CN111710752A - 基于立方氮化硼厚膜的msm型深紫外光电探测器及制备方法 - Google Patents

基于立方氮化硼厚膜的msm型深紫外光电探测器及制备方法 Download PDF

Info

Publication number
CN111710752A
CN111710752A CN202010588559.6A CN202010588559A CN111710752A CN 111710752 A CN111710752 A CN 111710752A CN 202010588559 A CN202010588559 A CN 202010588559A CN 111710752 A CN111710752 A CN 111710752A
Authority
CN
China
Prior art keywords
boron nitride
cubic boron
thick film
deep ultraviolet
nitride thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010588559.6A
Other languages
English (en)
Other versions
CN111710752B (zh
Inventor
殷红
刘彩云
高伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202010588559.6A priority Critical patent/CN111710752B/zh
Publication of CN111710752A publication Critical patent/CN111710752A/zh
Application granted granted Critical
Publication of CN111710752B publication Critical patent/CN111710752B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种基于立方氮化硼厚膜的MSM型深紫外光电探测器及制备方法,包括:衬底;氮化硼缓冲层,位于所述衬底之上;立方氮化硼厚膜,位于所述氮化硼缓冲层之上;一对电极,分别叠置于所述立方氮化硼厚膜之上。本发明利用立方氮化硼超宽禁带的电子学特性和极端环境下的稳定性等显著的材料性能优势,将其作为光吸收层,能够直接获得器件在深紫外区的光电响应,暗电流低、灵敏度高、响应速度快;本发明的MSM型深紫外光电探测器可应用于高温高压、高能量辐射和腐蚀性的极端环境中,在航空航天,信息通讯领域有很高的实用价值;本发明可直接制作在硅基衬底上,可与现有硅基工艺兼容,有利于器件集成,工艺简单,易于大规模产业化。

Description

基于立方氮化硼厚膜的MSM型深紫外光电探测器及制备方法
技术领域
本发明属于半导体光电探测技术领域,具体涉及一种基于立方氮化硼厚膜的MSM型深紫外光电探测器及制备方法。
背景技术
紫外探测技术是继红外和激光探测技术之后的一种新型探测技术。目前已广泛应用于天文,军事,工业,科研等领域。
随着科技的发展和进步,硅和GaAs材料的紫外光电探测器已经不能满足人们的需求。由于第三代宽带隙半导体材料具有优异的性能,人们开始考虑将其应用于紫外光电探测。具有应用潜力的宽带隙半导体材料包括金刚石、SiC、Ⅲ族氮化物等。
立方氮化硼是宽带隙半导体材料中非常典型的一种极端电子学材料,相比其他宽禁带半导体材料有很多优势。它具有超宽的禁带(6.4eV),且硬度和导热率仅次于金刚石,但是它在高温下的抗氧化性能和化学惰性又十分的优异,因此立方氮化硼用于工作在极端环境下深紫外波段的光电探测器件具有显著的材料性能优势。此外,MSM结构的探测器具有量子效率高,响应速度快,工艺简单等特点,成为研究的热点。
现有的最接近技术是采用高温高压合成的立方氮化硼单晶来制作深紫外光电探测器,但是高温高压合成的单晶尺寸有限,目前国际上最大的仅为3毫米,严重阻碍了未来的器件应用。而膜材料的生长受限于内应力,当厚度逐渐增加,内应力不断累积,会造成膜基分离,因此厚膜的稳定性普遍不好。此外,绝大多数立方氮化硼膜中都混杂了大量的六角氮化硼相,这种sp2相的存在会削弱立方相的性能。显然,立方氮化硼的晶体尺寸小和结晶质量不佳限制了其在深紫外光电探测方面的应用。因此,对立方氮化硼厚膜的晶体质量和厚度进行改进,通过调节生长参数,有效的控制立方氮化硼的质量,减少甚至消除缺陷,提高立方相含量,是改善深紫外探测性能的途径。
发明内容
本发明的目的在于,提供一种基于立方氮化硼厚膜的MSM型深紫外光电探测器及制备方法,采用氮化硼缓冲层既促进了立方氮化硼厚膜中的立方相含量,又提高了立方氮化硼厚膜的稳定性,使其很好的发挥在深紫外区的光电探测性能优势,可保证在深紫外区具有高的响应度和响应速度。
为实现以上目的,本发明提供了基于立方氮化硼厚膜的MSM型深紫外光电探测器,包括:
衬底;
氮化硼缓冲层,位于所述衬底之上,并完全覆盖所述衬底;
立方氮化硼厚膜,位于所述氮化硼缓冲层之上,并完全覆盖所述氮化硼缓冲层;
一对电极,分别叠置于所述立方氮化硼厚膜之上,部分覆盖所述立方氮化硼厚膜。
优选的,所述衬底的材料可以为单晶或多晶金刚石、硅、蓝宝石和石英玻璃等。
优选的,所述氮化硼缓冲层是一种非晶氮化硼薄膜,厚度为15-25nm。
优选的,所述立方氮化硼厚膜是高纯立方相含量的氮化硼厚膜,立方相含量在50%以上,厚度为50-1000nm。
优选的,所述电极的材料可以用钛、铬、钼、金、银或铜。
优选的,所述电极形状可以有叉指状,圆柱状,三角状,长方体状。
基于同一发明构思,本发明还提供了一种基于立方氮化硼厚膜的MSM型深紫外光电探测器的制备方法,其特征在于,所述的方法包括以下步骤:
(1)提供衬底;
(2)经常规清洗后,将衬底放置在沉积室内在其表面制备氮化硼缓冲层;
(3)在氮化硼缓冲层表面继续制备立方氮化硼厚膜;
(4)随后在所制备的立方氮化硼厚膜表面制备一对电极。
优选的,所述步骤(1)中衬底的材料为单晶或多晶金刚石、硅、蓝宝石和石英玻璃等。
优选的,所述步骤(2)和(3)中都是采用超高真空磁控溅射手段制备所得。
优选的,所述步骤(4)中电极的材料包括钛、铬、钼、金、银或铜,电极的形状可以有叉指状,圆柱状,三角状,长方体状。
有益效果
(1)本发明采用氮化硼作为缓冲层,为后续的立方氮化硼厚膜生长提供了立方相的成核面,促进样品中立方相含量的增加,也缓解了厚膜样品中的内应力累积,同时立方氮化硼厚膜与衬底之间的粘附性加强,提高了立方氮化硼厚膜样品的稳定性,使其能够充分发挥优异的半导体性质,为立方氮化硼在高温高频高功率半导体器件领域的应用提供了材料保障。
(2)本发明采用立方氮化硼厚膜来制作深紫外光电探测器,充分考虑到了材料自身在深紫外探测领域里的性能优势,作为超宽带隙半导体材料,具有本征紫外吸收窗口,不需要加入额外的滤波片,优异的散热性能不需要冷却,避免使用昂贵的、大体积的额外装置,可以直接获得高灵敏度,快速响应的深紫外光电探测信号。
(3)本发明采用的MSM型器件结构来制作立方氮化硼厚膜的深紫外光电探测器,具有量子效率高,响应速度快,工艺简单的优点。
(4)本发明制备的立方氮化硼厚膜,具有耐高温高压、耐氧化、抗腐蚀等优势,使得探测器可以用于极端环境。
本发明可以在硅基衬底上直接制备基于立方氮化硼厚膜的深紫外光电探测器,可与现有硅基工艺兼容,有利于器件集成,工艺简单,易于大规模产业化。
附图说明
图1为本发明制备的深紫外光电探测器的结构剖面示意图;
图2为本发明实施例制备的立方氮化硼厚膜的扫描电子显微镜照片;
图3为本发明实施例制备的立方氮化硼厚膜的傅里叶变换红外光谱图;
图4为本发明实施例制备的叉指电极的扫描电子显微镜照片;
具体实施方式
下面将结合具体实施例对本发明进行进一步清楚、完整的描述,但本发明的保护范围并不仅限于此。
实施例
优选的,所述衬底为300nm厚的n型(100)硅衬底。将切好的硅片分别放在丙酮,乙醇,去离子水中超声清洗,然后在HF溶液中浸泡去除表面的氧化物,用氮气吹干后放在样品架上。将样品架送入磁控溅射腔室中,然后进行抽真空,当真空抽到10-5pa,加温衬底到600℃继续对腔室抽真空,直到再次抽到10-5pa,通入工作气体氮气和氩气各50sccm,工作气压为2pa;衬底与靶间距为8cm;加负偏压100V;射频源功率120W;预溅射3分钟后,沉积半小时得到氮化硼缓冲层,然后沉积2个半小时得到立方氮化硼厚膜。最后,在立方氮化硼厚膜的表面通过光刻的方法制备电极。优选的,所述电极材料为金电极,所述电极形状为叉指状电极,其中叉指电极对数为15对,指长500μm,指宽3.4μm,指间距6.8μm,即制得基于立方氮化硼厚膜的MSM型深紫外光电探测器,其结构剖面示意图见图1。
图2为对实施例制备得到的立方氮化硼厚膜进行扫描电子显微镜测试图片,磁控溅射得到的立方氮化硼厚膜表面致密均匀,厚膜表面可以看到出现了立方氮化硼结核点。图3是对厚膜进行傅里叶变换红外光谱测量的结果,从图中可以看到在774cm-1,1085cm-1,1386cm-1附近出现了明显的特征峰,位于774cm-1和1386cm-1处的峰是六方氮化硼的特征峰,而位于1085cm-1处的峰是立方氮化硼的特征峰,这也与扫描电子显微镜出现立方氮化硼的结果一致,同时证实了氮化硼缓冲层的存在。图4为本发明实施例制备的叉指电极的扫描电子显微镜照片。对本发明实施例制备的深紫外光电探测器在不同偏压下检测其光电响应度,可以得到峰值响应波长为205nm,截止波长为225nm,对应立方氮化硼的响应峰值,带隙宽度为5.5eV,与紫外可见光谱得到的带宽一致。
对比例
优选的,所述衬底为300nm厚的n型(100)硅衬底。将切好的硅片分别放在丙酮,乙醇,去离子水中超声清洗,然后在HF溶液中浸泡去除表面的氧化物,用氮气吹干后放在样品架上。将样品架送入磁控溅射腔室中,然后进行抽真空,当真空抽到10-5pa,加温衬底到600℃继续对腔室抽真空,直到再次抽到10-5pa,通入工作气体氮气和氩气各50sccm,工作气压为2pa;衬底与靶间距为8cm;加负偏压100V;射频源功率120W;预溅射3分钟后,沉积3小时得到立方氮化硼厚膜。最后,在立方氮化硼厚膜的表面通过光刻的方法制备电极。优选的,所述电极材料为金电极,所述电极形状为叉指状电极,其中叉指电极对数为15对,指长500μm,指宽3.4μm,指间距6.8μm,即制得基于立方氮化硼厚膜的MSM型深紫外光电探测器。
未生长氮化硼缓冲层的立方氮化硼厚膜,样品质量较差,表面出现破裂,稳定性不佳。另外对比例制备的深紫外光电探测器的探测性能相比实施例差,漏电流高,光电响应的位置不在立方氮化硼所对应的深紫外区,衬底对其响应信号的干扰很大。

Claims (10)

1.一种基于立方氮化硼厚膜的MSM型深紫外光电探测器,其特征在于,包括:
(1)衬底;
(2)氮化硼缓冲层,位于所述衬底之上,并完全覆盖所述衬底;
(3)立方氮化硼厚膜,位于所述氮化硼缓冲层之上,并完全覆盖所述氮化硼缓冲层;
(4)一对电极,分别叠置于所述立方氮化硼厚膜之上,部分覆盖所述立方氮化硼厚膜。
2.根据权利要求1所述的基于立方氮化硼厚膜的MSM型深紫外光电探测器,其特征在于,所述衬底的材料为单晶或多晶金刚石、硅、蓝宝石和石英玻璃等。
3.根据权利要求1所述的基于立方氮化硼厚膜的MSM型深紫外光电探测器,其特征在于,所述氮化硼缓冲层是一种非晶氮化硼薄膜,厚度为15-25nm。
4.根据权利要求1所述的基于立方氮化硼厚膜的MSM型深紫外光电探测器,其特征在于,所述立方氮化硼厚膜是高纯立方相含量的氮化硼厚膜,厚度为50-1000nm。
5.根据权利要求1所述的基于立方氮化硼厚膜的MSM型深紫外光电探测器,其特征在于,所述电极的材料包括钛、铬、钼、金、银或铜。
6.根据权利要求1所述的基于立方氮化硼厚膜的MSM型深紫外光电探测器,其特征在于,所述电极的形状包括叉指状,圆柱状,三角状或长方体状。
7.一种基于立方氮化硼厚膜的MSM型深紫外光电探测器的制备方法,其特征在于,包括以下步骤:
1)提供衬底;
2)经常规清洗后,将衬底放置在沉积室内在其表面制备氮化硼缓冲层;
3)在氮化硼缓冲层表面继续制备立方氮化硼厚膜;
4)随后在所制备的立方氮化硼厚膜表面制备一对电极。
8.根据权利要求7所述的一种基于立方氮化硼厚膜的MSM型深紫外光电探测器的制备方法,其特征在于,所述衬底的材料为单晶或多晶金刚石、硅、蓝宝石和石英玻璃等。
9.根据权利要求7所述的一种基于立方氮化硼厚膜的MSM型深紫外光电探测器的制备方法,其特征在于,所述步骤2)和3)中都是采用超高真空磁控溅射手段制备所得。
10.根据权利要求7所述的一种基于立方氮化硼厚膜的MSM型深紫外光电探测器的制备方法,其特征在于,所述步骤4)中电极的材料包括钛、铬、钼、金、银或铜,电极的形状包括叉指状,圆柱状,三角状或长方体状。
CN202010588559.6A 2020-06-24 2020-06-24 基于立方氮化硼厚膜的msm型深紫外光电探测器及制备方法 Active CN111710752B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010588559.6A CN111710752B (zh) 2020-06-24 2020-06-24 基于立方氮化硼厚膜的msm型深紫外光电探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010588559.6A CN111710752B (zh) 2020-06-24 2020-06-24 基于立方氮化硼厚膜的msm型深紫外光电探测器及制备方法

Publications (2)

Publication Number Publication Date
CN111710752A true CN111710752A (zh) 2020-09-25
CN111710752B CN111710752B (zh) 2023-05-05

Family

ID=72542598

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010588559.6A Active CN111710752B (zh) 2020-06-24 2020-06-24 基于立方氮化硼厚膜的msm型深紫外光电探测器及制备方法

Country Status (1)

Country Link
CN (1) CN111710752B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113089091A (zh) * 2021-04-01 2021-07-09 北京化工大学 氮化硼模板及其制备方法
CN114530519A (zh) * 2020-11-23 2022-05-24 中国科学院宁波材料技术与工程研究所 一种自驱动msm紫外探测器及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171868A (ja) * 1987-01-12 1988-07-15 Kobe Steel Ltd 窒化硼素被覆層を有する複合材料
JPH06264264A (ja) * 1993-03-12 1994-09-20 Fujikura Ltd ダイヤモンド被覆体およびその製造方法
US5483920A (en) * 1993-08-05 1996-01-16 Board Of Governors Of Wayne State University Method of forming cubic boron nitride films
US20020003238A1 (en) * 2000-06-28 2002-01-10 Motorola, Inc. Structure including cubic boron nitride films and method of forming the same
US20060185577A1 (en) * 2003-11-18 2006-08-24 National Institute For Materials Science Single crystal of highly purified hexagonal boron nitride capable of far ultraviolet high-luminance light emission, process for producing the same, far ultraviolet high-luminance light emitting device including the single crystal, and utilizing the device, solid laser and solid light emitting unit
CN101230454A (zh) * 2007-12-28 2008-07-30 北京工业大学 一种立方氮化硼薄膜的制备方法
US20090078851A1 (en) * 2005-07-01 2009-03-26 National Institute For Materials Science Far Ultraviolet With High Luminance Emitting High-Purity Hexagonal Boron Nitride Monocrystalline Powder And Method Of Manufacturing The Same
CN110808296A (zh) * 2019-10-22 2020-02-18 浙江大学 一种双层半导体结构的光电导型深紫外单色光电探测器
CN111106202A (zh) * 2020-01-13 2020-05-05 吉林大学 一种基于氮化镁薄膜的光电探测器件及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171868A (ja) * 1987-01-12 1988-07-15 Kobe Steel Ltd 窒化硼素被覆層を有する複合材料
JPH06264264A (ja) * 1993-03-12 1994-09-20 Fujikura Ltd ダイヤモンド被覆体およびその製造方法
US5483920A (en) * 1993-08-05 1996-01-16 Board Of Governors Of Wayne State University Method of forming cubic boron nitride films
US20020003238A1 (en) * 2000-06-28 2002-01-10 Motorola, Inc. Structure including cubic boron nitride films and method of forming the same
US20060185577A1 (en) * 2003-11-18 2006-08-24 National Institute For Materials Science Single crystal of highly purified hexagonal boron nitride capable of far ultraviolet high-luminance light emission, process for producing the same, far ultraviolet high-luminance light emitting device including the single crystal, and utilizing the device, solid laser and solid light emitting unit
US20090078851A1 (en) * 2005-07-01 2009-03-26 National Institute For Materials Science Far Ultraviolet With High Luminance Emitting High-Purity Hexagonal Boron Nitride Monocrystalline Powder And Method Of Manufacturing The Same
CN101230454A (zh) * 2007-12-28 2008-07-30 北京工业大学 一种立方氮化硼薄膜的制备方法
CN110808296A (zh) * 2019-10-22 2020-02-18 浙江大学 一种双层半导体结构的光电导型深紫外单色光电探测器
CN111106202A (zh) * 2020-01-13 2020-05-05 吉林大学 一种基于氮化镁薄膜的光电探测器件及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A.SOLTANI等: "193nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors", 《APPLIED PHYSICS LETTERS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114530519A (zh) * 2020-11-23 2022-05-24 中国科学院宁波材料技术与工程研究所 一种自驱动msm紫外探测器及其制备方法
CN114530519B (zh) * 2020-11-23 2024-04-02 中国科学院宁波材料技术与工程研究所 一种自驱动msm紫外探测器及其制备方法
CN113089091A (zh) * 2021-04-01 2021-07-09 北京化工大学 氮化硼模板及其制备方法

Also Published As

Publication number Publication date
CN111710752B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
CN110061089B (zh) 蓝宝石斜切衬底优化氧化镓薄膜生长及日盲紫外探测器性能的方法
CN110676339B (zh) 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法
CN111710752B (zh) 基于立方氮化硼厚膜的msm型深紫外光电探测器及制备方法
CN112635594A (zh) 基于极性J-TMDs/β-Ga2O3异质结的高速光电子器件及其制备方法
CN112086344A (zh) 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用
CN113707760A (zh) 一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法
CN108346712B (zh) 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法
CN103227230A (zh) 一种侧向生长ZnMgO纳米线日盲区紫外探测器及其制备方法
CN113675297A (zh) 一种氧化镓/氮化镓异质结光电探测器及其制备方法
CN110350043B (zh) 一种自组装结晶/非晶氧化镓相结光电探测器及其制造方法
CN109881248A (zh) 氮硫共掺杂n型半导体金刚石材料及其制备方法
CN113193069B (zh) 一种hBN/BAlN异质结紫外探测器及其制备方法
CN106024862B (zh) 一种带有电极的金刚石薄膜/GaN异质结的制备方法
CN111710750B (zh) 基于六方氮化硼厚膜的深紫外光电探测器及制备方法
CN114566566A (zh) 一种氮化铝日盲光电探测器及其制备方法
CN109301002B (zh) 基于(AlxGa1-x)2O3材料MSM结构的紫外光电探测器及其制备方法
CN109285910B (zh) 基于(AlxGa1-x)2O3材料MSM结构的紫外光电探测器及其制备方法
CN113113499A (zh) 一种pn结型氧化镓基自供电紫外探测器及其制备方法
CN112071942B (zh) 基于NiFe2O4/SiC紫外光电二极管及制备方法
CN109148639A (zh) 一种日盲紫外探测器结构、制备方法及性能测试方法
CN118352425B (zh) 氧化镓/氮化镓异质结双紫外波段探测器及其制备方法
CN113178498A (zh) 深紫外探测器及其制备方法
CN115000244B (zh) 一种高性能自驱动GaN纳米线紫外探测器的制作方法
CN117976758A (zh) 一种基于金刚石/AlScN异质结的日盲紫外探测器及其制备方法
KR101521450B1 (ko) CuSe2를 타겟으로 하는 비셀렌화 스퍼터링 공정을 이용한 CIGS 박막 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant