WO2020258960A1 - 一种基于水热法快速生长ZnO纳米多孔薄膜的方法 - Google Patents
一种基于水热法快速生长ZnO纳米多孔薄膜的方法 Download PDFInfo
- Publication number
- WO2020258960A1 WO2020258960A1 PCT/CN2020/081900 CN2020081900W WO2020258960A1 WO 2020258960 A1 WO2020258960 A1 WO 2020258960A1 CN 2020081900 W CN2020081900 W CN 2020081900W WO 2020258960 A1 WO2020258960 A1 WO 2020258960A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zno
- nanoporous film
- substrate
- rapidly growing
- mixed solution
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
- C03C17/23—Oxides
- C03C17/25—Oxides by deposition from the liquid phase
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1216—Metal oxides
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/21—Oxides
- C03C2217/216—ZnO
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/11—Deposition methods from solutions or suspensions
Definitions
- the invention relates to a method for preparing nano materials, in particular to a method for rapidly growing a ZnO nano porous film based on a hydrothermal method.
- zinc oxide nanoporous film is one of the current research hotspots.
- the zinc oxide nanoporous film has a large specific surface area, especially the ZnO porous film with biological hierarchical pore structure, which shows quite excellent performance in gas sensing, energy storage, and photoelectric detection. Therefore, the zinc oxide nanoporous film has broad application prospects.
- the present invention provides a method for rapidly growing ZnO nanoporous film based on the hydrothermal method.
- the present invention has the advantages of short growth period and good dispersibility.
- the technical scheme of the present invention is: a method for rapidly growing a ZnO nanoporous film based on a hydrothermal method, including the following steps:
- step S2 the volume ratio of the deionized water to ethylene glycol is 1:0.35.
- the substrate is any one of 2 ⁇ 2 cm-2 inch glass, Si, sapphire, and metal substrate.
- step S4) the substrate is plated with a ZnO seed layer of 10-50 nm.
- step S5 the pores of the ZnO nanoporous film are divided into two levels, wherein the diameter of the macropores is 300-800 nm, and the diameter of the small pores is 10-80 nm.
- the ZnO nanoporous film is composed of ZnO nanosheets.
- the thickness of the ZnO nanosheet is 10-30 nm.
- the ZnO nano porous film prepared by the invention can be widely used in photocatalytic degradation, photoelectric detectors, and gas-sensitive detectors.
- the preparation process of the invention is mature, the formula is simple, and the ZnO nanoporous film can be prepared without particularly expensive equipment, which is beneficial to reduce production costs.
- the ZnO nanoporous film prepared by the present invention has multi-level pores formed spontaneously, which is beneficial to improve the performance of the film.
- Figure 1 is a low-power scanning electron microscope (SEM) image of the ZnO nanoporous film prepared in Example 1 of the present invention
- Example 2 is a high-power scanning electron microscope (SEM) image of the ZnO nanoporous film prepared in Example 1 of the present invention
- Example 3 is an X-ray diffraction (XRD) pattern of the ZnO nanoporous film prepared in Example 1 of the invention
- Example 5 is a schematic diagram of the photoelectric sensor or gas sensor structure of the ZnO nanoporous film prepared in Example 1 of the present invention.
- Figure 6 is a high-power scanning electron microscope (SEM) of the ZnO nanoporous film prepared in Example 2 of the present invention.
- a method for rapidly growing a ZnO nanoporous film based on a hydrothermal method includes the following steps:
- Figure 1 and Figure 2 are low-power and high-power scanning electron microscope (SEM) images of the ZnO nanoporous film prepared in this example.
- SEM scanning electron microscope
- Figure 3 is the X-ray diffraction (XRD) pattern of the ZnO nanoporous film prepared in this example. It can be seen from the figure that strong ZnO (100) appears at approximately 31.5°, 34.5°, 36.1° and 47.7°. ), (002), (101) and (102) diffraction peaks, which shows that the growth of nanoporous film is ZnO.
- XRD X-ray diffraction
- Figure 4 is the absorption spectrum of the photocatalytic degradation of methylene blue of the ZnO nanoporous film prepared in this example. It can be seen from the figure that after 4 hours of photocatalytic degradation, the absorbance of methylene blue is reduced from 5.90 to 0.53, thus It shows that ZnO nanoporous film has good photocatalytic degradation function.
- FIG. 5 is a gas sensor or photodetector prepared by the ZnO nanoporous film prepared in this embodiment, where 11 is the ZnO nanoporous film, and 12 is a metal electrode.
- a Pt target is sputtered on the ZnO nanoporous film with a gold sprayer for 5-10s before the metal electrode is vaporized, thereby modifying a layer of Pt quantum dots on the ZnO nanoporous film.
- a method for rapidly growing a ZnO nanoporous film based on a hydrothermal method includes the following steps:
- the high-power scanning electron microscope (SEM) image of the ZnO nanoporous film prepared in this example is shown in FIG. 6, and its structure is similar to that of Example 1.
- a method for rapidly growing a ZnO nanoporous film based on a hydrothermal method includes the following steps:
- a method for rapidly growing a ZnO nanoporous film based on a hydrothermal method includes the following steps:
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Thermal Sciences (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Composite Materials (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
Abstract
一种基于水热法快速生长ZnO纳米多孔薄膜的方法,其主要包括S1)、利用氯化锌、六甲基次四胺配置生长溶液;S2)、采用乙醇、去离子水超声波清洗衬底5-8次,并采用气枪吹干;S3)、将生长溶液和清洗干净的衬底放入高压釜当中,密封之后放入烘箱中,以实现ZnO纳米多孔薄膜的生长,从而获得ZnO纳米多孔薄膜。
Description
本发明涉及纳米材料的制备方法,尤其是一种基于水热法快速生长ZnO纳米多孔薄膜的方法。
氧化锌是第三代半导体材料,它具有禁带宽度(Eg=3.37eV)较大、化学稳定性好、生物兼容性良好、制备方法简单等众多优点,因而受到了研究人员的青睐。尤其是,当氧化锌做成纳米材料时,其独特的体积效应、量子尺寸效应、表面效应、隧道效应、压电效应以及光催化性质等,使得纳米氧化锌材料有望在光学、电学、生物医学等领域发挥积极的作用。因此,氧化锌纳米材料的可控制备一直是该领域材料研究的一个热点。
其中,氧化锌纳米多孔薄膜是目前的研究热点之一。氧化锌纳米多孔薄膜具有大的比表面积,尤其是具有生物多级孔结构的ZnO多孔薄膜,更是在气敏传感、能源存贮、光电探测方面表现出相当优异的性能。因此,氧化锌纳米多孔薄膜具有广阔的应用前景。
目前,制备氧化锌纳米多孔薄膜的方法较多,主要是溶胶-凝胶法。为了获得相对规则的孔径,通常需要采用模板法,利用聚苯乙烯微球作为模板,成本相对较高;为了获得多级孔,通常需要采用多步合成的方法,工艺相对复杂,所需设备也较为昂贵。
发明内容
针对现有技术的不足,本发明提供一种基于水热法快速生长ZnO纳米多孔薄膜的方法,本发明具有生长周期短、分散性好的优点。
本发明的技术方案为:一种基于水热法快速生长ZnO纳米多孔薄膜的方法,包括以下步骤:
S1)、生长溶液,将1.0-2.5g氯化锌或者碳酸锌加入到一定量的乙二醇中,在室温下加班均匀,得到混合溶液A;
S2)、将将0.4-1.2g六甲基次四胺加入到10-40mL的去离子水中,在温度为60-80℃条件下采用磁力搅拌30-60min,获得澄清混合溶液B;
S3)、将混合溶液A和混合溶液B混合,并在室温下磁力搅拌30-60min,获得所需的生长溶液;
S4)、清洗衬底,采用乙醇、去离子水超声波清洗衬底5-8次,并采用气枪吹干;
S5)、ZnO纳米多孔薄膜的生长,将生长溶液和清洗干净的衬底放入高压釜当中,密封之后放入烘箱中,在80-100℃保温3-20min,然后自然冷却至室温,取出样品,使用乙醇清洗残余溶液,并烘干,即可在衬底上获得ZnO纳米多孔薄膜。
进一步的,步骤S2)中,所述的去离子水与乙二醇的体积比为1:0.35。
进一步的,步骤S4)中,所述的衬底为2×2cm-2英寸的玻璃、Si、蓝宝石、金属基板中的任意一种。
进一步的,步骤S4)中,所述的衬底上镀有10-50nm的ZnO种子层。
进一步的,步骤S5)中,所述的ZnO纳米多孔薄膜的孔分为两级,其中,大孔的直径尺寸为300-800nm,小孔的直径尺寸为10-80nm。
进一步的,步骤S5)中,所述的所述ZnO纳米多孔薄膜由ZnO纳米片构成。
进一步的,所述的ZnO纳米片的厚度在10-30nm。
本发明制备的ZnO纳米多孔薄膜可广泛应用于光催化降解、光电探测器、气敏探测器。
本发明的有益效果为:
1、本发明制备工艺成熟,配方简单,无需特别昂贵的设备即可制备ZnO纳米多孔薄膜,有利益降低生产成本。
2、本发明制备ZnO纳米多孔薄膜具有自发形成的多级孔,有利于提高薄膜的性能。
图1为本发明的实施例1制备的ZnO纳米多孔薄膜的低倍扫描电子显微镜(SEM)图;
图2为本发明的实施例1制备的ZnO纳米多孔薄膜的高倍扫描电子显微镜(SEM)图;
图3为发明的实施例1制备的ZnO纳米多孔薄膜的X射线衍射(XRD)图谱;
图4为本发明的实施例1制备的ZnO纳米多孔薄膜的光催化降解亚甲基蓝的吸收图谱;
图5为本发明的实施例1制备的ZnO纳米多孔薄膜的光电传感器或者气敏传感器结构示意图;
图6为本发明的实施例2制备的ZnO纳米多孔薄膜的高倍扫描电子显微镜(SEM)。
图中,11-ZnO纳米多孔薄膜,12-金属电极。
下面结合附图对本发明的具体实施方式作进一步说明:
实施例1
一种基于水热法快速生长ZnO纳米多孔薄膜的方法,包括以下步骤:
S1)、生长溶液,将1.0g氯化锌或者碳酸锌(分析纯,99%以上)加入到一定量的乙二醇中,在室温下加班均匀,得到混合溶液A;
S2)、将将0.4g六甲基次四胺(分析纯)加入到20mL的去离子水中,在温度为80℃条件下采用磁力搅拌30min,获得澄清混合溶液B;
S3)、将混合溶液A和混合溶液B混合,并在室温下磁力搅拌30-60min,获得所需的生长溶液;
S4)、清洗衬底,采用乙醇、去离子水超声波清洗衬底5次,并采用气枪吹干;
S5)、ZnO纳米多孔薄膜的生长,将生长溶液和清洗干净的衬底放入高压釜当中,密封之后放入烘箱中,在90℃保温3min,然后自然冷却至室温,取出样品,使用乙醇清洗残余溶液,并烘干,即可在衬底上获得ZnO纳米多孔薄膜。
图1和图2分别为本实施例制备的ZnO纳米多孔薄膜的低倍和高倍扫描电子显微镜(SEM)图,从图1中可以看出,ZnO纳米多孔薄膜占据很较大的面积,而且分布较均匀;从图3中可以看出,样品由ZnO纳米多孔薄膜组成,具有较好的分散性,纳米片的厚度为17nm,孔分为两级,大孔的直径尺寸为300-650nm,小孔的直径尺寸为20-60nm。
图3为本实施例制备的ZnO纳米多孔薄膜的X射线衍射(XRD)图谱,从图中可以看出,在大约31.5°、34.5°、36.1°和47.7°处出现了较强烈的ZnO(100)、(002)、(101)和(102)衍射峰,由此说明,生长纳米多孔薄膜是ZnO。
图4为本实施例制备的ZnO纳米多孔薄膜的光催化降解亚甲基蓝的吸收图谱,从图中可以看出,经过4h的光催化降解之后,亚甲基蓝的吸收度由原来的5.90降低至0.53,由此说明,ZnO纳米多孔薄膜具有良好的光催化降解功能。
图5为本实施例制备的ZnO纳米多孔薄膜制备的气敏传感器或者光电探测器,其中,11为ZnO纳米多孔薄膜,12为金属电极。为了提高器件的灵敏度,在蒸镀金属电极之前,使用喷金仪在ZnO纳米多孔薄膜溅射Pt靶5-10s,从而在ZnO纳米多孔薄膜修饰一层Pt量子点。
实施例2
一种基于水热法快速生长ZnO纳米多孔薄膜的方法,包括以下步骤:
S1)、生长溶液,将1.5g氯化锌或者碳酸锌(分析纯,99%以上)加入到一定量的乙二醇中,在室温下加班均匀,得到混合溶液A;
S2)、将将0.6g六甲基次四胺(分析纯)加入到40mL的去离子水中,在温度为80℃条件下采用磁力搅拌60min,获得澄清混合溶液B;
S3)、将混合溶液A和混合溶液B混合,并在室温下磁力搅拌60min,获得所需的生长 溶液;
S4)、清洗衬底,采用乙醇、去离子水超声波清洗衬底8次,并采用气枪吹干;
S5)、ZnO纳米多孔薄膜的生长,将生长溶液和清洗干净的衬底放入高压釜当中,密封之后放入烘箱中,在100℃保温20min,然后自然冷却至室温,取出样品,使用乙醇清洗残余溶液,并烘干,即可在衬底上获得ZnO纳米多孔薄膜。
该实施例制备的ZnO纳米多孔薄膜的高倍扫描电子显微镜(SEM)图如图6所示,其结构与实施例1相似。
实施例3
一种基于水热法快速生长ZnO纳米多孔薄膜的方法,包括以下步骤:
S1)、生长溶液,将2.5g氯化锌或者碳酸锌加入到15mL的乙二醇中,在室温下加班均匀,得到混合溶液A;
S2)、将将1.2g六甲基次四胺加入到40mL的去离子水中,在温度为80℃条件下采用磁力搅拌40min,获得澄清混合溶液B;
S3)、将混合溶液A和混合溶液B混合,并在室温下磁力搅拌60min,获得所需的生长溶液;
S4)、清洗衬底,采用乙醇、去离子水超声波清洗衬底7次,并采用气枪吹干;
S5)、ZnO纳米多孔薄膜的生长,将生长溶液和清洗干净的衬底放入高压釜当中,密封之后放入烘箱中,在95℃保温10min,然后自然冷却至室温,取出样品,使用乙醇清洗残余溶液,并烘干,即可在衬底上获得ZnO纳米多孔薄膜。
实施例4
一种基于水热法快速生长ZnO纳米多孔薄膜的方法,包括以下步骤:
S1)、生长溶液,将2g氯化锌或者碳酸锌加入到10.5mL的乙二醇中,在室温下加班均匀,得到混合溶液A;
S2)、将将1.0g六甲基次四胺加入到30mL的去离子水中,在温度为78℃条件下采用磁力搅拌60min,获得澄清混合溶液B;
S3)、将混合溶液A和混合溶液B混合,并在室温下磁力搅拌60min,获得所需的生长溶液;
S4)、清洗衬底,采用乙醇、去离子水超声波清洗衬底8次,并采用气枪吹干;
S5)、ZnO纳米多孔薄膜的生长,将生长溶液和清洗干净的衬底放入高压釜当中,密封之 后放入烘箱中,在100℃保温18min,然后自然冷却至室温,取出样品,使用乙醇清洗残余溶液,并烘干,即可在衬底上获得ZnO纳米多孔薄膜。
上述实施例和说明书中描述的只是说明本发明的原理和最佳实施例,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。
Claims (7)
- 一种基于水热法快速生长ZnO纳米多孔薄膜的方法,其特征在于,包括以下步骤:S1)、生长溶液,将1.0-2.5g氯化锌或者碳酸锌加入到一定量的乙二醇中,在室温下加班均匀,得到混合溶液A;S2)、将将0.4-1.2g六甲基次四胺加入到10-40mL的去离子水中,在温度为60-80℃条件下采用磁力搅拌30-60min,获得澄清混合溶液B;S3)、将混合溶液A和混合溶液B混合,并在室温下磁力搅拌30-60min,获得所需的生长溶液;S4)、清洗衬底,采用乙醇、去离子水超声波清洗衬底5-8次,并采用气枪吹干;S5)、ZnO纳米多孔薄膜的生长,将生长溶液和清洗干净的衬底放入高压釜当中,密封之后放入烘箱中,在80-100℃保温3-20min,然后自然冷却至室温,取出样品,使用乙醇清洗残余溶液,并烘干,即可在衬底上获得ZnO纳米多孔薄膜。
- 根据权利要求1所述的一种基于水热法快速生长ZnO纳米多孔薄膜的方法,其特征在于:步骤S2)中,所述的去离子水与乙二醇的体积比为1:0.35。
- 根据权利要求1所述的一种基于水热法快速生长ZnO纳米多孔薄膜的方法,其特征在于:步骤S4)中,所述的衬底为2×2cm-2英寸的玻璃、Si、蓝宝石、金属基板中的任意一种。
- 根据权利要求1所述的一种基于水热法快速生长ZnO纳米多孔薄膜的方法,其特征在于:步骤S4)中,所述的衬底上镀有10-50nm的ZnO种子层。
- 根据权利要求1所述的一种基于水热法快速生长ZnO纳米多孔薄膜的方法,其特征在于:步骤S5)中,所述的ZnO纳米多孔薄膜的孔分为两级,其中,大孔的直径尺寸为300-800nm,小孔的直径尺寸为10-80nm。
- 根据权利要求1所述的一种基于水热法快速生长ZnO纳米多孔薄膜的方法,其特征在于:步骤S5)中,所述的所述ZnO纳米多孔薄膜由ZnO纳米片构成。
- 根据权利要求6所述的一种基于水热法快速生长ZnO纳米多孔薄膜的方法,其特征在于:所述的ZnO纳米片的厚度在10-30nm。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910560268.3 | 2019-06-26 | ||
CN201910560268.3A CN110331388B (zh) | 2019-06-26 | 2019-06-26 | 一种基于水热法快速生长ZnO纳米多孔薄膜的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020258960A1 true WO2020258960A1 (zh) | 2020-12-30 |
Family
ID=68142844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/081900 WO2020258960A1 (zh) | 2019-06-26 | 2020-03-28 | 一种基于水热法快速生长ZnO纳米多孔薄膜的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110331388B (zh) |
WO (1) | WO2020258960A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110331388B (zh) * | 2019-06-26 | 2021-05-28 | 五邑大学 | 一种基于水热法快速生长ZnO纳米多孔薄膜的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101823759A (zh) * | 2010-04-01 | 2010-09-08 | 江苏工业学院 | 连续大面积氧化锌纳米薄片及其制备方法 |
CN101844876A (zh) * | 2010-05-14 | 2010-09-29 | 北京科技大学 | 一种大面积高取向性的氧化锌纳米薄片阵列的制备方法 |
JP2011111346A (ja) * | 2009-11-25 | 2011-06-09 | National Institute Of Advanced Industrial Science & Technology | Zn(OH)2ナノシートとZnOナノウィスカー膜によるハイブリッドフィルム、ZnOナノシートとZnOナノウィスカー膜によるハイブリッドフィルム、およびそれらの作製方法 |
CN102693844A (zh) * | 2012-05-30 | 2012-09-26 | 辽宁工业大学 | 采用脉冲电磁场制备Al掺杂ZnO纳米片阵列的方法 |
EP3319133A1 (en) * | 2015-06-24 | 2018-05-09 | Consejo Superior De Investigaciones Científicas | System and device for collecting piezoelectric energy |
CN110331388A (zh) * | 2019-06-26 | 2019-10-15 | 五邑大学 | 一种基于水热法快速生长ZnO纳米多孔薄膜的方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101777975B1 (ko) * | 2016-08-30 | 2017-09-26 | 고려대학교 산학협력단 | 나노섬유-나노선 복합체 및 그 제조방법 |
CN107887592B (zh) * | 2017-11-17 | 2020-09-01 | 武汉理工大学 | 碳包覆ZnO纳米线及其制备方法和应用 |
CN108411614B (zh) * | 2018-03-02 | 2020-11-24 | 华南理工大学 | 一种基于氧化锌/银纳米线杂化网络的柔性多功能传感纤维及其制备方法 |
-
2019
- 2019-06-26 CN CN201910560268.3A patent/CN110331388B/zh active Active
-
2020
- 2020-03-28 WO PCT/CN2020/081900 patent/WO2020258960A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011111346A (ja) * | 2009-11-25 | 2011-06-09 | National Institute Of Advanced Industrial Science & Technology | Zn(OH)2ナノシートとZnOナノウィスカー膜によるハイブリッドフィルム、ZnOナノシートとZnOナノウィスカー膜によるハイブリッドフィルム、およびそれらの作製方法 |
CN101823759A (zh) * | 2010-04-01 | 2010-09-08 | 江苏工业学院 | 连续大面积氧化锌纳米薄片及其制备方法 |
CN101844876A (zh) * | 2010-05-14 | 2010-09-29 | 北京科技大学 | 一种大面积高取向性的氧化锌纳米薄片阵列的制备方法 |
CN102693844A (zh) * | 2012-05-30 | 2012-09-26 | 辽宁工业大学 | 采用脉冲电磁场制备Al掺杂ZnO纳米片阵列的方法 |
EP3319133A1 (en) * | 2015-06-24 | 2018-05-09 | Consejo Superior De Investigaciones Científicas | System and device for collecting piezoelectric energy |
CN110331388A (zh) * | 2019-06-26 | 2019-10-15 | 五邑大学 | 一种基于水热法快速生长ZnO纳米多孔薄膜的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110331388A (zh) | 2019-10-15 |
CN110331388B (zh) | 2021-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties | |
CN106732738B (zh) | 一种石墨烯/g-C3N4三维网络复合薄膜及其制备和应用 | |
CN104556230B (zh) | 二硫化钼纳米绣球花结构半导体材料及其制备方法 | |
CN108807681B (zh) | 一种基于低温二氧化钛纳米棒的钙钛矿太阳能电池 | |
CN109103029A (zh) | 一种螺旋纳米碳纤维/TiO2复合材料及其应用 | |
CN108807007B (zh) | 三维纳米线状孔碳材料以及高电压微型超级电容器的制作工艺 | |
CN109950399B (zh) | 一种空穴传输层的制备方法及反式钙钛矿太阳能电池 | |
CN114392734B (zh) | 一种氧化钨复合材料及其制备方法和应用 | |
CN109065726A (zh) | 一种基于表面等离激元共振的二维层状钙钛矿光电探测器及其制作方法 | |
CN108511607B (zh) | TiO2曲奇状微球的制备方法以及制备钙钛矿太阳能电池的方法 | |
WO2020258960A1 (zh) | 一种基于水热法快速生长ZnO纳米多孔薄膜的方法 | |
CN105702756B (zh) | 一种具有二维光子晶体结构的光电极及其制备方法 | |
CN106277822A (zh) | 硅纳米柱状阵列材料及其制备方法 | |
CN105731518B (zh) | 一种八面体氧化亚铜晶体常温结晶制备方法 | |
CN114883503A (zh) | 少层TiO2-MXene复合材料及其制备方法和应用 | |
CN105428539B (zh) | 一种控制退火时压强气氛提高其光电性能的钙钛矿太阳能电池吸收层的制备方法 | |
CN110233054A (zh) | 一种非对称超级电容器及其制备方法 | |
WO2021093155A1 (zh) | 微生物燃料电池与混合型超级电容器集成的柔性器件及制备方法与应用 | |
CN109183124A (zh) | 一种窄禁带黑氧化锆纳米管薄膜及其制备方法 | |
CN105236472A (zh) | 一种SnO2纳米线阵列的制备方法 | |
CN106830072B (zh) | 一种二氧化钛纳米线阵列的制备方法 | |
CN105198004B (zh) | 一种Fe3O4‑SnO2纳米复合材料及其制备方法 | |
CN108031481B (zh) | 一种银插层剥离的超薄卤氧化铋纳米片光催化剂及其制备方法 | |
WO2020258959A1 (zh) | 一种ZnO纳米片及其制备方法 | |
CN110918085A (zh) | 一种多孔wo3/c纳米片介孔复合光催化剂的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20832317 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20832317 Country of ref document: EP Kind code of ref document: A1 |