CN105826362A - 一种氧化镓纳米线阵列及其制备方法 - Google Patents

一种氧化镓纳米线阵列及其制备方法 Download PDF

Info

Publication number
CN105826362A
CN105826362A CN201610143013.3A CN201610143013A CN105826362A CN 105826362 A CN105826362 A CN 105826362A CN 201610143013 A CN201610143013 A CN 201610143013A CN 105826362 A CN105826362 A CN 105826362A
Authority
CN
China
Prior art keywords
nano
substrate
wire array
gold
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610143013.3A
Other languages
English (en)
Other versions
CN105826362B (zh
Inventor
陈烈裕
钱银平
王坤
李小云
王顺利
李培刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN201610143013.3A priority Critical patent/CN105826362B/zh
Publication of CN105826362A publication Critical patent/CN105826362A/zh
Application granted granted Critical
Publication of CN105826362B publication Critical patent/CN105826362B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种纳米线阵列及其制备方法,具体是指一种氧化镓纳米线阵列及其制备方法。本发明是通过射频磁控溅射技术在Si衬底上沉积一层金薄膜,然后将得到的金薄膜进行球化退火从而得到金颗粒,最后在金颗粒上生长Ga2O3纳米线阵列。本发明的优点是:所制备的Ga2O3纳米线阵列分布均匀,纳米线的长径比可控;另外,该制备方法具有工艺可控性强,操作简单,普适性好等特点,有望在半导体纳米线阵列器件中得到应用。

Description

一种氧化镓纳米线阵列及其制备方法
技术领域
本发明涉及一种纳米线阵列及其制备方法,具体是指一种氧化镓纳米线阵列及其制备方法。
技术背景
随着信息微电子技术的发展,宽禁带半导体以其优良的性能和较低的能耗越来越受到人们的关注。其中,氧化镓是一种具有直接带隙的宽禁带半导体材料,其禁带宽度为4.9eV,因其具有较高的禁带宽度、较大的抗击穿强度、优良的紫外透过性能而受到越来越多的科研人员的关注。
β-Ga2O3是一种具有深紫外特性的半导体材料,200nm的β-Ga2O3薄膜在紫外光区域能达到80%以上的透过率,弥补了传统TCO材料在深紫外区域透过性低的缺点;而且因为比较宽的带隙,β-Ga2O3能够发出较短波长的光,在通过掺杂Mn、Cr、Er等稀土元素的情况下,还能够用来制作深紫外光电器件。制备氧化镓纳米线阵列的方法主要有液相法和化学气相沉积法。液相法容易引入杂质,对环境有污染,化学气相沉积法制备的纳米线与基体的附着力较差,容易脱落,而磁控溅射法可以克服前面方法的缺点,能够获得附着力好、纳米线长径比均一等优点。目前,利用磁控溅射沉积系统制备氧化镓纳米线阵列的方法很少报道。
发明内容
本发明针对现有技术中的不足,提出了一种氧化镓纳米线阵列及其制备方法。
本发明的技术方案为:
一种氧化镓纳米线阵列,其特征在于由Ga2O3薄膜纳米线阵列、金纳米颗粒以及n型Si衬底组成。
如图1所示为本发明方法设计的氧化镓纳米线阵列的示意图,所述的Ga2O3纳米线阵列的纳米线的直径为20-40nm,长度为400-600nm,所述的n型Si衬底作为制备Ga2O3纳米线阵列的衬底,所述的金纳米颗粒作为生长Ga2O3纳米线阵列的催化剂,位于Ga2O3纳米线阵列顶端,颗粒直径为20-30nm。
一种氧化镓纳米线阵列的制备方法,其特征在于该方法具有如下步骤:
1)n型Si衬底预处理:将n型Si衬底放入V(HF):V(H2O2)=l:5的溶液中浸泡以去除自然氧化层,然后用丙酮、乙醇和去离子水分别超声清洗,并真空干燥;
2)放置靶材和衬底:把金靶材和Ga2O3靶材分别放置在射频磁控溅射系统的靶台位置,将步骤1)处理后的n型Si衬底固定在样品托上,放进真空腔;
3)金纳米颗粒的制备过程:先将腔体抽真空,通入氩气,调整真空腔内的压强,打开金靶材射频控制电源,在n型Si衬底上沉积一层金薄膜,然后关闭射频电源,通入氧气,加热Si-Au衬底,对金薄膜进行原位球化退火,得到金纳米颗粒;其中,金靶材与n型Si衬底的距离设定为5厘米,溅射功率为20-30W,沉积时间为10-20秒,原位球化退火温度为700℃,保温0.5小时;
4)Si-Au-Ga2O3纳米线阵列的制备过程:待步骤3)球化退火完成后,打开Ga2O3靶材射频控制电源,继续在Si-Au衬底上沉积Ga2O3纳米线阵列,最后,关闭Ga2O3靶材射频控制电源,对Si-Au-Ga2O3进行原位退火,得到Ga2O3纳米线阵列;其中,Ga2O3靶材与n型Si衬底的距离设定为5厘米,溅射功率为60-90W,沉积时间为1-2小时,原位退火温度为700℃,保温0.5小时;
优选的,所述的步骤3)中,通入氩气后,真空腔的压强为0.8Pa,通入氧气后,真空腔的压强调整为103Pa。
优选的,所述的步骤3)中,Al2O3-Au衬底的加热温度为700℃。
本发明的优点:
1、本发明所制备的Ga2O3纳米线阵列分布均匀,纳米线的长径比可控;
2、本发明的制备方法具有工艺可控性强,操作简单,重复性好,普适性好等特点,有望在半导体纳米线阵列器件中得到应用;
附图说明
图1是本发明方法设计的氧化镓纳米线阵列的示意图。
图2是用本发明方法制得的Si-Au纳米颗粒的扫描电镜(SEM)照片。
图3是用本发明方法制得的氧化镓纳米线阵列截面的扫描电镜(SEM)照片。图4用本发明方法制得的氧化镓纳米线阵列的X射线衍射(XRD)谱图。
具体实施方式
以下结合实例进一步说明本发明。
实施例1
步骤如下:
1)n型Si衬底预处理:将n型Si衬底放入V(HF):V(H2O2)=l:5的溶液中浸泡以去除自然氧化层,然后用丙酮、乙醇和去离子水分别超声清洗,并真空干燥;
2)放置靶材和衬底:把金靶材和Ga2O3靶材分别放置在射频磁控溅射系统的靶台位置,将步骤1)处理后的n型Si衬底固定在样品托上,放进真空腔;
3)金纳米颗粒的制备过程:先将腔体抽真空,通入氩气,调整真空腔内的压强,打开金靶材射频控制电源,在n型Si衬底上沉积一层金薄膜,然后关闭射频电源,通入氧气,加热Si-Au衬底,对金薄膜进行原位球化退火,得到金纳米颗粒;其中,金靶材与n型Si衬底的距离设定为5厘米,通入氩气后,真空腔的压强为0.8Pa,通入氧气后,真空腔的压强调整为103Pa,溅射功率为20W,沉积时间为20秒,原位球化退火温度为700℃,保温0.5小时;
4)Si-Au-Ga2O3纳米线阵列的制备过程:待步骤3)球化退火完成后,打开Ga2O3靶材射频控制电源,继续在Si-Au衬底上沉积Ga2O3纳米线阵列,最后,关闭Ga2O3靶材射频控制电源,对Si-Au-Ga2O3进行原位退火,得到Ga2O3纳米线阵列;其中,Ga2O3靶材与n型Si衬底的距离设定为5厘米,真空腔调整后的压强为0.8Pa,Al2O3-Au衬底的加热温度为700℃,溅射功率为60W,沉积时间为1小时,原位退火温度为700℃,保温0.5小时;
将步骤(3)中所得Si-Au衬底放进扫描电镜SEM中观察,发现薄膜表面的金纳米颗粒均匀分布,颗粒直径为20-30nm左右(如图2)。图3为步骤(4)中所得Ga2O3纳米线阵列,从图中看出,氧化镓纳米线的直径为20-40nm,长度为400-600nm。将步骤(4)中所得Ga2O3纳米线阵列在X射线衍射仪中扫描,结果如图4中XRD谱图所示,显示了β-Ga2O3的(-511),(510),(402),(-603),(-221)以及金纳米颗粒(111),(200)特征晶面衍射峰,表明所得纳米线为β-Ga2O3纳米线阵列,并且金纳米颗粒在退火过程中有部分被高温蒸发后凝结在纳米线的顶端。
实施例2
步骤(1)和(2)均与实施例1相同。步骤(3)中先将腔体抽真空,通入氩气,调整真空腔内的压强,打开金靶材射频控制电源,在n型Si衬底上沉积一层金薄膜,然后关闭射频电源,通入氧气,加热Si-Au衬底,对金薄膜进行原位球化退火,得到金纳米颗粒;其中,金靶材与n型Si衬底的距离设定为5厘米,通入氩气后,真空腔的压强为0.8Pa,通入氧气后,真空腔的压强调整为103Pa,溅射功率为20W,沉积时间为10秒,原位球化退火温度为700℃,保温0.5小时。待步骤3)球化退火完成后,打开Ga2O3靶材射频控制电源,继续在Si-Au衬底上沉积Ga2O3纳米线阵列,最后,关闭Ga2O3靶材射频控制电源,对Si-Au-Ga2O3进行原位退火,得到Ga2O3纳米线阵列;其中,Ga2O3靶材与n型Si衬底的距离设定为5厘米,真空腔调整后的压强为0.8Pa,溅射功率为70W,沉积时间为1小时,原位退火温度为700℃,保温0.5小时;所得Ga2O3纳米线阵列的化学成分和形貌结构均与实例1类似。
实施例3
步骤(1)和(2)均与实施例1相同。步骤(3)中先将腔体抽真空,通入氩气,调整真空腔内的压强,打开金靶材射频控制电源,在n型Si衬底上沉积一层金薄膜,然后关闭射频电源,通入氧气,加热Si-Au衬底,对金薄膜进行原位球化退火,得到金纳米颗粒;其中,金靶材与n型Si衬底的距离设定为5厘米,通入氩气后,真空腔的压强为0.8Pa,通入氧气后,真空腔的压强调整为103Pa,溅射功率为30W,沉积时间为10秒,原位球化退火温度为700℃,保温0.5小时。待步骤3)球化退火完成后,打开Ga2O3靶材射频控制电源,继续在Si-Au衬底上沉积Ga2O3纳米线阵列,最后,关闭Ga2O3靶材射频控制电源,对Si-Au-Ga2O3进行原位退火,得到Ga2O3纳米线阵列;其中,Ga2O3靶材与n型Si衬底的距离设定为5厘米,真空腔调整后的压强为0.8Pa,溅射功率为60W,沉积时间为1小时,原位退火温度为700℃,保温0.5小时;所得Ga2O3纳米线阵列的化学成分和形貌结构均与实例1类似。
实施例4
步骤(1)和(2)均与实施例1相同。步骤(3)中先将腔体抽真空,通入氩气,调整真空腔内的压强,打开金靶材射频控制电源,在n型Si衬底上沉积一层金薄膜,然后关闭射频电源,通入氧气,加热Si-Au衬底,对金薄膜进行原位球化退火,得到金纳米颗粒;其中,金靶材与n型Si衬底的距离设定为5厘米,通入氩气后,真空腔的压强为0.8Pa,通入氧气后,真空腔的压强调整为103Pa,溅射功率为10W,沉积时间为30秒,原位球化退火温度为700℃,保温0.5小时。待步骤3)球化退火完成后,打开Ga2O3靶材射频控制电源,继续在Si-Au衬底上沉积Ga2O3纳米线阵列,最后,关闭Ga2O3靶材射频控制电源,对Si-Au-Ga2O3进行原位退火,得到Ga2O3纳米线阵列;其中,Ga2O3靶材与n型Si衬底的距离设定为5厘米,真空腔调整后的压强为0.8Pa,溅射功率为90W,沉积时间为1小时,原位退火温度为700℃,保温0.5小时;所得Ga2O3纳米线阵列的化学成分和形貌结构均与实例1类似。

Claims (4)

1.一种氧化镓纳米线阵列,其特征在于由Ga2O3薄膜纳米线阵列、金纳米颗粒以及n型Si衬底组成。
2.根据权利要求1所述的一种氧化镓纳米线阵列,其特征在于所述的Ga2O3纳米线阵列的纳米线的直径为20-40nm,长度为400-600nm,所述的n型Si衬底作为制备Ga2O3纳米线阵列的衬底,所述的金纳米颗粒作为生长Ga2O3纳米线阵列的催化剂,位于Ga2O3纳米线阵列顶端,颗粒直径为20-30nm。
3.一种氧化镓纳米线阵列的制备方法,其特征在于该方法具有如下步骤:
1)n型Si衬底预处理:将n型Si衬底放入V(HF):V(H2O2)=l:5的溶液中浸泡以去除自然氧化层,然后用丙酮、乙醇和去离子水分别超声清洗,并真空干燥;
2)放置靶材和衬底:把金靶材和Ga2O3靶材分别放置在射频磁控溅射系统的靶台位置,将步骤1)处理后的n型Si衬底固定在样品托上,放进真空腔;
3)金纳米颗粒的制备过程:先将腔体抽真空,通入氩气,调整真空腔内的压强,打开金靶材射频控制电源,在n型Si衬底上沉积一层金薄膜,然后关闭射频电源,通入氧气,加热Si-Au衬底,对金薄膜进行原位球化退火,得到金纳米颗粒;其中,金靶材与n型Si衬底的距离设定为5厘米,溅射功率为20-30W,沉积时间为10-20秒,原位球化退火温度为700℃,保温0.5小时;
4)Si-Au-Ga2O3纳米线阵列的制备过程:待步骤3)球化退火完成后,打开Ga2O3靶材射频控制电源,继续在Si-Au衬底上沉积Ga2O3纳米线阵列,最后,关闭Ga2O3靶材射频控制电源,对Si-Au-Ga2O3进行原位退火,得到Ga2O3纳米线阵列;其中,Ga2O3靶材与n型Si衬底的距离设定为5厘米,溅射功率为60-90W,沉积时间为1-2小时,原位退火温度为700℃,保温0.5小时。
4.根据权利要求2所述的制备方法,其特征在于所述的步骤3)中,通入氩气后,真空腔的压强为0.8Pa,通入氧气后,真空腔的压强调整为103Pa,Al2O3-Au衬底的加热温度为700℃。
CN201610143013.3A 2016-03-13 2016-03-13 一种氧化镓纳米线阵列及其制备方法 Active CN105826362B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610143013.3A CN105826362B (zh) 2016-03-13 2016-03-13 一种氧化镓纳米线阵列及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610143013.3A CN105826362B (zh) 2016-03-13 2016-03-13 一种氧化镓纳米线阵列及其制备方法

Publications (2)

Publication Number Publication Date
CN105826362A true CN105826362A (zh) 2016-08-03
CN105826362B CN105826362B (zh) 2018-08-31

Family

ID=56987958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610143013.3A Active CN105826362B (zh) 2016-03-13 2016-03-13 一种氧化镓纳米线阵列及其制备方法

Country Status (1)

Country Link
CN (1) CN105826362B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108265275A (zh) * 2018-01-22 2018-07-10 东南大学 一种ZnO-Ga2O3核壳纳米线的制备方法
CN108286043A (zh) * 2018-01-16 2018-07-17 辽宁师范大学 采用化学气相沉积法制备β-Ga2O3纳米球的方法
CN108735826A (zh) * 2018-05-30 2018-11-02 陈谦 一种玻璃纤维基柔性氧化镓纳米阵列日盲紫外探测器及其制备方法
CN110085661A (zh) * 2019-04-23 2019-08-02 中山大学 一种氧化镓半导体叠层结构及其制备方法
CN110678990A (zh) * 2017-04-10 2020-01-10 挪威科技大学 纳米结构
CN110787798A (zh) * 2019-10-29 2020-02-14 天津大学 一种利用Au纳米颗粒增强光催化性的Ga2O3薄膜制备方法
CN110828589A (zh) * 2019-11-17 2020-02-21 金华紫芯科技有限公司 一种柔性日盲紫外光电探测器及其制备方法
KR20200050814A (ko) * 2018-11-02 2020-05-12 국방과학연구소 금속 촉매를 이용한 나노 와이어의 제조 방법
CN111215044A (zh) * 2020-02-06 2020-06-02 浙江理工大学 一种基于柔性衬底的Ga2O3纳米柱光催化材料及制备方法
CN112831750A (zh) * 2021-01-04 2021-05-25 广东省科学院中乌焊接研究所 在衬底上生长氧化镓薄膜的方法和氧化镓薄膜
CN113097055A (zh) * 2021-04-02 2021-07-09 吉林大学 一种高质量p型氧化镓纳米柱状结构薄膜及其制备方法
CN113652670A (zh) * 2021-08-17 2021-11-16 陕西科技大学 一种氧化镓纳米线及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112281211A (zh) * 2020-11-06 2021-01-29 鲁东大学 一种多晶氧化镓纳米片薄膜的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SUDHEER KUMAR: "《A comparative study of β-Ga2O3 nanowires grown on different substrates using CVD technique》", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
XING CHEN: "《Self-Powered Solar-Blind Photodetector with Fast》", 《ACS APPLIED MATERIALS & INTERFACES》 *
马海林: "《催化剂对热蒸发CVD法生长β-Ga2O3纳米材料的结构及发光特性的影响》", 《发光学报》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110678990A (zh) * 2017-04-10 2020-01-10 挪威科技大学 纳米结构
CN110678990B (zh) * 2017-04-10 2024-02-06 挪威科技大学 纳米结构
CN108286043A (zh) * 2018-01-16 2018-07-17 辽宁师范大学 采用化学气相沉积法制备β-Ga2O3纳米球的方法
CN108265275A (zh) * 2018-01-22 2018-07-10 东南大学 一种ZnO-Ga2O3核壳纳米线的制备方法
CN108735826A (zh) * 2018-05-30 2018-11-02 陈谦 一种玻璃纤维基柔性氧化镓纳米阵列日盲紫外探测器及其制备方法
KR20200050814A (ko) * 2018-11-02 2020-05-12 국방과학연구소 금속 촉매를 이용한 나노 와이어의 제조 방법
KR102136329B1 (ko) 2018-11-02 2020-07-21 국방과학연구소 금속 촉매를 이용한 나노 와이어의 제조 방법
CN110085661A (zh) * 2019-04-23 2019-08-02 中山大学 一种氧化镓半导体叠层结构及其制备方法
WO2020215445A1 (zh) * 2019-04-23 2020-10-29 中山大学 一种氧化镓半导体叠层结构及其制备方法
CN110787798A (zh) * 2019-10-29 2020-02-14 天津大学 一种利用Au纳米颗粒增强光催化性的Ga2O3薄膜制备方法
CN110828589B (zh) * 2019-11-17 2021-08-03 金华紫芯科技有限公司 一种柔性日盲紫外光电探测器及其制备方法
CN110828589A (zh) * 2019-11-17 2020-02-21 金华紫芯科技有限公司 一种柔性日盲紫外光电探测器及其制备方法
CN111215044A (zh) * 2020-02-06 2020-06-02 浙江理工大学 一种基于柔性衬底的Ga2O3纳米柱光催化材料及制备方法
CN112831750A (zh) * 2021-01-04 2021-05-25 广东省科学院中乌焊接研究所 在衬底上生长氧化镓薄膜的方法和氧化镓薄膜
CN113097055A (zh) * 2021-04-02 2021-07-09 吉林大学 一种高质量p型氧化镓纳米柱状结构薄膜及其制备方法
CN113097055B (zh) * 2021-04-02 2022-04-29 吉林大学 一种高质量p型氧化镓纳米柱状结构薄膜及其制备方法
CN113652670A (zh) * 2021-08-17 2021-11-16 陕西科技大学 一种氧化镓纳米线及其制备方法和应用

Also Published As

Publication number Publication date
CN105826362B (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
CN105826362B (zh) 一种氧化镓纳米线阵列及其制备方法
CN105655434B (zh) 一种基于氧化镓纳米线阵列的紫外探测器件及其制备方法
CN107068875B (zh) 一种优化钙钛矿晶体薄膜形貌的方法
CN107881472A (zh) 一种CsPbI3薄膜的制备方法
CN109811319B (zh) 一种基于Al纳米颗粒光热的智能温控薄膜及其制备方法
CN100568547C (zh) ZnO/纳米金刚石共面栅紫外光探测器的制备方法
CN101746961A (zh) 在平板玻璃上沉积多晶β-Ga2O3薄膜的方法
CN103700576A (zh) 一种自组装形成尺寸可控的硅纳米晶薄膜的制备方法
CN112126897A (zh) 一种alpha相氧化镓薄膜的制备方法
CN111081533A (zh) 一种单一取向锌镓氧薄膜及其制备方法
CN114657637B (zh) 镓酸锌薄膜及制备方法、紫外探测器及制备方法
CN105463396A (zh) 一种直流磁控溅射制备光解水用钒酸铋薄膜的方法
CN101805894B (zh) 一种低温下制备氢化纳米晶态碳化硅薄膜的方法
CN104818452B (zh) 一种制备氮铝共掺杂p型氧化锌薄膜的方法
CN104058446B (zh) 一种低维氧化锌纳米材料及其低温等离子体制备方法
CN101299513A (zh) 电场诱导光抽运硅基氧化锌薄膜随机激光器及其制备方法
CN108220897B (zh) 磁控溅射低温制备二氧化钒薄膜的方法
Meng et al. A simple growth route towards ZnO thin films and nanorods
CN111312851A (zh) 一种AlN纳米线日盲区探测器的制备方法
CN113658852A (zh) 硅基尺寸可控β-Ga2O3纳米线的制备方法
CN106024862B (zh) 一种带有电极的金刚石薄膜/GaN异质结的制备方法
CN109943821B (zh) 立方尖晶石结构CuGa2O4薄膜的制备方法及相应的结构
CN100593584C (zh) 一种无催化剂无碳条件下ZnO纳米棒阵列的制备方法
CN104934501A (zh) 一种基于Sm2O3/n-Si异质结构的紫外光电器件的制备方法
CN110344012A (zh) 一种Al1-xInxN三元合金纳米晶薄膜及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
OL01 Intention to license declared
OL01 Intention to license declared