WO2021093155A1 - 微生物燃料电池与混合型超级电容器集成的柔性器件及制备方法与应用 - Google Patents

微生物燃料电池与混合型超级电容器集成的柔性器件及制备方法与应用 Download PDF

Info

Publication number
WO2021093155A1
WO2021093155A1 PCT/CN2020/071047 CN2020071047W WO2021093155A1 WO 2021093155 A1 WO2021093155 A1 WO 2021093155A1 CN 2020071047 W CN2020071047 W CN 2020071047W WO 2021093155 A1 WO2021093155 A1 WO 2021093155A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
microbial fuel
hybrid supercapacitor
nanomaterial
flexible device
Prior art date
Application number
PCT/CN2020/071047
Other languages
English (en)
French (fr)
Inventor
邱文达
黎彧
肖红兵
周纯
Original Assignee
广东轻工职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东轻工职业技术学院 filed Critical 广东轻工职业技术学院
Publication of WO2021093155A1 publication Critical patent/WO2021093155A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/08Structural combinations, e.g. assembly or connection, of hybrid or EDL capacitors with other electric components, at least one hybrid or EDL capacitor being the main component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the technical field of integration of electrochemical energy conversion and storage, and in particular relates to a flexible device integrated with a microbial fuel cell and a hybrid supercapacitor, and a preparation method and application.
  • microbial fuel cell is a technology that directly decomposes organic waste through biological oxidation and generates electricity at the same time, which has a good development prospect.
  • the output power density of microbial fuel cells as power generation equipment is relatively low, which is a problem that limits its practical application.
  • hybrid supercapacitor devices have attracted attention for their high power density, long life, good safety, and moderate energy density.
  • current hybrid supercapacitor devices are greatly troubled by the quantity of positive electrode materials. Therefore, high-power density microbial fuel cells and high-energy density hybrid supercapacitor devices urgently need to make further breakthroughs in high-performance cathode materials.
  • the primary purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art and provide a flexible device integrating microbial fuel cells and hybrid supercapacitors to solve the above-mentioned problems of collection and storage of renewable energy with high power output, and to achieve energy The purpose of integration of transformation and storage.
  • Another object of the present invention is to provide a method for preparing a flexible device integrated with the above-mentioned microbial fuel cell and hybrid supercapacitor.
  • Another object of the present invention is to provide the application of the flexible device integrated with the microbial fuel cell and the hybrid supercapacitor.
  • a method for preparing a flexible device integrating a microbial fuel cell and a hybrid supercapacitor includes the following steps: connecting the microbial fuel cell and the hybrid supercapacitor in series.
  • the number of the microbial fuel cell is preferably more than one.
  • the microbial fuel cell is preferably a single-chamber microbial fuel cell, more preferably a single-chamber microbial fuel cell with a size of 4 ⁇ 5 ⁇ 5 cm 3 .
  • the microbial fuel cell is preferably composed of a chamber, a single-sided membrane cathode, an anode, and an anolyte.
  • the chamber is preferably made of polymethyl methacrylate.
  • the anode is preferably a 3DPG anode.
  • the size of the single-sided film cathode and the 3DPG anode is preferably 4 ⁇ 4 cm 2 .
  • the preparation method of the single-sided membrane cathode is as follows: the PNCO x nanomaterial is tightly attached to the cation exchange membrane by a hot pressing method to obtain a single-sided membrane cathode.
  • the preparation method of the anolyte is as follows: take 10.0g NaHCO 3 , 11.2g NaH 2 PO 4 ⁇ 2H 2 O, 10.0g glucose and 5.0g yeast extract into a beaker, and then add 5mmol of 2-hydroxy-1, 4-Naphthoquinone (HNQ), after stirring evenly, dilute the volume in a 1000mL constant volume bottle to obtain the anolyte.
  • HNQ 2-hydroxy-1, 4-Naphthoquinone
  • the anolyte preferably also includes bacterial solution.
  • the preparation method of the bacterial liquid is as follows: inoculate the activated Escherichia coli into an oxygen-depleted medium, and culture it under anaerobic conditions at 37°C for 18 hours.
  • Said Escherichia coli is preferably Escherichia coli K12.
  • the inoculation amount of E. coli is preferably 1/9 of the volume of the culture medium.
  • the method for removing oxygen is preferably by blowing nitrogen into the culture medium for 20 minutes.
  • the preparation method of the medium is as follows: Take peptone, NaCl, and beef powder, add distilled water to make the concentration of peptone, NaCl, and beef powder 10g/L, 5g/L, 3g/L, and sterilize at 121°C. Stand by after 20min.
  • the hybrid supercapacitor is preferably prepared by the following method: the positive electrode material, the negative electrode material and the solid electrolyte are packaged to obtain the hybrid supercapacitor.
  • the shape of the positive electrode material and the negative electrode material is preferably 0.5 cm ⁇ 2 cm rectangle.
  • the positive electrode material is preferably a NiCo 2 O 4 (PNCO x ) nanomaterial modified with oxygen vacancies and phosphate ions.
  • PNCO x NiCo 2 O 4
  • the negative electrode material is preferably a three-dimensional mesoporous graphene (3DPG) nano material.
  • the solid electrolyte is preferably PVA/LiCl gel.
  • the packaging is preferably completed by a packaging machine.
  • the PNCO x nano material is preferably prepared by the following steps:
  • the NCO nanowire array material described in step (1) is preferably prepared on a flexible carbon cloth substrate by a hydrothermal method, and the specific steps are as follows:
  • the flexible carbon is arranged in absolute ethanol and ultrasonically processed to prepare a flexible carbon cloth substrate;
  • the dissolution condition in step 2 is preferably dissolution at room temperature.
  • the room temperature is preferably 10 to 30°C; more preferably 24 to 26°C.
  • the water described in step 2 is preferably deionized water.
  • the ratio of Ni(NO 3 ) 2 ⁇ 6H 2 O to water in terms of mass (g) and volume (L) in step 2 is preferably 5-150:3; more preferably 10:1.
  • the ratio of Co(NO 3 ) 2 ⁇ 6H 2 O to water by mass (g) to volume (L) in step 2 is preferably 10-240:3; more preferably 20:1.
  • the ratio of thiourea and water in terms of mass (g) to volume (L) in step 2 is preferably 5-150:3; more preferably 10:1.
  • the ratio of NH 4 F and water in terms of mass (g) to volume (L) in step 2 is preferably 5-150:3; more preferably 10:1.
  • the hydrothermal reaction conditions described in step 2 are preferably 80-200°C for 6-36 hours; more preferably 120°C for 12 hours.
  • the cooling described in step 3 is preferably natural cooling.
  • the flushing described in step 3 is preferably flushing with deionized water.
  • the PNCO x nanomaterial described in step (2) is preferably prepared by introducing oxygen vacancies and phosphate ions to the surface of the NCO nanomaterial prepared in step (1) by in-situ phosphating technology.
  • the specific steps are as follows:
  • step (1) Take the NCO nanomaterial grown on the flexible carbon cloth obtained in step (1) and place it in a tube, add NaH 2 PO 2 ⁇ H 2 O to the tube, and then vacuum the tube;
  • the tube described in step (A) is preferably a quartz tube.
  • the specification of the flexible carbon cloth described in step (A) is preferably a flexible carbon cloth of 2 ⁇ 3 cm 2 .
  • the amount of NaH 2 PO 2 ⁇ H 2 O described in step (A) is preferably 2 g.
  • the evacuation in step (A) is preferably evacuation to 20 mTorr.
  • the injection flow rate of N 2 in step (B) is preferably 100 mL/min.
  • reaction conditions described in step (B) are preferably 200-300°C heating reaction for 3 hours; more preferably 300°C heating reaction for 3 hours.
  • the cooling in step (B) is preferably natural cooling.
  • the 3DPG nanomaterials are preferably prepared through the following steps:
  • step (I) for preparing graphene oxide preferably refers to paragraph 12 of patent CN108395578A.
  • the mass ratio of graphene oxide to KOH described in step (II) is preferably 40-60:148.1; more preferably 60:148.1.
  • step (II) The specification of the carbon cloth described in step (II) is 2 ⁇ 3 cm 2 .
  • reaction conditions described in step (II) are preferably 160-220°C for 3-8 hours; more preferably 160-180°C for 5 hours; most preferably 180°C for 5 hours.
  • a flexible device integrated with a microbial fuel cell and a hybrid supercapacitor is obtained by the above preparation method.
  • the flexible device integrated with a microbial fuel cell and a hybrid supercapacitor includes a microbial fuel cell and a hybrid supercapacitor device.
  • the positive electrode material of the microbial fuel cell and the hybrid supercapacitor device is a NiCo 2 O 4 nanowire array material (PNCO x nanomaterial) modified by oxygen vacancies and phosphate ions, the microbial fuel cell and the hybrid supercapacitor device
  • the negative electrode material is three-dimensional mesoporous graphene (3DPG) nanomaterials.
  • the present invention has the following advantages and effects:
  • the present invention directly prepares PNCO x nano electrode material and 3DPG nano electrode material on a flexible carbon cloth carrier, increases the specific surface area of the electrode material, thereby effectively improving the performance of hybrid supercapacitors and microbial fuel cells, and can be applied
  • a uniform NCO nanowire array can be grown on the flexible carbon cloth substrate
  • oxygen vacancies and phosphate ions introduced on the surface of NCO nanomaterials further increase the active sites and conductivity of NCO nanomaterials, making hybrid supercapacitors and microbial fuel cells reversible capacity, rate performance and Cycle stability has been greatly improved.
  • the present invention provides a flexible device integrating microbial fuel cells and hybrid supercapacitors for the collection and storage of high-power output renewable energy, which has the advantages of high energy density, good flexibility, etc., total power density, energy density, and The cycle life can meet the expected demand for the collection and storage of renewable energy with high power output; it can be applied to the field of electrochemical energy storage and conversion technology.
  • Figure 1 is a scanning electron microscope image of 3DPG in Example 1 when the scale is 50 ⁇ m.
  • Figure 2 shows the Raman spectrum and C1s high-resolution XPS diagram of 3DPG in Example 1: where a is the Raman spectrum; b is the high-resolution XPS diagram of C1s.
  • Figure 3 is the SEM image of PNCO x in Example 1 when the scale is 2 ⁇ m and 500nm : the image outside the dashed frame is the SEM image of PNCO x in Example 1 when the scale is 2 ⁇ m; the picture in the dashed frame is The scanning electron microscope image of PNCO x in Example 1 when the scale is 500 nm.
  • Figure 4 is the detection image of NCO and PNCO x ; where a is the TEM image of PNCO x in Example 1 when the scale is 100nm; b is the high-resolution TEM image of PNCO x in Example 1 when the scale is 2nm ; C X-ray powder diffraction pattern PNCO x NCO and Example 1; d is NCO embodiment PNCO x and Raman spectra of FIG. 1.
  • Fig. 5 is an X-ray energy spectrum analysis diagram of PNCO x in Example 1.
  • Figure 6 is the identification diagram of NCO and PNCO x ; among them, a is the full spectrum of X-ray photoelectron spectroscopy of NCO and PNCO x in Example 1; b is the high-resolution XPS image of Ni 2p in Example 1, and c is the implementation The high-resolution XPS image of Co 2p in Example 1, d is the high-resolution XPS image of O 1s in Example 1, and e is the high-resolution XPS image of P 2p in Example 1; f is the image of NCO and PNCO x in Example 1. Electron paramagnetic resonance spectrum.
  • Figure 7 is the rate performance graph of the hybrid supercapacitor in Example 1:
  • This graph is a dual Y-axis and X-axis graph, where the left Y axis is volume capacity, and the right Y axis is Coulomb efficiency; in the figure, the left arrow points to The point set on the left Y-axis corresponds to the volume capacity of the hybrid supercapacitor device, and the point set with the right arrow pointing to the right Y-axis corresponds to the coulombic efficiency of the hybrid supercapacitor device.
  • Figure 8 is a long-cycle performance graph of the hybrid supercapacitor in Example 1:
  • This graph is a dual Y-axis and X-axis graph, where the left Y axis is the capacity retention rate, and the right Y axis is the Coulomb efficiency; in the figure, use the left
  • the point set with the arrow pointing to the left Y axis corresponds to the capacity retention rate of the hybrid supercapacitor device
  • the point set with the right arrow pointing to the right Y axis corresponds to the Coulomb efficiency of the hybrid supercapacitor device.
  • Figure 9 is the polarization curve and power curve of the microbial fuel cell in Example 1:
  • This figure is a dual Y-axis co-X-axis diagram, where the left Y axis is the voltage of the microbial fuel cell, and the right Y axis is the power density;
  • the line with the left arrow pointing to the left Y-axis corresponds to the voltage of the microbial fuel cell
  • the line with the right arrow pointing to the right Y-axis corresponds to the power density of the microbial fuel cell.
  • Fig. 10 is a schematic diagram of charging a PNCO x //3DPG hybrid supercapacitor device using different numbers of PNCO x //3DPG microbial fuel cell devices in Example 1.
  • Fig. 11 is a curve of charging a PNCO x //3DPG hybrid supercapacitor device using different numbers of PNCO x //3DPG microbial fuel cell devices in Example 1.
  • Fig. 12 is a schematic diagram of charging a PNCO x //3DPG hybrid supercapacitor device using one PNCO x //3DPG microbial fuel cell device in Example 1.
  • the reagents used in the present invention are all commercially available.
  • the assembly of the microbial fuel cell uses a single-chamber (4 ⁇ 5 ⁇ 5cm 3 ) microbial fuel cell, a chamber made of polymethyl methacrylate, a single- sided membrane cathode (4 ⁇ 4cm 2 ), and a 3DPG anode (4 ⁇ 4cm) 2 ) Composition of anolyte.
  • the preparation method of the single-sided membrane cathode is as follows: the PNCO x nanomaterial is tightly attached to the cation exchange membrane by a hot pressing method to obtain a single-sided membrane cathode.
  • the preparation method of the anolyte is as follows: Take 10.0g NaHCO 3 , 11.2g NaH 2 PO 4 ⁇ 2H 2 O, 10.0g glucose and 5.0g yeast extract into a beaker, and then add 5mmol of 2-hydroxy-1,4- Naphthoquinone (HNQ), after stirring evenly, dilute the volume in a 1000mL constant-volume flask to obtain the anolyte.
  • HNQ 2-hydroxy-1,4- Naphthoquinone
  • the anolyte also includes bacterial solution.
  • the preparation method of the bacterial solution is as follows: Blow nitrogen into the culture medium for 20 minutes to eliminate oxygen, then inoculate 2 mL of activated Escherichia coli K12 into 18 mL of culture medium, and culture at 37°C for 18 hours under anaerobic conditions ;
  • the preparation method of the medium is as follows: Take peptone, NaCl, beef powder, add distilled water to make the concentration of peptone, NaCl, and beef powder 10g/L, 5g/L, 3g/L, respectively, sterilize at 121°C for 20 minutes stand-by.
  • the preparation methods of Examples 2 to 4 are the same as Example 1, except for the quality of NaH 2 PO 2 ⁇ H 2 O used in in-situ phosphating.
  • the specific quality control of NaH 2 PO 2 ⁇ H 2 O in the preparation methods of Examples 2 to 4 is shown in Table 1.
  • the electrochemical performance of the PNCO x nanomaterials was studied by referring to the same constant current charge-discharge test method in the above-mentioned effect embodiment 1.
  • PNCO x nano-materials prepared in Example 1 in the ratio of the capacity of 2mA / cm 2 corresponding time was 2.97F / cm 2
  • PNCO x nano materials prepared in Examples 2 to 4 In the test 2mA / cm 2 area ratio corresponding time capacity.
  • the preparation methods of Examples 5-6 are the same as that of Example 1, except for the temperature used for in-situ phosphating.
  • the specific temperature control in the preparation methods of Examples 5-6 is shown in Table 2.
  • the electrochemical performance of the PNCO x nanomaterials was studied by referring to the same constant current charge-discharge test method in the above-mentioned effect embodiment 1.
  • prepared in Examples 5-6 of the test capacity was embodiments PNCO x corresponding nanomaterials in 2mA / 2 cm when the area ratio of capacity .
  • Example 7-10 The preparation methods of Examples 7-10 are the same as Example 1, except for the concentration of graphene oxide.
  • the specific concentration control of graphene oxide in the preparation methods of Examples 7-10 is shown in Table 3.
  • the electrochemical performance of 3DPG nanomaterials was studied by referring to the same constant current charge-discharge test method of the above-mentioned effect embodiment 1.
  • 3DPG nano materials prepared in Examples 7 to 10 In the test 2mA / cm 2 area ratio corresponding time capacity.
  • Example 11-14 The preparation methods of Examples 11-14 are the same as that of Example 1, except for the temperature of the hydrothermal reaction for preparing 3DPG.
  • the specific temperature control in the preparation methods of Examples 11-13 is shown in Table 4.
  • the electrochemical performance of 3DPG nanomaterials was studied by referring to the same constant current charge-discharge test method of the above-mentioned effect embodiment 1.
  • 3DPG nano-materials corresponding to Examples 11-13 was prepared in 2mA / 2 cm when the area ratio of the capacity test embodiment.
  • Figure 2a shows the ratio of the peak intensity I D of two 3DPG nanomaterials: I G reaches 0.93, It shows that 3DPG has very rich edges and defects in the plane of the graphite sheet;
  • the PNCO x nanomaterials prepared in Example 1 were characterized by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray powder diffraction (XRD) and Raman spectroscopy, and the results are shown in Figure 4:
  • Figure 4a It shows that the PNCO x nanomaterials are mesoporous materials, and the one-dimensional nanowires are composed of many small nanoparticles;
  • Figure 4b shows that the interlayer spacing of PNCO x is 0.47 nm, and crystals are produced due to the introduction of oxygen vacancies and phosphate ions.
  • Figure 4c shows that the crystal structure of the NCO nanomaterials before and after the in-situ phosphating treatment remains the same, while the crystalline strength of the PNCO x obtained after the in-situ phosphating treatment decreases;
  • Figure 4d shows that the NCO nanomaterials are phosphorous in situ After chemical treatment, the Raman peak at 550cm-1 became smaller and wider, indicating that the PNCO x nanomaterial introduced oxygen vacancies.
  • the PNCO x nanomaterial prepared in Example 1 was characterized by X-ray energy spectroscopy (EDS), and the result is shown in Figure 5: it shows that phosphate ions have been successfully introduced into the surface of the NCO nanowire array.
  • the PNCO x nanomaterials prepared above were characterized by X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance spectroscopy, and the results are shown in Figure 6: indicating that oxygen vacancies and phosphate ions have been successfully introduced into the NCO nanowire array s surface.
  • XPS X-ray photoelectron spectroscopy
  • Figure 6 indicating that oxygen vacancies and phosphate ions have been successfully introduced into the NCO nanowire array s surface.
  • the constant current charge and discharge test method was used to study its energy storage performance.
  • the constant current charge and discharge test of the hybrid supercapacitor device was completed at room temperature and Shanghai Huachen CHI760D electrochemical workstation. , The voltage window of the test is 0 ⁇ 1.6V.
  • the hybrid supercapacitor device still has a capacity retention rate of 95.2% after continuous charging and discharging 10,000 times at a current density of 10mA/cm 2, indicating that the flexible quasi-solid hybrid supercapacitor device has a good Cycle stability.
  • the open circuit voltage of the microbial fuel cell can reach 0.59V, which is very close to the 0.60V of Pt/C-MFC.
  • the maximum output power can reach 3276.1mW / cm 2, / cm 2 higher than 2375mW Pt / C-MFC's.
  • the flexible device integrated with microbial fuel cell and hybrid supercapacitor has the characteristics of collection and storage of high-power output renewable energy, and also has the advantages of high energy density and flexibility. It is used in electrochemical energy storage and The field of transformation technology has great application prospects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inert Electrodes (AREA)

Abstract

一种微生物燃料电池与混合型超级电容器集成的柔性器件及制备方法与应用。所述微生物燃料电池和混合型超级电容器件的正极材料为PNCOx纳米材料,负极材料为3DPG纳米材料。该柔性器件直接在柔性碳布载体上制备了PNCOx纳米电极材料和3DPG纳米电极材料,提高了电极材料的比表面积,从而提升混合型超级电容器和微生物燃料电池的性能;此外,通过设定原位磷化的温度和时间,在NCO纳米材料表面引入的氧空位和磷酸根离子,增加NCO纳米材料的活性位点以及导电性,使得混合型超级电容器和微生物燃料电池的可逆容量、倍率性能及循环稳定性大幅度提升。该柔性器件可应用于电化学能源储存与转化技术领域。

Description

微生物燃料电池与混合型超级电容器集成的柔性器件及制备方法与应用 技术领域
本发明属于电化学能量转化与存储一体化技术领域,尤其涉及一种微生物燃料电池与混合型超级电容器集成的柔性器件及制备方法与应用。
背景技术
随着世界人口的急剧增长和人类社会的不断发展,人们对能源的各种需求日益增长,传统的化石能源明显已不能满足未来社会对能源的各种需求。另外,随着电子技术的飞速发展、各种便携式电子产品的大量普及,人们对化学电源的需求不断增加、对其性能要求也不断提高。然而,风能、太阳能、地热能、海洋能等一系列的新型绿色能源往往存在着地区分布不均衡的问题,且通常需要将其转化为电能才方便使用。因此,实现新能源的深度开发和高效利用,发展高比能量、清洁、安全的化学电源体系成为社会发展的重要需求。
在各种各样的发电设备中,微生物燃料电池是一种通过生物氧化直接分解有机废物并同时产生电能的技术,具有很好的发展前景。然而,与其他能量转换器件相比,微生物燃料电池作为发电设备的输出功率密度相对较低,这是限制其实际应用的一个问题。而在储能方面,混合型超级电容器件以其功率密度高、寿命长、安全性好、能量密度适中等显著特点而备受关注。令人遗憾的是,目前的混合型超级电容器件受到正极材料数量的极大困扰。因此,高功率密度的微生物燃料电池和高能量密度的混合型超级电容器件迫切需要在高性能正极材料方面取得进一步的突破。而且,将微生物燃料电池和混合型超级电容器件集成到一个具有相同材料和结构的系统中,将非常有利于高功率输出的可再生能源的收集和储存。因此,急需开发一种高性能的微生物燃料电池与混合型超级电容器集成的柔性器件。
发明内容
本发明的首要目的在于克服现有技术的缺点与不足,提供一种微生物燃料电池与混合型超级电容器集成的柔性器件,以解决上述高功率输出的可再生能源的收集和储存的问题,实现能源转化与储存一体化的目的。
本发明的另一目的在于提供上述微生物燃料电池与混合型超级电容器集成的柔性器件的制备方法。
本发明的再一目的在于提供所述的微生物燃料电池与混合型超级电容器集成的柔性器件的应用。
为实现上述目的,本发明通过下述技术方案实现:
一种微生物燃料电池与混合型超级电容器集成的柔性器件的制备方法,步骤如下:将微生物燃料电池与混合型超级电容器串联连接。
所述的微生物燃料电池的数量优选为一个以上。
所述的微生物燃料电池优选为单室微生物燃料电池,更优选为大小为4×5×5cm 3的单室微生物燃料电池。
所述的微生物燃料电池优选由腔室、单面膜阴极、阳极、阳极液组成。
所述的腔室优选由聚甲基丙烯酸甲酯制造。
所述的阳极优选为3DPG阳极。
所述的单面膜阴极及3DPG阳极大小优选为4×4cm 2
所述的单面膜阴极的制备方法如下:将PNCO x纳米材料利用热压方法紧贴到阳离子交换膜上,得到单面膜阴极。
所述的阳极液的制备方法如下:取10.0g NaHCO 3、11.2gNaH 2PO 4·2H 2O、10.0g葡萄糖和5.0g酵母浸膏放入烧杯中,然后加入5mmol的2-羟基-1,4-萘醌(HNQ),搅拌均匀后在1000mL定容瓶中定容,得到阳极液。
所述的阳极液优选还包括菌液。
所述的菌液的制备方法如下:将经活化的大肠杆菌(Escherichia coli)接种至去除氧气的培养基中,37℃无氧条件下进行培养18小时。
所述的大肠杆菌优选为大肠杆菌K12。
所述的大肠杆菌的接种量优选为培养基体积的1/9。
所述的去除氧气的方式优选为通过向培养基中通20分钟的氮气。
所述的培养基的制备方法如下:取蛋白胨、NaCl、牛肉粉,加蒸馏水定容,使蛋白胨、NaCl、牛肉粉的浓度分别为10g/L、5g/L、3g/L,121℃灭菌20min后待用。
所述的混合型超级电容器优选通过如下方法制备:将正极材料、负极材料以及固态电解液封装,得到混合型超级电容器。
所述的正极材料和负极材料的形状优选为0.5cm×2cm的长方形。
所述的正极材料优选为氧空位和磷酸根离子修饰的NiCo 2O 4(PNCO x)纳米材料。
所述的负极材料优选为三维介孔石墨烯(3DPG)纳米材料。
所述的固态电解液优选为PVA/LiCl凝胶。
所述的封装优选通过封装机完成。
所述的PNCO x纳米材料优选通过如下步骤制备:
(1)制备NiCo 2O 4(NCO)纳米线阵列材料;
(2)制备PNCO x纳米材料。
步骤(1)中所述的NCO纳米线阵列材料优选采用水热法在柔性碳布基底上制备,具体步骤如下:
①将柔性碳布置于无水乙醇中超声处理,制得柔性碳布基底;
②将Ni(NO 3) 2·6H 2O,Co(NO 3) 2·6H 2O,硫脲和NH 4F溶解于水中,得到溶液A;将步骤①得到的柔性碳布基底浸入溶液A中,进行水热反应;
③取出柔性碳布,冷却,冲洗,晾干,得到NCO纳米材料。
步骤②中所述溶解条件优选为室温下溶解。
所述的室温优选为10~30℃;更优选为24~26℃。
步骤②中所述的水优选为去离子水。
步骤②中所述的Ni(NO 3) 2·6H 2O与水按质量(g)体积(L)比优选为5~150:3;更优选为10:1。
步骤②中所述的Co(NO 3) 2·6H 2O与水按质量(g)体积(L)比优选为10~240:3;更优选为20:1。
步骤②中所述的硫脲与水按质量(g)体积(L)比优选为5~150:3;更优选为10:1。
步骤②中所述的NH 4F与水按质量(g)体积(L)比优选为5~150:3;更优选为10:1。
步骤②中所述的水热反应条件优选为80~200℃反应6~36h;更优选为120℃反应12h。
步骤③中所述的冷却优选为自然冷却。
步骤③中所述的冲洗优选采用去离子水冲洗。
步骤(2)中所述的PNCO x纳米材料优选通过原位磷化技术向步骤(1)制备的NCO纳米材料表面引入氧空位和磷酸根离子制备,具体步骤如下:
(A)取步骤(1)得到的生长在柔性碳布上的NCO纳米材料置于管中,向管中加入NaH 2PO 2·H 2O,然后对管抽真空;
(B)向上述抽真空的管中注入N 2,反应,冷却后停止注入N 2,得到PNCO x纳米材料。
步骤(A)中所述的管优选为石英管。
步骤(A)中所述的柔性碳布的规格优选为2×3cm 2的柔性碳布。
步骤(A)中所述的NaH 2PO 2·H 2O的用量优选为2g。
步骤(A)中所述的抽真空优选为抽真空至20mTorr。
步骤(B)中所述的N 2的注入流速优选为100mL/min。
步骤(B)中所述的反应条件优选为200~300℃加热反应3h;更优选为300℃加热反应3h。
步骤(B)中所述的冷却优选为自然冷却。
所述的3DPG纳米材料优选通过如下步骤制备:
(I)通过Hummers法制备氧化石墨烯,然后加入去离子水中分散,得到氧化石墨烯悬浮液;
(II)取氧化石墨烯悬浮液与KOH均匀混合,与一块碳布一起放入反应釜反应,得到石墨烯凝胶;
(III)将得到的石墨烯凝胶冷冻干燥,得到3DPG纳米材料。
步骤(I)中所述的Hummers法制备氧化石墨烯优选参照专利CN108395578A中第12段。
步骤(II)中所述的氧化石墨烯与KOH按质量比优选为40~60:148.1;更优选为60:148.1。
步骤(II)中所述的碳布的规格为2×3cm 2
步骤(II)中所述的反应条件优选为160~220℃反应3~8h;更优选为160~180℃反应5h;最优选为180℃反应5h。
一种微生物燃料电池与混合型超级电容器集成的柔性器件,通过上述制备方法得到。
所述的微生物燃料电池与混合型超级电容器集成的柔性器件包括微生物燃料电池和混合型超级电容器件。
所述的微生物燃料电池和混合型超级电容器件的正极材料为氧空位和磷酸根离子修饰的NiCo 2O 4纳米线阵列材料(PNCO x纳米材料),所述微生物燃料电池和混合型超级电容器件的负极材料为三维介孔石墨烯(3DPG)纳米材料。
所述的微生物燃料电池与混合型超级电容器集成的柔性器件在电化学能源储存与转化技术领域的应用。
本发明相对于现有技术具有如下的优点及效果:
1、本发明直接在柔性碳布载体上制备了PNCO x纳米电极材料和3DPG纳米电极材料,提高了电极材料的比表面积,从而有效地提升了混合型超级电容器和微生物燃料电池的性能,可应用于微生物燃料电池与混合型超级电容器集成的柔性器件的组装;通过设定水热反应的温度和时间,从而在柔性碳布基底上生长出均匀的NCO纳米线阵列;此外,通过设定原位磷化的温度和时间,在NCO纳米材料表面引入的氧空位和磷酸根离子,进一步增加NCO纳米材料的活性位点以及导电性,使得混合型超级电容器和微生物燃料电池的可逆容量、倍率性能及循环稳定性得到大幅度提升。
2、本发明提供了一种高功率输出的可再生能源的收集和储存的微生物燃料电池与混合型超级电容器集成的柔性器件,具有能量密度高、柔性好等优点,总功率密度、能量密度以及循环寿命能够满足对于高功率输出的可再生能源的收集和储存预期的需求;可应用于电化学能源储存与转化技术领域。
附图说明
图1是标尺为50μm时,实施例1中3DPG的扫描电镜图。
图2为实施例1中3DPG的拉曼光谱图和C1s高分辨XPS图:其中,a为拉曼光谱图;b为C 1s的高分辨XPS图。
图3是标尺为2μm、500nm时,实施例1中PNCO x的扫描电镜图:其中,虚线框外的图片是标尺为2μm时实施例1中PNCO x的扫描电镜图;虚线框内的图片是标尺为500nm时实施例1中PNCO x的扫描电镜图。
图4是NCO和PNCO x的检测图;其中,a是标尺为100nm时,实施例1中PNCO x的透 射电镜图;b是标尺为2nm时,实施例1中PNCO x的高分辨透射电镜图;c为实施例1中NCO和PNCO x的X射线粉末衍射图;d为实施例1中NCO和PNCO x的拉曼光谱图。
图5为实施例1中PNCO x的X射线能谱分析图。
图6是NCO和PNCO x的鉴定图;其中,a为实施例1中NCO和PNCO x的X射线光电子能谱全谱图;b为实施例1中Ni 2p的高分辨XPS图、c为实施例1中Co 2p的高分辨XPS图、d为实施例1中O 1s的高分辨XPS图、e为实施例1中P 2p的高分辨XPS图;f为实施例1中NCO和PNCO x的电子顺磁共振谱图。
图7为实施例1中混合型超级电容器的倍率性能图:此图为双Y轴共X轴图,其中,左边Y轴为体积容量,右边Y轴为库伦效率;图中,用左箭头指向左边Y轴的点集对应于混合型超级电容器件的体积容量,用右箭头指向右边Y轴的点集对应于混合型超级电容器件的库伦效率。
图8为实施例1中混合型超级电容器的长循环性能图:此图为双Y轴共X轴图,其中,左边Y轴为容量保持率,右边Y轴为库伦效率;图中,用左箭头指向左边Y轴的点集对应于混合型超级电容器件的容量保持率,用右箭头指向右边Y轴的点集对应于混合型超级电容器件的库伦效率。
图9为实施例1中微生物燃料电池的极化曲线与功率曲线图:此图为双Y轴共X轴图,其中,左边Y轴为微生物燃料电池的电压,右边Y轴为功率密度;图中,用左箭头指向左边Y轴的线对应于微生物燃料电池的电压,用右箭头指向右边Y轴的线对应于微生物燃料电池的功率密度。
图10为实施例1中利用不同数目的PNCO x//3DPG微生物燃料电池器件为PNCO x//3DPG混合型超级电容器件充电的示意图。
图11为实施例1中利用不同数目的PNCO x//3DPG微生物燃料电池器件为PNCO x//3DPG混合型超级电容器件充电的曲线。
图12为实施例1中利用1个PNCO x//3DPG微生物燃料电池器件为PNCO x//3DPG混合型超级电容器件充电的示意图。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
本发明所用的试剂均可从市场购得。
实施例1
1、3DPG纳米材料的制备:
(1)通过Hummers法制备氧化石墨烯(参照专利CN108395578A中第12段),然后加入去离子水中分散(氧化石墨烯的质量(mg)为去离子水体积(ml)的3倍),得到浓度为3mg/mL氧化石墨烯悬浮液;
(2)取3mg/mL氧化石墨烯悬浮液20mL与0.132mol/L KOH 20mL均匀混合之后,与 一块2×3cm 2的碳布一起放入反应釜中进行水热反应在180℃反应5h,得到石墨烯凝胶;
(3)将得到的石墨烯凝胶冷冻干燥2天,得到3DPG纳米材料。
2、PNCO x纳米材料的制备:
(1)NCO纳米材料的制备:
①制备柔性碳布基底:将大小为2×3cm 2的柔性碳布置于无水乙醇中超声处理,制得柔性碳布基底;
②将1.0g Ni(NO 3) 2·6H 2O,2.0g Co(NO 3) 2·6H 2O,1.0g硫脲和1.0g NH 4F在24~26℃下溶解于100mL去离子水中,得到溶液A;将柔性碳布基底浸入溶液A,120℃下水热反应12h;
③取出柔性碳布,自然冷却,然后用去离子水冲洗,晾干,得到NCO纳米材料。
(2)PNCO x纳米材料的制备:
①取步骤(1)得到的生长在柔性碳布上的NCO纳米材料置于石英管中,向石英管中放置2g NaH 2PO 2·H 2O,然后对石英管抽真空至20mTorr;
②向上述抽真空的石英管中注入N 2,将N 2的流速控制为100mL/min,300℃反应3h,自然冷却后停止注入N 2,得到PNCO x纳米材料。
3、微生物燃料电池与混合型超级电容器集成的柔性器件的组装
(1)混合型超级电容器的组装:
分别将步骤1和步骤2制备的3DPG纳米材料和PNCO x纳米材料裁剪为0.5cm×2cm的长方形,以3DPG纳米材料作为负极材料,PNCO x纳米材料作为正极材料,PVA/LiCl凝胶为固态电解液,经封装机封装,得到全固态柔性混合型超级电容器件。
(2)微生物燃料电池的组装:
微生物燃料电池的组装,采用单室(4×5×5cm 3)微生物燃料电池,由一个聚甲基丙烯酸甲酯制造的腔室、单面膜阴极(4×4cm 2)、3DPG阳极(4×4cm 2)、阳极液组成。
单面膜阴极的制备方法如下:将PNCO x纳米材料利用热压方法紧贴到阳离子交换膜上,得到单面膜阴极。
阳极液的制备方法如下:取10.0g NaHCO 3、11.2g NaH 2PO 4·2H 2O、10.0g葡萄糖和5.0g酵母浸膏放入烧杯中,然后加入5mmol的2-羟基-1,4-萘醌(HNQ),搅拌均匀后在1000mL定容瓶中定容,得到阳极液。
阳极液中还包括菌液。
菌液的制备方法如下:向培养基中通20分钟氮气以消除氧气,然后,将2mL经活化的大肠杆菌(Escherichia coli)K12接种至18mL培养基中,37℃无氧条件下进行培养18小时;培养基的制备方法如下:取蛋白胨、NaCl、牛肉粉,加蒸馏水定容,使蛋白胨、NaCl、牛肉粉的浓度分别为10g/L、5g/L、3g/L,121℃灭菌20min后待用。
(3)微生物燃料电池与混合型超级电容器集成的柔性器件的组装
将微生物燃料电池与混合型超级电容器按照附图10的示意图连接,得到微生物燃料电池 与混合型超级电容器集成的柔性器件。
实施例2~4
实施例2~4的制备方法与实施例1相同,区别仅在于原位磷化所用的NaH 2PO 2·H 2O的质量。实施例2~4的制备方法中具体的NaH 2PO 2·H 2O的质量调控见表1。参照上述效果实施例1相同的恒流充放电测试法来研究PNCO x纳米材料的电化学性能。实施例1制备的PNCO x纳米材料在2mA/cm 2时对应的比容量为2.97F/cm 2,测试实施例2~4制备的PNCO x纳米材料在2mA/cm 2时对应的面积比容量。
表1 原位磷化NaH 2PO 2·H 2O的质量调控
Figure PCTCN2020071047-appb-000001
实施例5~6
实施例5~6的制备方法与实施例1相同,区别仅在于原位磷化所用的温度。实施例5~6的制备方法中具体的温度调控见表2。参照上述效果实施例1相同的恒流充放电测试法来研究PNCO x纳米材料的电化学性能。实施例1制备的PNCO x纳米材料在2mA/cm 2时对应的面积比容量为2.97F/cm 2,测试实施例5~6制备的PNCO x纳米材料在2mA/cm 2时对应的面积比容量。
表2 原位磷化的温度调控
Figure PCTCN2020071047-appb-000002
实施例7~10
实施例7~10的制备方法与实施例1相同,区别仅在于氧化石墨烯的浓度。实施例7~10的制备方法中氧化石墨烯具体的浓度调控见表3。参照上述效果实施例1相同的恒流充放电测试法来研究3DPG纳米材料的电化学性能。实施例1制备的3DPG纳米材料在1.5mA/cm 2时对应的面积比容量为0.556F/cm 2,测试实施例7~10制备的3DPG纳米材料在2mA/cm 2 时对应的面积比容量。
表3 氧化石墨烯的浓度调控
Figure PCTCN2020071047-appb-000003
实施例11~14
实施例11~14的制备方法与实施例1相同,不同点在于制备3DPG水热反应的温度。实施例11~13的制备方法中具体的温度调控见表4。参照上述效果实施例1相同的恒流充放电测试法来研究3DPG纳米材料的电化学性能。实施例1制备的3DPG纳米材料在1.5mA/cm 2时对应的比容量为0.556F/cm 2,测试实施例11-13制备的3DPG纳米材料在2mA/cm 2时对应的面积比容量。
表4 3DPG水热反应的温度调控
Figure PCTCN2020071047-appb-000004
效果实施例1 3DPG纳米材料、PNCO x纳米材料的表征检测
1、对实施例1制备的3DPG纳米材料进行扫描电子显微镜测试,结果如图1所示:表明3DPG纳米材料为三维介孔的形状。
2、对实施例1制备的3DPG纳米材料进行拉曼光谱和高分辨XPS表征检测,结果如图2所示:图2a显示3DPG纳米材料两个峰强度的比I D:I G达到了0.93,表明3DPG具有非常丰富的边缘和石墨片层平面的缺陷;图2b显示C 1s峰拟合分成四个峰,分别对应占据主要成分的C-C键,C-OH键,C=O键和C=O-OH键。
3、对实施例1制备的PNCO x纳米材料进行扫描电子显微镜测试,结果如图3所示:在 柔性碳布纤维上生长了均匀的纳米线阵列。
4、对实施例1制备的PNCO x纳米材料进行透射电镜(TEM),高分辨率透射电镜(HRTEM),X射线粉末衍射(XRD)和拉曼光谱表征,结果如图4所示:图4a显示PNCO x纳米材料为介孔材料,一维的纳米线由许许多多的小纳米颗粒组成;图4b显示PNCO x的层间距为0.47nm,以及由于氧空位和磷酸根离子的引入产生了晶格缺陷;图4c显示NCO纳米材料在原位磷化处理前后的晶体结构保持一致,而原位磷化处理之后得到的PNCO x的结晶强度有所下降;图4d显示NCO纳米材料在原位磷化处理之后,其550cm –1处的拉曼峰变得更小和更宽,表明PNCO x纳米材料引入了氧空位。
5、对实施例1制备的PNCO x纳米材料进行X射线能谱分析(EDS)表征,结果如图5所示:表明磷酸根离子已被成功引入到NCO纳米线阵列的表面。
6、对上述制备的PNCO x纳米材料进行X射线光电子能谱(XPS)和电子顺磁共振谱表征,结果如图6所示:表明氧空位和磷酸根离子已被成功引入到NCO纳米线阵列的表面。
效果实施例2混合型超级电容器、微生物燃料电池以及微生物燃料电池与混合型超级电容器集成的柔性器件性能测定
对实施例1制备的混合型超级电容器采用恒流充放电测试法研究其的储能性能,混合型超级电容器件的恒流充放电测试是在室温下、上海华辰CHI 760D电化学工作站测试完成,测试的电压窗口为0~1.6V。
由图7可知,实施例1制备的混合型超级电容器件的容量范围从2mA/cm 2的8.76F/cm 3变化到20mA/cm 2的6.49F/cm 3,而且经过30次深层次的充放电,当电流密度恢复到2mA/cm 2时,其可逆容量依然可以恢复到原来的容量,而且相对应的库伦效率都在95%以上,表明其具有良好的可逆性和倍率性能。
由图8可知,该混合型超级电容器件在10mA/cm 2的电流密度下连续充放电10 000次后仍有95.2%的容量保持率,表明该柔性准固态混合型超级电容器件具有很好的循环稳定性。
由图9可知,该微生物燃料电池的开路电压可以到达0.59V,非常接近Pt/C-MFC的0.60V。而且在2.13mA/cm 2的电流密度下,其最大输出功率可以达到3276.1mW/cm 2,比Pt/C-MFC的2375mW/cm 2还要高。
在自驱动能源装置开发的驱动下,进一步尝试将混合型超级电容器件与微生物燃料电池进行结合使用,以期实现在微生物燃料电池上的化学能到电能的能源转换以及在超级电容器中的电能同步存储,利用不同数目的微生物燃料电池为混合型超级电容器件充电414秒的结 果如图11所示:可以看出利用一个、两个、三个微生物燃料电池可以将混合型超级电容器件的电压分别迅速充至0.3V、0.6V和0.9V,充电的模式近似于恒电压充电。
综上所述,微生物燃料电池与混合型超级电容器集成的柔性器件具有高功率输出的可再生能源的收集和储存的特点,同时还具有能量密度高、柔性好等优点,在电化学能源储存与转化技术领域具有很大的应用前景。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种微生物燃料电池与混合型超级电容器集成的柔性器件的制备方法,其特征在于步骤如下:将微生物燃料电池与混合型超级电容器串联连接;
    所述的微生物燃料电池的数量为一个以上。
  2. 根据权利要求1所述的微生物燃料电池与混合型超级电容器集成的柔性器件的制备方法,其特征在于:
    所述的微生物燃料电池为单室微生物燃料电池,由腔室、单面膜阴极、阳极、阳极液组成;
    所述的混合型超级电容器通过如下方法制备:将正极材料、负极材料以及固态电解液封装,得到混合型超级电容器。
  3. 根据权利要求2所述的微生物燃料电池与混合型超级电容器集成的柔性器件的制备方法,其特征在于:
    所述的正极材料为PNCO x纳米材料;
    所述的负极材料为3DPG纳米材料;
    所述的固态电解液为PVA/LiCl凝胶。
  4. 根据权利要求3所述的微生物燃料电池与混合型超级电容器集成的柔性器件的制备方法,其特征在于:
    所述的PNCO x纳米材料通过如下步骤制备:
    (1)制备NCO纳米线阵列材料;
    (2)制备PNCO x纳米材料。
  5. 根据权利要求4所述的微生物燃料电池与混合型超级电容器集成的柔性器件的制备方法,其特征在于:
    步骤(1)中所述的NCO纳米线阵列材料采用水热法在柔性碳布基底上制备,具体步骤如下:
    ①将柔性碳布置于无水乙醇中超声处理,制得柔性碳布基底;
    ②将Ni(NO 3) 2·6H 2O,Co(NO 3) 2·6H 2O,硫脲和NH 4F溶解于水中,得到溶液A;将步骤①得到的柔性碳布基底浸入溶液A中,进行水热反应;
    ③取出柔性碳布,冷却,冲洗,晾干,得到NCO纳米材料;
    步骤②中所述溶解条件为室温下溶解;
    所述的室温为10~30℃;进一步为24~26℃;
    步骤②中所述的水为去离子水;
    步骤②中所述的Ni(NO 3) 2·6H 2O与水按质量体积比为5~150:3;进一步为10:1;
    步骤②中所述的Co(NO 3) 2·6H 2O与水按质量体积比为10~240:3;进一步为20:1;
    步骤②中所述的硫脲与水按质量体积比为5~150:3;进一步为10:1;
    步骤②中所述的NH 4F与水按质量体积比为5~150:3;进一步为10:1;
    步骤②中所述的水热反应条件为80~200℃反应6~36h;进一步为120℃反应12h;
    步骤③中所述的冷却为自然冷却;
    步骤③中所述的冲洗采用去离子水冲洗;
    步骤(2)中所述的PNCO x纳米材料通过原位磷化技术向步骤(1)制备的NCO纳米材料表面引入氧空位和磷酸根离子制备,具体步骤如下:
    (A)取步骤(1)得到的生长在柔性碳布上的NCO纳米材料置于管中,向管中加入NaH 2PO 2·H 2O,然后对管抽真空;
    (B)向上述抽真空的管中注入N 2,反应,冷却后停止注入N 2,得到PNCO x纳米材料;
    步骤(A)中所述的管为石英管;
    步骤(A)中所述的柔性碳布的规格为2×3cm 2的柔性碳布;
    步骤(A)中所述的NaH 2PO 2·H 2O的用量为2g;
    步骤(A)中所述的抽真空为抽真空至20mTorr;
    步骤(B)中所述的N 2的注入流速为100mL/min;
    步骤(B)中所述的反应条件为200~300℃加热反应3h;进一步为300℃加热反应3h;
    步骤(B)中所述的冷却为自然冷却。
  6. 根据权利要求3所述的微生物燃料电池与混合型超级电容器集成的柔性器件的制备方法,其特征在于:
    所述的3DPG纳米材料通过如下步骤制备:
    (I)通过Hummers法制备氧化石墨烯,然后加入去离子水中分散,得到氧化石墨烯悬浮液;
    (II)取氧化石墨烯悬浮液与KOH均匀混合,与一块碳布一起放入反应釜反应,得到石墨烯凝胶;
    (III)将得到的石墨烯凝胶冷冻干燥,得到3DPG纳米材料;
    步骤(I)中所述的Hummers法制备氧化石墨烯参照专利CN108395578A中第12段;
    步骤(II)中所述的氧化石墨烯与KOH按质量比为40~60:148.1;进一步为60:148.1;
    步骤(II)中所述的反应条件为160~220℃反应3~8h;进一步为160~180℃反应5h;更进一步为180℃反应5h;
    步骤(II)中所述的碳布的规格为2×3cm 2
  7. 根据权利要求2所述的微生物燃料电池与混合型超级电容器集成的柔性器件的制备方法,其特征在于:
    所述的阳极为3DPG阳极;
    所述的单面膜阴极的制备方法如下:将PNCO x纳米材料利用热压方法紧贴到阳离子交换膜上,得到单面膜阴极;
    所述的阳极液的制备方法如下:取10.0g NaHCO 3、11.2gNaH 2PO 4·2H 2O、10.0g葡萄糖和5.0g酵母浸膏放入烧杯中,然后加入5mmol的2-羟基-1,4-萘醌(HNQ),搅拌均匀后在1000mL定容瓶中定容,得到阳极液;
    所述的阳极液还包括菌液;
    所述的菌液的制备方法如下:将经活化的大肠杆菌(Escherichia coli)接种至去除氧气的培养基中,37℃无氧条件下进行培养18小时;
    所述的大肠杆菌为大肠杆菌K12;
    所述的大肠杆菌的接种量为培养基体积的1/9;
    所述的去除氧气的方式为通过向培养基中通20分钟的氮气;
    所述的培养基的制备方法如下:取蛋白胨、NaCl、牛肉粉,加蒸馏水定容,使蛋白胨、NaCl、牛肉粉的浓度分别为10g/L、5g/L、3g/L,121℃灭菌20min后待用。
  8. 根据权利要求2所述的微生物燃料电池与混合型超级电容器集成的柔性器件的制备方法,其特征在于:
    所述的单室微生物燃料电池为大小为4×5×5cm 3的单室微生物燃料电池;
    所述的腔室由聚甲基丙烯酸甲酯制造;
    所述的单面膜阴极及3DPG阳极大小为4×4cm 2
    所述的正极材料和负极材料的形状为0.5cm×2cm的长方形;
    所述的封装通过封装机完成。
  9. 一种微生物燃料电池与混合型超级电容器集成的柔性器件,其特征在于:通过权利要求1~8中任一项所述的制备方法得到。
  10. 权利要求9所述的微生物燃料电池与混合型超级电容器集成的柔性器件在电化学能源储存与转化技术领域的应用。
PCT/CN2020/071047 2019-11-15 2020-01-09 微生物燃料电池与混合型超级电容器集成的柔性器件及制备方法与应用 WO2021093155A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911119862.5A CN110767960B (zh) 2019-11-15 2019-11-15 微生物燃料电池与混合型超级电容器集成的柔性器件及制备方法与应用
CN201911119862.5 2019-11-15

Publications (1)

Publication Number Publication Date
WO2021093155A1 true WO2021093155A1 (zh) 2021-05-20

Family

ID=69338026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071047 WO2021093155A1 (zh) 2019-11-15 2020-01-09 微生物燃料电池与混合型超级电容器集成的柔性器件及制备方法与应用

Country Status (2)

Country Link
CN (1) CN110767960B (zh)
WO (1) WO2021093155A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111446437B (zh) * 2020-04-28 2022-07-15 哈尔滨工业大学 一种表面自重构改性富锂正极材料及其制备方法
CN112908715B (zh) * 2021-01-18 2022-11-29 广东轻工职业技术学院 一种双功能缺陷型二氧化锰纳米棒阴极材料及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104766725A (zh) * 2015-03-12 2015-07-08 广东工业大学 一种用于超级电容器电极材料的制备方法及其应用
CN106229532A (zh) * 2016-08-26 2016-12-14 天津工业大学 一种用于微生物燃料电池产电收集的电能管理系统
CN106409538A (zh) * 2016-10-20 2017-02-15 青岛大学 一种生物质能量转化和储存的集成器件及其制备方法
CN106887343A (zh) * 2017-02-20 2017-06-23 哈尔滨工业大学 一种全固态纤维状柔性超级电容器及其制备方法
US20170214076A1 (en) * 2016-01-27 2017-07-27 Ankush Dhawan Microbial fuel cell light assembly
CN107140626A (zh) * 2017-05-24 2017-09-08 华中科技大学 一种三维石墨烯材料的低温热成型方法
CN107256972A (zh) * 2017-05-27 2017-10-17 武汉理工大学 一种基于空心碳球模板生长多孔钴酸镍纳米片的方法
CN108425134A (zh) * 2018-05-24 2018-08-21 盐城工学院 纳米钴酸镍碳布电极及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8417253B2 (en) * 2010-02-23 2013-04-09 Intel Corporation Bandwidth and channel notification for wide-channel wireless communication
JP6572886B2 (ja) * 2014-05-22 2019-09-11 ソニー株式会社 情報処理装置および情報処理方法
CN105990044A (zh) * 2016-01-20 2016-10-05 安徽大学 一种柔性固态超级电容器Cu(OH)2@Ni2(OH)2CO3多级纳米阵列电极的制备方法
CN106784829B (zh) * 2017-01-10 2019-04-30 哈尔滨工业大学 一种负载石墨烯与二硫化铁复合物的微生物燃料电池阳极的制备方法
CN109065368B (zh) * 2018-09-04 2020-11-13 北京邮电大学 基于碳布负载的硫化镍-硫化钼异质纳米片阵列结构的柔性超级电容器及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104766725A (zh) * 2015-03-12 2015-07-08 广东工业大学 一种用于超级电容器电极材料的制备方法及其应用
US20170214076A1 (en) * 2016-01-27 2017-07-27 Ankush Dhawan Microbial fuel cell light assembly
CN106229532A (zh) * 2016-08-26 2016-12-14 天津工业大学 一种用于微生物燃料电池产电收集的电能管理系统
CN106409538A (zh) * 2016-10-20 2017-02-15 青岛大学 一种生物质能量转化和储存的集成器件及其制备方法
CN106887343A (zh) * 2017-02-20 2017-06-23 哈尔滨工业大学 一种全固态纤维状柔性超级电容器及其制备方法
CN107140626A (zh) * 2017-05-24 2017-09-08 华中科技大学 一种三维石墨烯材料的低温热成型方法
CN107256972A (zh) * 2017-05-27 2017-10-17 武汉理工大学 一种基于空心碳球模板生长多孔钴酸镍纳米片的方法
CN108425134A (zh) * 2018-05-24 2018-08-21 盐城工学院 纳米钴酸镍碳布电极及其制备方法

Also Published As

Publication number Publication date
CN110767960A (zh) 2020-02-07
CN110767960B (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
CN103426648B (zh) 一种MOS2/TiO2纳米复合材料及其制备方法
CN102244250B (zh) 石墨烯宏观体/氧化锡复合锂离子电池负极材料及其工艺
CN104269565B (zh) 一种多壁碳纳米管负载Ni0.85Se复合材料的制备方法及其应用
CN113871581B (zh) 一种电子密度调控锰酸锌石墨烯正极材料、化学自充电水系锌离子电池及制备方法与应用
CN113035576A (zh) 氧化石墨烯改性MXene气凝胶载二氧化锰复合电极材料及其制备和应用
CN104157832B (zh) 一种四氧化三铁/碳复合锂离子电池电极材料的制备方法
CN113012945B (zh) 一种改性Ppy-MXene复合材料及制备方法与应用
CN110783115B (zh) 一种二氧化锰/碳/泡沫金属复合材料的制备方法和应用
CN110838583B (zh) 一种碳纳米管/m相二氧化钒复合结构及其制备方法和在水系锌离子电池中的应用
CN105390677A (zh) 碳自包覆半导体金属氧化物纳米片与石墨烯复合材料及其应用
WO2021093155A1 (zh) 微生物燃料电池与混合型超级电容器集成的柔性器件及制备方法与应用
CN104860348A (zh) 一种纳米片构筑的核壳结构二氧化钛及其制备方法与应用
CN112332026A (zh) 一种抑制锌枝晶的锌离子电池隔膜及其制备方法
CN104167298A (zh) 一类石墨烯-蛋白质衍生碳超级电容器材料及其制备方法
CN106449136A (zh) α‑氢氧化镍钴电极材料及其制备方法与应用
CN110223850B (zh) 一种高性能氢氧化镍电极材料的快速原位制备方法
Ren et al. Bimetal-organic framework-derived porous CoFe2O4 nanoparticles as biocompatible anode electrocatalysts for improving the power generation of microbial fuel cells
CN105070889A (zh) 一种负载二氧化钛纳米薄膜和四氧化三铁纳米颗粒的碳纤维材料的制备方法、产品及应用
CN108666144A (zh) 一种三维花状氢氧化钴-石墨烯复合材料及其制备方法
CN107104005B (zh) 一种NiO@石墨烯纤维超级电容器电极材料的制备方法
CN106024403A (zh) 一种超级电容器碳管/碳化钼复合电极材料及其制备方法
CN110993359B (zh) 一种柔性固态非对称超级电容器件及其制备方法与应用
CN112687478A (zh) 一种基于多级孔氮氟掺杂碳材料工作电极的超级电容器的制备方法
CN112908715B (zh) 一种双功能缺陷型二氧化锰纳米棒阴极材料及其制备方法与应用
CN110061204B (zh) 二维蜂窝状碳纳米片包覆1T′-ReS2作为钠离子电池负极材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20888290

Country of ref document: EP

Kind code of ref document: A1