CN106024862B - 一种带有电极的金刚石薄膜/GaN异质结的制备方法 - Google Patents

一种带有电极的金刚石薄膜/GaN异质结的制备方法 Download PDF

Info

Publication number
CN106024862B
CN106024862B CN201610479524.2A CN201610479524A CN106024862B CN 106024862 B CN106024862 B CN 106024862B CN 201610479524 A CN201610479524 A CN 201610479524A CN 106024862 B CN106024862 B CN 106024862B
Authority
CN
China
Prior art keywords
gan
diamond
electrode
substrate
junctions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610479524.2A
Other languages
English (en)
Other versions
CN106024862A (zh
Inventor
王林军
杨蔚川
黄健
李伦娟
任兵
赵申洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201610479524.2A priority Critical patent/CN106024862B/zh
Publication of CN106024862A publication Critical patent/CN106024862A/zh
Application granted granted Critical
Publication of CN106024862B publication Critical patent/CN106024862B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02376Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种带有电极的金刚石薄膜/GaN异质结的制备方法。属于半导体器件材料制造工艺技术领域。本发明是在n型GaN衬底上采用微波等离子体化学气相沉积(MPCVD)法制备一层p型纳米金刚石(p‑NCD)薄膜,从而制备出一个p‑NCD/n‑GaN的异质结结构器件。本发明的目的是提供一种低成本、高质量的p‑NCD/n‑GaN异质结制备方法。其特点在于,采用微波等离子体化学气相沉积(MPCVD)法首次在n型GaN上制备了p型纳米金刚石薄膜(p‑NCD)形成异质结。所得到的器件具有制备方法简单,成本小,很好的整流特性,适用于高频电子器件,等优点。

Description

一种带有电极的金刚石薄膜/GaN异质结的制备方法
技术领域
本发明涉及一种带有电极的金刚石薄膜/GaN异质结的制备方法。属于半导体材料制造工艺技术领域。
背景技术
自20世纪50年代以来,以Si为代表的第一代半导体材料制造的各种电子器件,导致了以集成电路为核心的微电子工业快速的崛起和发展,促进了整个IT产业的腾飞,改善了人类的生活质量。为了满足高频、高增益、低噪声的需要,以GaAs和InP为代表的第二代化合物半导体材料制造的电子器件应运而生,由于它们属于直接带隙半导体材料,非常适合于制备发光二极管(LED)和半导体激光器(LD)。随着时代的发展和科技的不断进步,第一代半导体材料Si、Ge和第二代半导体材料GaAs、InP等已不能完全满足人们生产和生活需要,宽禁带(Eg>2.3eV)半导体材料,包括III族氮化物、ZnO、SiC等第三代半导体材料日益引起人们的重视。其中GaN基半导体材料是最为重要的一类宽禁带直接带隙半导体材料,GaN材料由于具有高电子漂移饱和速度、禁带宽度大、导电性能良好、化学稳定性高等优点,已经在照明、导弹、雷达、通信、航空航天等领域得到了广泛的应用,同时由于其具有抗福射、耐高温等特点而使其更具有极大的发展空间和市场前景。
金刚石具有优异的综合性能,在机械性能方面,它是世界上最坚硬的天然物质;在理化性能上,金刚石还具有优异的电学、热学、声学和光学等性能,因此在当今的高技术领域有着非常广阔的应用前景。但是由于天然金刚石储量稀少,高质量的金刚石价格又极其昂贵,更为重要的是天然金刚石的尺寸都不大,这在很大程度上限制了金刚石在高科技领域的应用,因此人工合成技术一直是人们致力发展的获得金刚石的方法。金刚石具有宽禁带、高载流子迁移率、低介电常数和高击穿电压的特性。金刚石的带隙高达5.5eV,具有106~1012Ω·cm的电阻率,和高达10MV/cm的介电强度,且介电常数很低,是理想的半导体材料。
在GaN基器件的第三代半导体被广泛应用的今天,器件的工作频率越来越高,且在器件工作的过程中,产生的热量也越来越多,金刚石薄膜与GaN构成的异质结器件非常适合用于高温高功率的条件,首先,GaN基器件工作在高频条件下具有其自身独特的优势,其次来说,金刚石薄膜具有很高的热导率,该复合结构可以有效的解决器件工作的热管理问题。
本发明采用微波等离子体化学气相沉积(MPCVD)法首次在n型GaN上制备了p型纳米金刚石(p-type Nano-crystalline diamond,p-NCD)薄膜形成异质结。MPCVD法制备得到的金刚石薄膜,具有纯度高,生长速率快,晶粒尺寸可控等优点,这有利于降低成本,以及后期器件的制作。
发明内容
本发明是在n-GaN衬底上生长一层p型纳米金刚石薄膜,制备p-NCD/n-GaN异质结。
本发明的目的是提供一种低成本、高质量的p-NCD/n-GaN异质结制备方法,为达到上述目的,本发明纳米晶金刚石/GaN异质结的制备采用如下技术方案及步骤:
a.n-GaN衬底的清洗
在纳米金刚石薄膜制备中,采用(111)择优取向的n-GaN作为沉积金刚石的衬底;在丙酮中超声清洗5-10分钟,用来去除表面的杂质,在用乙醇超声清洗5-10分钟,去除上一步清洗过程中残留的丙酮,最后在重复上述步骤清洗一遍,然后用乙醇冲洗一遍,用氮气枪吹干待用;
b.n-GaN衬底的预处理
为了增加金刚石薄膜的成核密度,使用1-100nm粒径的金刚石微粉溶液并利用匀胶机对衬底进行旋涂预处理;在6000转/分的转速下,对衬底滴7滴金刚石微粉溶液;处理结束后将衬底放入MPCVD装置的反应室内;
c.用微波等离子体化学气相沉积法制备纳米金刚石薄膜
用真空泵对MPCVD反应室抽真空至1.4×10-2Torr,逐步增加反应室压力,氢气流速和微波功率直到反应室压力为45Torr;氢气流速450SCCM,微波功率3.0KW;在温度大于700℃的时候开通甲烷并逐步增加其流速到40SCCM;衬底温度控制在750-1050℃,生长时间为3小时,同时在生长的过程中通入10SCCM硼烷气体,用来在纳米金刚石薄膜制备的过程中形成替位式杂质硼,使在n-GaN衬底上直接沉积得到硼掺杂的p型纳米金刚石薄膜;
d.利用电子束蒸发法在样品上制备电极;
在金刚石薄膜上采用的是Ti/Pt/Au三层复合电极,在GaN上采用的是Ti/Al/Au三层复合电极;该复合电极通过电子束蒸发法沉积的;该设备沉积电极需要在高真空的环境下,反应前将反应室的真空度抽到10-7Pa数量级以下;在使用电子束蒸发的机器将复合电极的材料依次蒸发到样品上,最后采用快速退火工艺对电极进行退火,退火温度为350-500℃,退火时间为20-45分钟,最后制得带有电极的纳米金刚石薄膜/GaN异质结。
利用本方法制备出来的p-NCD/n-GaN异质结,具有很好的整流特性,该异质结的开启电压为1.1V,在±2V时,正向电流/反向电流大于103
本发明的优点在于:
(1)本发明使用的为p-NCD/n-GaN的双层结构,器件的制备方法简单,成本小,具有很好的整流特性。
(2)GaN和NCD薄膜本身都是优良的半导体材料,适用于高频电子器件,在未来的半导体应用方面具有无可比拟的优势。
附图说明
图1是本发明的p-NCD/n-GaN异质结器件结构图。
图2是本发明的p-NCD/n-GaN异质结I-V特性曲线图。
具体实施方式
下面给出本发明的较佳实施例,使能更好地理解本发明的过程。
实施例
本实施例中制备过程和步骤如下所述
1.纳米金刚石薄膜的制备
采用(111)择优取向的n-GaN作为沉积金刚石的衬底;在丙酮中超声清洗8分钟,用来去除表面的杂质,在用乙醇超声清洗8分钟,去除上一步清洗过程中残留的丙酮,最后在重复上述步骤清洗一遍,然后用乙醇冲洗一遍,用氮气枪吹干待用;为了增加金刚石薄膜的成核密度,使用平均为10nm粒径的金刚石微粉溶液并利用匀胶机对衬底进行旋涂预处理;在6000转/分的转速下共滴7滴金刚石微粉溶液;处理结束后将衬底放入MPCVD装置的反应室内;
用真空泵对MPCVD反应室抽真空至1.4×10-2Torr,逐步增加反应室压力,氢气流速和微波功率直到设定值,在温度大于700℃的时候开通甲烷并逐步增加其流速到设定值,衬底温度控制在850℃,微波功率为3KW,生长时间为3小时;在生长的过程中通入10SCCM硼烷气体,使在n-GaN衬底上直接沉积得到硼掺杂的金刚石薄膜。
2.然后利用电子束蒸发法在样品上制备电极;
在金刚石薄膜上采用的是Ti/Pt/Au三层复合电极,在GaN上采用的是Ti/Al/Au三层复合电极;该复合电极通过电子束蒸发法沉积的;该设备沉积电极需要在高真空的环境下,反应前将反应室的真空度抽到10-7Pa数量级以下;在使用电子束蒸发的机器将复合电极的材料依次蒸发到样品上;最后采用快速退火工艺对电极进行退火,退火温度为400℃,退火时间为30分钟;最后制得纳米金刚石薄膜/GaN异质结。
3.有关本发明附图的解释说明
图1为本发明所制备的p-NCD/n-GaN的器件结构图,该图给出了p-NCD/n-GaN异质结器件结构以及每一层所对应的电极,以及电极结构。
图2为所制备的p-NCD/n-GaN异质结的I-V特性曲线图,在该图中我们可以看见很好的整流特性,该异质结的开启电压为1.1V,且在所测试的电压区间内,没有明显的反向漏电流的存在。

Claims (1)

1.一种带有电极的金刚石薄膜/GaN异质结的制备方法,其特征在于具有以下制备过程和步骤:
a.n-GaN衬底的清洗
在纳米金刚石薄膜制备中,采用(111)择优取向的n-GaN作为沉积金刚石的衬底;
在丙酮中超声清洗5-10分钟,用来去除表面的杂质,在用乙醇超声清洗5-10分钟,去除上一步清洗过程中残留的丙酮,最后在重复上述步骤清洗一遍,然后用乙醇冲洗一遍,用氮气枪吹干待用;
b.n-GaN衬底的预处理
为了增加金刚石薄膜的成核密度,使用1-100nm粒径的金刚石微粉溶液并利用匀胶机对衬底进行旋涂预处理;在6000转/分的转速下,对衬底滴7滴金刚石微粉溶液;处理结束后将衬底放入MPCVD装置的反应室内;
c.用微波等离子体化学气相沉积法制备纳米金刚石薄膜
用真空泵对MPCVD反应室抽真空至1.4×10-2Torr,逐步增加反应室压力,氢气流速和微波功率直到反应室压力为45Torr;氢气流速450SCCM(Standard Cubic Centimeter perMinute,标准cm3/分钟),微波功率3.0KW;在温度大于700℃的时候开通甲烷并逐步增加其流速到40SCCM;衬底温度控制在750-1050℃,生长时间为3小时;同时在生长的过程中通入10SCCM硼烷气体,用来在纳米金刚石薄膜制备的过程中形成替位式杂质硼,使在n-GaN衬底上直接沉积得到硼掺杂的p型纳米金刚石(p-type Nano-crystalline diamond,p-NCD)薄膜;
d.然后利用电子束蒸发法在样品上制备电极;
在金刚石薄膜上采用的是Ti/Pt/Au三层复合电极,在GaN上采用的是Ti/Al/Au三层复合电极;该复合电极通过电子束蒸发法沉积的;设备沉积电极需要在高真空的环境下,反应前将反应室的真空度抽到10-7Pa数量级以下;在使用电子束蒸发的机器将复合电极的材料依次蒸发到样品上,最后采用快速退火工艺对电极进行退火,退火温度为350-500℃,退火时间为20-45分钟,最后制得带有电极的纳米金刚石薄膜/GaN异质结。
CN201610479524.2A 2016-06-28 2016-06-28 一种带有电极的金刚石薄膜/GaN异质结的制备方法 Active CN106024862B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610479524.2A CN106024862B (zh) 2016-06-28 2016-06-28 一种带有电极的金刚石薄膜/GaN异质结的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610479524.2A CN106024862B (zh) 2016-06-28 2016-06-28 一种带有电极的金刚石薄膜/GaN异质结的制备方法

Publications (2)

Publication Number Publication Date
CN106024862A CN106024862A (zh) 2016-10-12
CN106024862B true CN106024862B (zh) 2019-06-25

Family

ID=57084294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610479524.2A Active CN106024862B (zh) 2016-06-28 2016-06-28 一种带有电极的金刚石薄膜/GaN异质结的制备方法

Country Status (1)

Country Link
CN (1) CN106024862B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110164766B (zh) * 2019-04-23 2021-01-15 西安电子科技大学 一种基于金刚石衬底的氮化镓器件及其制备方法
CN113046721A (zh) * 2021-05-27 2021-06-29 武汉大学深圳研究院 新型硼磷共掺p型金刚石半导体材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547043A (zh) * 2003-12-11 2004-11-17 上海大学 一种微条粒子探测器及其制备方法
EP2196564A1 (en) * 2007-10-03 2010-06-16 National Institute Of Advanced Industrial Science Isotope diamond laminate
CN104810411A (zh) * 2014-01-24 2015-07-29 中国科学院上海微系统与信息技术研究所 一种光导型紫外探测器及其制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547043A (zh) * 2003-12-11 2004-11-17 上海大学 一种微条粒子探测器及其制备方法
EP2196564A1 (en) * 2007-10-03 2010-06-16 National Institute Of Advanced Industrial Science Isotope diamond laminate
CN104810411A (zh) * 2014-01-24 2015-07-29 中国科学院上海微系统与信息技术研究所 一种光导型紫外探测器及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Investigations of secondary electron emission from boron doped diamond films grown by MPCVD;Ming Q. Ding, et al;《IVESC 2012》;20120813;313-314

Also Published As

Publication number Publication date
CN106024862A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
CN105826362B (zh) 一种氧化镓纳米线阵列及其制备方法
CN108206130B (zh) 生长在铝箔衬底上的氮化铟纳米柱外延片及其制备方法
CN103346073B (zh) 一种β-碳化硅薄膜的制备方法
CN103035794B (zh) 一种生长在Si衬底上的LED外延片及其制备方法
CN109411328B (zh) 一种通过掺杂铁降低结晶温度的氧化镓薄膜制备方法
CN111826714B (zh) 基于射频电源施加偏压以增强cvd金刚石异质外延形核的方法
CN104617165A (zh) 一种二硫化钼/缓冲层/硅n-i-p太阳能电池器件及其制备方法
CN111118471A (zh) 一种高质量多晶金刚石膜制备方法
CN106024862B (zh) 一种带有电极的金刚石薄膜/GaN异质结的制备方法
CN101303973A (zh) 一种n-ZnO/p-自支撑金刚石薄膜异质结的制备方法
CN106868596A (zh) 基于原子层沉积氮化铝的氮化镓生长方法和氮化镓激光器
CN102936006B (zh) 一种低成本低污染的氮化镓纳米线的制备生成方法
CN111410191A (zh) 一种石墨烯半导体制备装置及方法
CN111710752A (zh) 基于立方氮化硼厚膜的msm型深紫外光电探测器及制备方法
CN110993752A (zh) 一种以石墨烯为缓冲层的led外延生长方法
CN108987215A (zh) 一种提升石墨烯片-碳纳米管阵列复合材料场发射性能的方法
KR102381530B1 (ko) 고주파 마그네트론 스퍼터링법을 이용한 코벨라이트 박막의 제조 방법 및 이에 의해 제조된 코벨라이트 박막을 이용한 박막태양전지
CN109943821B (zh) 立方尖晶石结构CuGa2O4薄膜的制备方法及相应的结构
CN103107205A (zh) 一种石墨衬底上的氧化锌基mos器件
CN111101204A (zh) 单晶AlN薄膜及其制备方法和应用
CN101369620A (zh) 在硅衬底上实现氮化镓薄膜低温沉积的方法
CN111676450A (zh) 基于离子束溅射沉积的六方氮化硼厚膜及制备方法和应用
CN110085679A (zh) n型氮化硼薄膜/p型单晶硅异质pn结原型器件及制备方法
CN114540952B (zh) 一种可重复利用衬底异质外延金刚石材料的方法
CN113832541B (zh) 用于外延生长大尺寸单晶金刚石的复合衬底的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant