ruthenium oxide on nanofibre substrates[J].Nanotechnology,2006,17(12):2865.
[5]Natarajan C,Nogami G.Cathodic electrodeposition of nanocrystallinetitanium dioxide thin films[J].Journal of the Electrochemical Society,1996,143(5):1547-1550.
[6]Enache-Pommer E,Boercker J E,Aydil E S.Electron transport andrecombination in polycrystalline TiO2 nanowire dye-sensitized solar cells[J].Applied Physics Letters,2007,91(123116).
[7]Liu B,Aydil E S.Growth of oriented single-crystalline rutile TiO2nanorods on transparentconducting substrates for dye-sensitized solar cells[J].Journal of the American Chemical Society,2009,131(11):3985-3990.
[8]X.J.Feng,K.Shankar,O.K.Varghese,M.Paulose,T.J.Latempa,C.A.Grimes,Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly onTransparent Conducting Oxide Coated Glass:Synthesis Details and Applications[J].Nano Lett.2008,8,3781-3786;
发明内容
本发明的目的在于克服现有方法的上述不足,提供高效、快速、可控的一种二氧化钛纳米线阵列的制备方法。
本发明包括以下步骤:
1)将基底表面清洗;
在步骤1)中,所述基底为纳米线负载基底,基底可选自硅片、金属片、玻璃片等中的一种,优选FTO玻璃;所述清洗可先用洗衣粉清洗,再采用丙酮、乙醇、去离子水依次超声清洗。
2)将钛的醇盐溶液分散在乙醇中,并加入盐酸,抑制钛源水解,混合后,涂覆在基底表面铺展成膜,煅烧后生成二氧化钛籽晶层;
在步骤2)中,所述煅烧可在马弗炉中煅烧,煅烧可为450~500℃。
3)将涂覆二氧化钛籽晶层的基底放置于密闭的高压水热反应釜体系中,添加丙酮、钛酸四丁酯、混合酸的前驱体溶液,进行水热反应,即得二氧化钛纳米线阵列。
在步骤3)中,所述混合酸由盐酸和有机酸组成,所述盐酸在混合酸中的体积百分比可为5%~75%;所述有机酸可选自乙酸、丙酸、正丁酸、异丁酸、戊酸、2-乙基丁酸、己酸等中的至少一种;所述水热反应的温度可为200℃,水热反应的时间可为40~120min。
本发明与现有技术相比,具有以下显著优点:
1)本发明采用盐酸复合有机酸作为水热反应的酸性媒介,实现了一维二氧化钛纳米线阵列的定向生长,利用本发明方法所合成的二氧化钛纳米线具有高度取向性、结晶性良好、线径与长度可控、生产速率快、设备简单等特点,具有十分广阔的应用前景。
2)在本发明中,混合溶液中丙酮的存在既是溶剂也起到了加速水热反应的作用,相比于传统工艺,反应时间大大缩短,可由常规的20h[8]缩短为30min,得到同样长度的纳米线。本发明通过控制混合液中的有机酸种类和含量,即可调控纳米线的线径、长度、纳米线的垂直度以及纳米线之间的距离。
附图说明
图1为籽晶层表面SEM图;
图2为溶剂热反应体系中FTO玻璃片放置示意图;
图3为盐酸与乙酸混合酸制备纳米线的表面SEM图;
图4为盐酸与乙酸混合酸制备纳米线的截面SEM图;
图5为盐酸与己酸混合酸制备纳米线的表面SEM图;
图6为盐酸与己酸混合酸制备纳米线的截面SEM图;
图7为盐酸与正丁酸酸混合酸制备纳米线的表面SEM图;
图8为盐酸与正丁酸酸混合酸制备纳米线的截面SEM图。
具体实施方式
实施例1
下面结合附图和具体步骤对本发明作进一步详细说明。实施例1主要描述了采用盐酸与乙酸混合来制备二氧化钛纳米线。
步骤一、FTO的清洗
首先将2mm厚的FTO玻璃切割成20mm×20mm大小的玻璃片,使之适合反应釜内衬大小,然后用洗衣粉进行清洗,随后依次用适量的丙酮,乙醇,去离子水在100Hz的频率下超声15min,随后放置在烘箱中烘干。烘干后的玻璃片放在紫外臭氧机中处理15min。
步骤二、二氧化钛籽晶层的制备
1、在25ml烧杯中依次加入7.5ml乙醇,89ul去离子水和3.6ul浓硝酸,用封口膜封好,磁力搅拌10min,配成溶液A。在25ml烧杯中加入7.5ml乙醇,搅拌滴加185ul钛酸四异丙酯,得到溶液B。充分混合后,再将溶液A滴加到溶液B中,磁力搅拌10min,得到溶液C。再将溶液C进行过滤,即得到二氧化钛致密层的前驱体混合液。
2、以过滤好的溶液C为旋涂液,切割好的FTO玻璃片为基底,进行旋涂。旋涂溶液用量10μL,旋涂速度3000r/min,旋涂时间40s,旋涂后125℃退火3min。此步骤重复两次。
3、将旋涂好的FTO玻璃片放置在马弗炉中进行煅烧,煅烧温度设定为450℃,煅烧时间1h。
所得到的籽晶层SEM如图1所示,从图1中可以看出,所得到的二氧化钛籽晶层颗粒较小,铺展均匀,成膜致密。
步骤三、二氧化钛纳米线的制备
1、在25ml烧杯中依次加入6ml丁酮,4ml浓盐酸,2ml乙酸,400ul钛酸四丁酯,封口膜封好,磁力搅拌15min。即配制好纳米线的前驱体混合液。
2、在聚四氟乙烯内衬1中,如图2放置好旋涂有二氧化钛致密层的FTO玻璃片2,籽晶层面朝下,随后倒入配制好的纳米线前驱体混合液,盖上盖子3,旋紧外套,放在烘箱中进行200℃的水热反应,反应时间为30min。
3、反应好的水热釜用自来水快速冷却,待完全冷却至室温后,取出FTO玻璃片放置在无水乙醇溶液中浸泡10min,再用大量去离子水冲洗后,干燥,即得到二氧化钛纳米线。
得到的纳米线表面与截面SEM图,如图3所示。从图中可以看出,纳米线直径可以控制在60~80nm之间,反应30min,长度即可以达到1.9μm左右。且纳米线取向性好,生长规则有序。
实施例2
步骤与实施例1相同,除了步骤三中第1小步加入的2mL乙酸换成2mL己酸。
得到的纳米线表面与截面SEM图,如图4所示。从图中可以看出,纳米线直径可以控制在20~50nm之间,长度在700nm左右。相比于实施例1中的乙酸反应条件的纳米线,纳米线直径变细,长度变短。
实施例3
步骤与实施例1相同,除了步骤三中第1小步加入的2mL乙酸换成2mL正丁酸。
得到的纳米线表面与截面SEM图,如图5所示。从图中可以看出,纳米线直径可以控制在20~50nm之间,长度在900nm左右。相比于实施例2中的己酸反应条件的纳米线,纳米线直径基本保持不变,但纳米线长度发生了变化,长度变短。

Claims (6)

1.一种二氧化钛纳米线阵列的制备方法,其特征在于包括以下步骤:
1)将基底表面清洗;所述基底为纳米线负载基底,基底选自硅片、金属片、玻璃片中的一种;
2)将钛的醇盐溶液分散在乙醇中,并加入盐酸,抑制钛源水解,混合后,涂覆在基底表面铺展成膜,煅烧后生成二氧化钛籽晶层;
3)将涂覆二氧化钛籽晶层的基底放置于密闭的高压水热反应釜体系中,添加丙酮、钛酸四丁酯、混合酸的前驱体溶液,进行水热反应,即得二氧化钛纳米线阵列;所述混合酸由盐酸和有机酸组成,所述盐酸在混合酸中的体积百分比为5%~75%。
2.如权利要求1所述一种二氧化钛纳米线阵列的制备方法,其特征在于所述基底为FTO玻璃。
3.如权利要求1所述一种二氧化钛纳米线阵列的制备方法,其特征在于在步骤1)中,所述清洗是先用洗衣粉清洗,再采用丙酮、乙醇、去离子水依次超声清洗。
4.如权利要求1所述一种二氧化钛纳米线阵列的制备方法,其特征在于在步骤2)中,所述煅烧是在马弗炉中煅烧,煅烧为450~500℃。
5.如权利要求1所述一种二氧化钛纳米线阵列的制备方法,其特征在于所述有机酸选自乙酸、丙酸、正丁酸、异丁酸、戊酸、2-乙基丁酸、己酸中的至少一种。
6.如权利要求1所述一种二氧化钛纳米线阵列的制备方法,其特征在于在步骤3)中,所述水热反应的温度为200℃,水热反应的时间为40~120min。
CN201710165856.8A 2017-03-20 2017-03-20 一种二氧化钛纳米线阵列的制备方法 Expired - Fee Related CN106830072B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710165856.8A CN106830072B (zh) 2017-03-20 2017-03-20 一种二氧化钛纳米线阵列的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710165856.8A CN106830072B (zh) 2017-03-20 2017-03-20 一种二氧化钛纳米线阵列的制备方法

Publications (2)

Publication Number Publication Date
CN106830072A CN106830072A (zh) 2017-06-13
CN106830072B true CN106830072B (zh) 2019-01-29

Family

ID=59129528

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710165856.8A Expired - Fee Related CN106830072B (zh) 2017-03-20 2017-03-20 一种二氧化钛纳米线阵列的制备方法

Country Status (1)

Country Link
CN (1) CN106830072B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109020257A (zh) * 2018-07-25 2018-12-18 沈阳航空航天大学 一种自组装二级结构氧化钛纳米阵列的制备方法
CN114195511B (zh) * 2021-11-05 2022-06-24 中南大学 一种表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications";Xinjian Feng et al.;《Nano Lett.》;20081028;第8卷(第11期);第3781-3786页

Also Published As

Publication number Publication date
CN106830072A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
Iraj et al. Controlled growth of vertically aligned TiO2 nanorod arrays using the improved hydrothermal method and their application to dye-sensitized solar cells
Kenanakis et al. Growth of c-axis oriented ZnO nanowires from aqueous solution: the decisive role of a seed layer for controlling the wires’ diameter
CN101538713B (zh) 一种双层纳米有序结构二氧化钛薄膜及其制备方法
Liu et al. A simple route for growing thin films of uniform ZnO nanorod arrays on functionalized Si surfaces
CN101239737B (zh) 具有分级结构的二氧化钛薄膜材料及其制备方法
Patil et al. Single step hydrothermal synthesis of hierarchical TiO 2 microflowers with radially assembled nanorods for enhanced photovoltaic performance
Guo et al. Fabrication of TiO2 nano-branched arrays/Cu2S composite structure and its photoelectric performance
CN104626680B (zh) 一种复合黑色二氧化钛薄膜及其制备方法
CN100437950C (zh) 高度取向的氧化锌纳米柱阵列的超声辅助水溶液制备方法
Aghazadeh et al. Electrochemical preparation and characterization of brain-like nanostructures of Y2O3
Dong et al. Fabrication of ZnO nanorod arrays via electrospinning assisted hydrothermal method
CN105668555A (zh) 一种制备三维石墨烯的方法
Laila et al. Synthesis and characterization of ZnO nanorods by hydrothermal methods and its application on perovskite solar cells
CN108281550B (zh) 基于镁掺杂二氧化钛的钙钛矿太阳能电池及其制备方法
CN102728289A (zh) 一种二氧化锡-二氧化钛核壳纳米结构的制备方法
CN106830072B (zh) 一种二氧化钛纳米线阵列的制备方法
KR101248837B1 (ko) 표면에 나노 세공을 갖는 산화아연 나노로드의 제조방법 및 이에 의하여 제조된 표면에 나노 세공을 갖는 산화아연 나노로드
CN104198560A (zh) 一种石墨烯修饰的多孔二氧化钛复合膜的制备方法
CN107699855A (zh) 一种具有高光催化效率的二氧化钛纳米棒薄膜及其制备方法
CN102795665B (zh) 二氧化钛纳米管(杆)阵列的制备方法
Li et al. High-efficiency perovskite solar cell based on TiO2 nanorod arrays under natural ambient conditions: Solvent effect
WO2020258960A1 (zh) 一种基于水热法快速生长ZnO纳米多孔薄膜的方法
Wang et al. Growth and interconversion of ZnO nanostructure films on different substrates
CN102992392B (zh) 一种钛酸锶空心纳米棒阵列的制备方法
CN113087012B (zh) 一种钙钛矿太阳能电池TiO2电子传输层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190129