CN110085679A - n型氮化硼薄膜/p型单晶硅异质pn结原型器件及制备方法 - Google Patents

n型氮化硼薄膜/p型单晶硅异质pn结原型器件及制备方法 Download PDF

Info

Publication number
CN110085679A
CN110085679A CN201910382492.8A CN201910382492A CN110085679A CN 110085679 A CN110085679 A CN 110085679A CN 201910382492 A CN201910382492 A CN 201910382492A CN 110085679 A CN110085679 A CN 110085679A
Authority
CN
China
Prior art keywords
boron nitride
junction
monocrystalline silicon
nitride pellicle
pellicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910382492.8A
Other languages
English (en)
Inventor
殷红
刘彩云
李宇婧
高伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202110678790.9A priority Critical patent/CN113675261A/zh
Priority to CN201910382492.8A priority patent/CN110085679A/zh
Publication of CN110085679A publication Critical patent/CN110085679A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0647Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66893Unipolar field-effect transistors with a PN junction gate, i.e. JFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66893Unipolar field-effect transistors with a PN junction gate, i.e. JFET
    • H01L29/66916Unipolar field-effect transistors with a PN junction gate, i.e. JFET with a PN heterojunction gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Formation Of Insulating Films (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Electron Beam Exposure (AREA)

Abstract

本发明提供了一种n型氮化硼薄膜/p型单晶硅异质pn结原型器件及制备方法,属于半导体材料领域。本发明采用磁控溅射方法在p型(100)面单晶硅基底上制备氮化硼薄膜;采用共溅射手段,在位碳掺杂得到n型氮化硼薄膜;然后在n型氮化硼薄膜一侧和p型单晶硅一侧分别制作银电极,即制得n型氮化硼薄膜/p型单晶硅异质pn结原型器件。本发明通过对氮化硼薄膜进行在位碳掺杂,得到电学性能优异的n型电导层,较比于未掺杂、硅掺杂的氮化硼薄膜的电学性能有显著提升;获得了整流特性良好的pn结原型器件。

Description

n型氮化硼薄膜/p型单晶硅异质pn结原型器件及制备方法
技术领域
本发明涉及半导体材料领域,尤其涉及一种n型氮化硼薄膜/p型单晶硅异质pn结原型器件及制备方法。
背景技术
随着材料科学的发展和半导体技术的进步,硅基半导体器件的性能已逐渐达到硅材料理论的极限,而工业、科技与军事的发展却不断对半导体器件提出更苛刻的要求,开发具有高强度、高硬度、耐高温、高频率、抗辐射以及耐腐蚀等特性的新型材料已成为当务之急。
宽禁带半导体材料具有高硬度、良好的化学稳定性、高热导率、高击穿场强、高饱和漂移速度和小介电常数,可发射及探测至深紫外的短波长光等诸多特性,是满足工业半导体器件发展需求的理想材料,被称为“第三代半导体”。特别是氮化硼,作为三五族化合物半导体中最简单的材料,具有超宽的带隙(六角氮化硼为5.9eV;立方氮化硼为6.4eV)、极限的物理化学性质、以及优异的半导体和光电性能等,在军事、航空、工业等领域中的应用有着得天独厚的优势。
国际上对基于氮化硼材料的pn结方面的研究仍然处于初级阶段。已有的pn结方面的报道多为高温高压合成的氮化硼块体单晶,无法直接沉积在基底上,不利于在大规模、大面积的集成电路中应用。此外,关于高质量氮化硼薄膜合成和有效掺杂方面的报道也极为有限。氮化硼薄膜的生长窗口非常狭窄,特别是高质量的氮化硼薄膜的生长重复性非常差,沉积手段不同,工艺参数就完全不同,再昂贵精密的设备也是如此。同时,由于氮化硼的禁带宽,难以获得高浓度和低补偿的有效掺杂。因此,导致高质量氮化硼薄膜在半导体等相关领域的应用研究滞缓。
本发明拟采用磁控溅射手段,通过在位碳掺杂,在p型单晶硅基底上生长n型氮化硼薄膜,通过调节共溅射参数,提高氮化硼薄膜的电导率、掺杂率和迁移率等半导体特性,获得具有高整流性能的n型氮化硼薄膜/p型单晶硅异质pn结原型器件及制备方法,对高质量氮化硼薄膜在半导体、电子工业等领域的应用提供重要的依据。
发明内容
本发明的目的是提供一种n型氮化硼薄膜/p型单晶硅异质pn结原型器件及制备方法。
本发明采用的技术方案是:
一种n型氮化硼薄膜/p型单晶硅异质pn结原型器件及制备方法,其特征在于,所述方法包括以下步骤:(1)采用磁控溅射方法在p型单晶硅基底上制备碳掺杂氮化硼薄膜;(2)分别在n型氮化硼薄膜/p型单晶硅异质pn结两侧制备欧姆电极,即制得所述n型氮化硼薄膜/p型单晶硅异质pn结原型器件。
所述磁控溅射设备可以商用或是自行搭建。
所述步骤(1)磁控溅射的靶材为含碳的六角氮化硼靶,或六角氮化硼和碳单质分别作为靶材,采用双靶共溅射。优选为含碳的六角氮化硼靶。
所述步骤(1)磁控溅射方法按以下步骤进行:对磁控溅射室进行预抽真空后加热基底到25~800℃,优选为100~600℃;继续抽真空,直至达到1×10-4~1×10-5Pa后,优选为10-5Pa;通入氩气50~100sccm和氮气0~50sccm至工作气压1~3Pa,优选为氩气50sccm和氮气0~50sccm;施加基底负偏压0~-200V,优选为基底负偏压-100~-150V;控制基底和靶材的距离4~8cm,优选为6~8cm;设置靶溅射功率80~200W并起辉,优选为120~150W;进行薄膜溅射,溅射的时间为30min~3h,制备得到厚度100~1000nm的碳掺杂的氮化硼薄膜,其掺杂浓度为1018~1020cm-3,即获得n型氮化硼薄膜/p型单晶硅异质pn结。
所述步骤(2)中在n型氮化硼薄膜/p型单晶硅异质pn结两侧制备欧姆电极,可以使用常规的制作电极方法,是本领域技术人员公知的技术。
本发明还提供按照上述方法制备得到的n型氮化硼薄膜/p型单晶硅异质pn结。
本发明提供的n型氮化硼薄膜层具有较高的电导率、掺杂率和迁移率等半导体特性,更进一步提供的n型氮化硼薄膜/p型单晶硅异质pn结具有良好的整流性能。
本发明提供一种上述n型氮化硼薄膜/p型单晶硅异质pn结在半导体器件等领域的应用。
本发明的有益效果主要体现在:
(1)本发明通过在位碳掺杂的方式在p型单晶硅基底上生长高质量的n型氮化硼薄膜,可以通过调节生长参数来同时提高氮化硼薄膜的生长质量和掺杂质量,解决了离子注入等非在位掺杂手段通常造成的样品缺陷密度高、补偿高、掺杂效率低等缺点,使得碳单质有效地掺杂到氮化硼基体内,从而改善氮化硼薄膜的掺杂效率、迁移率和电导率等重要半导体性能参数。
(2)本发明采用磁控溅射方法,可以制备大面积的均匀致密的氮化硼薄膜。该方法成本低廉、技术工艺可控、便于操作,易于工业化推广。
(3)本发明通过对氮化硼薄膜进行有效的掺杂,克服了氮化硼薄膜本征电阻高,拓宽其在半导体器件领域内仅仅能做集成电路的绝缘层和保护层等的使用,使其向高可靠和高性能的半导体功能材料方面转型。
(4)本发明提供的具有良好整流性能的n型氮化硼薄膜/p型单晶硅异质pn结原型器件,具有较高的击穿电压和工作电压,并且较低的漏电流,整流比较高,为氮化硼薄膜在宽禁带半导体的潜在应用领域中提供科学依据和技术支持。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明实施例1制得的氮化硼薄膜的扫描电子显微镜照片
图2为本发明实施例2制得的氮化硼薄膜的扫描电子显微镜照片
图3为本发明实施例3制得的氮化硼薄膜的扫描电子显微镜照片
图4为本发明实施例4制得的氮化硼薄膜的扫描电子显微镜照片
图5为本发明实施例1~4制得的氮化硼薄膜的傅里叶红外变换光谱图
图6为本发明实施例1~4制得的n型氮化硼薄膜/p型硅异质pn结在室温下的I-V曲线图
具体实施方式
下面将结合具体实施例对本发明进行进一步清楚、完整的描述,但本发明的保护范围并不仅限于此。
实施例1
将按所需尺寸切好的p型硅(100)单晶片依次在丙酮、乙醇、去离子水中超声清洗后,用氮气吹干后放在样品架上,送入真空沉积室,沉积室内真空度抽至3×10-5Pa,加热基底到500℃;继续抽真空,待沉积室的背底真空再次达到3×10-5Pa时,通入反应工作气体氩气50sccm至工作气压为2Pa;基底与靶间的距离为8cm,加基底负偏压-150V,设置靶溅射功率150W后起辉,预溅射2min后,挡板移开,进行薄膜溅射,薄膜溅射时间为2h,即得到n型氮化硼薄膜/p型单晶硅异质pn结。分别在n型氮化硼薄膜/p型单晶硅的异质pn结两侧制备银电极,形成欧姆接触,即制得所述n型氮化硼薄膜/p型单晶硅异质pn结原型器件,采用半导体测试系统获得器件的I-V曲线。
图1为实施例1制得的氮化硼薄膜的扫描电子显微镜照片,可见薄膜表面致密、平整、颗粒均匀。图5为实施例1~4制备得到的氮化硼薄膜的红外光谱图,其中实施例1所制备得到的氮化硼薄膜在770cm-1处为B-N特征峰,在923cm-1处为C-N特征峰,1100cm-1处为C-B特征峰,在1239cm-1处为B-O特征峰。用HL5500霍尔测试系统测得此氮化硼薄膜为n型半导体,其掺杂浓度为1020cm-3,迁移率为5.29cm2/Vs,电阻率为4.1×10-3Ωcm。图6为实施例1~4制得的n型氮化硼薄膜/p型硅异质pn结在室温下的I-V曲线图。测试结果表明,室温下实施例1所制备的异质pn结在±5V处的整流率约为115,反向漏电流约为7×10-8A,具有明显的整流特性。在最大电压量程±10V处,仍未获得饱和时的最大整流率,但从趋势看正向电流远未达到饱和,即pn结的实际整流率应该更高,且击穿电压大于10V。
实施例2
将按所需尺寸切好的p型硅(100)单晶片依次在丙酮、乙醇、去离子水中超声清洗后,用氮气吹干后放在样品架上,送入真空沉积室,沉积室内真空度抽至3×10-5Pa,加热基底到500℃;继续抽真空,待沉积室的背底真空再次达到3×10-5Pa时,通入反应工作气体氩气50sccm和氮气20sccm至工作气压为2Pa;基底与靶间的距离为8cm,加基底负偏压-150V,设置靶溅射功率150W后起辉,预溅射2min后,挡板移开,进行薄膜溅射,薄膜溅射时间为2h,即得到n型氮化硼薄膜/p型单晶硅异质pn结。分别在n型氮化硼薄膜/p型单晶硅异质pn结两侧制备银电极,形成欧姆接触,即制得所述n型氮化硼薄膜/p型单晶硅异质pn结原型器件,采用半导体测试系统获得器件的I-V曲线。
图2为实施例2制得的氮化硼薄膜的扫描电子显微镜照片,可见薄膜致密、平整、颗粒均匀。图5为实施例1~4制得的氮化硼薄膜的红外光谱图,其中实施例2所制得的氮化硼薄膜在774cm-1处为B-N特征峰,在923cm-1处为C-N特征峰,1104cm-1处为C-B特征峰,在1251cm-1处为B-O特征峰。用HL5500霍尔测试系统测得此氮化硼薄膜为n型半导体,其掺杂浓度为1019cm-3,迁移率为214.33cm2/Vs,电阻率为2.12×10-3Ωcm。图6为实施例1~4制得的n型氮化硼薄膜/p型硅异质pn结在室温下的I-V曲线图。测试结果表明,室温下实施例2所制备的异质pn结在±5V处的整流率约为21.5,反向漏电流约为2.7×10-6A,具有明显的整流特性。在最大电压量程约±10V处,仍未获得饱和时的最大整流率,但从趋势看正向电流远未达到饱和,即pn结的实际整流率更高,且击穿电压大于10V。
实施例3
将按所需尺寸切好的p型硅(100)单晶片依次在丙酮、乙醇、去离子水中超声清洗后,用氮气吹干后放在样品架上,送入真空沉积室,沉积室内真空度抽至3×10-5Pa,加热基底到500℃;继续抽真空,待沉积室的背底真空再次达到3×10-5Pa时,通入反应工作气体氩气50sccm和氮气40sccm至工作气压为2Pa;基底与靶间的距离为8cm,加基底负偏压-150V,设置靶溅射功率150W后起辉,预溅射2min后,挡板移开,进行薄膜溅射,薄膜溅射时间为2h,即得到n型氮化硼薄膜/p型单晶硅异质pn结。分别在n型氮化硼薄膜/p型单晶硅异质pn结两侧制备银电极,形成欧姆接触,即制得所述n型氮化硼薄膜/p型单晶硅异质pn结原型器件,采用半导体测试系统获得器件的I-V曲线。
图3为实施例3制得的氮化硼薄膜的扫描电子显微镜照片,可见薄膜表面致密、平整、颗粒均匀。图5为实施例1~4制得的氮化硼薄膜的红外光谱图,其中实施例3所制得的氮化硼薄膜在774cm-1处为B-N特征峰,在936cm-1处为C-N特征峰,1107cm-1处为C-B特征峰,在1251cm-1处为B-O特征峰。用HL5500霍尔测试系统测得此氮化硼薄膜为n型半导体,其掺杂浓度为1019cm-3,迁移率为214cm2/Vs,电阻率为2.08×10-3Ωcm。图6为实施例1~4制得的n型氮化硼薄膜/p型硅异质pn结在室温下的I-V曲线图。测试结果表明,室温下实施例3所制备的异质pn结在±5V处的整流率约为12.3,在反向漏电流约为8.1×10-6A,具有明显的整流特性。在最大电压量程约±10V处,仍未获得饱和时的最大整流率,但从趋势看正向电流远未达到饱和,即pn结的实际整流率更高,且击穿电压大于10V。
实施例4
将按所需尺寸切好的p型硅(100)单晶片依次在丙酮、乙醇、去离子水中超声清洗后,用氮气吹干后放在样品架上,送入真空沉积室,沉积室内真空度抽至3×10-5Pa,加热基底到500℃;继续抽真空,待沉积室的背底真空再次达到3×10-5Pa时,通入反应工作气体氩气50sccm、氮气50sccm至工作气压为2Pa;基底与靶间的距离为8cm,加基底负偏压-150V,设置靶溅射功率150W后起辉,预溅射2min后,挡板移开,进行薄膜溅射,薄膜溅射时间为2h,即得到n型氮化硼薄膜/p型单晶硅异质pn结。分别在n型氮化硼薄膜/p型单晶硅异质pn结两侧制备银电极,形成欧姆接触,即制得所述n型氮化硼薄膜/p型单晶硅异质pn结原型器件,采用半导体测试系统获得器件的I-V曲线。
图4为实施例4制得的氮化硼薄膜的扫描电子显微镜照片,可见薄膜表面致密、平整、颗粒均匀。图5为实施例1~4制得的氮化硼薄膜的红外光谱图,其中实施例4所制得的氮化硼薄膜在776cm-1处为B-N特征峰,在932cm-1处为C-N特征峰,1104cm-1处为C-B特征峰,在1251cm-1处为B-O特征峰。用HL5500霍尔测试系统测得此氮化硼薄膜为n型半导体,其掺杂浓度为1019cm-3,迁移率为193.67cm2/Vs,电阻率为2.1×10-3Ωcm。图6为实施例1~4制得的n型氮化硼薄膜/p型硅异质pn结在室温下的I-V曲线图。测试结果表明,室温下实施例4所制备的异质pn结在±5V处的整流率约为3,反向漏电流约为1.6×10-5A,具有明显的整流特性。在最大电压量程约±10V处,仍未获得饱和时的最大整流率,但从趋势看正向电流远未达到饱和,即pn结的实际整流率更高,且击穿电压大于10V。

Claims (10)

1.一种n型氮化硼薄膜/p型单晶硅异质pn结原型器件,其特征在于,包括碳掺杂氮化硼薄膜层和p型单晶硅层,所述碳掺杂氮化硼薄膜层与单晶硅层之间形成异质结,碳掺杂氮化硼薄膜层是磁控溅射含碳的六角氮化硼靶形成的n型半导体氮化硼薄膜材料。
2.根据权利要求1所述的一种n型氮化硼薄膜/p型单晶硅异质pn结原型器件,其特征在于,所述的单晶硅的厚度为100~500μm;所述的单晶硅的电阻率为1~5Ωcm。
3.根据权利要求1所述的一种n型氮化硼薄膜/p型单晶硅异质pn结原型器件,其特征在于,所述的氮化硼薄膜厚度为100~1000nm。
4.根据权利要求1所述的一种n型氮化硼薄膜/p型单晶硅异质pn结原型器件,其特征在于,所述的碳掺杂氮化硼薄膜层中碳的掺杂浓度为1018~1020cm-3
5.根据权利要求1所述的一种n型氮化硼薄膜/p型单晶硅异质pn结原型器件,其特征在于,所述的碳掺杂氮化硼薄膜的电阻率为10-4~10-3Ωcm。
6.根据权利要求1所述的一种n型氮化硼薄膜/p型单晶硅异质pn结原型器件,其特征在于,氮化硼薄膜层和单晶硅层两侧均为欧姆接触电极,优选为Ag电极。
7.根据权利要求1~6任意一项所述一种n型氮化硼薄膜/p型单晶硅异质pn结原型器件的制备方法,其特征在于,所述磁控溅射包括以下步骤:
(1)对磁控溅射室进行预抽真空达到后加热基底到25~800℃,然后继续抽真空,直至再次达到1×10-4~1×10-5Pa后,再通入氩气50~100sccm和氮气0~50sccm至工作气压1~3Pa;
(2)对基底施加负偏压0~-200V,控制基底和靶材的距离4~8cm,设置靶溅射功率80~200W并起辉,进行薄膜溅射,溅射的时间为30min~3h,得到碳掺杂的氮化硼薄膜。
8.根据权利要求7所述一种n型氮化硼薄膜/p型单晶硅异质pn结原型器件的制备方法,其特征在于,所述靶材为含碳的六角氮化硼靶材,或六角氮化硼和碳单质分别作为靶材,采用双靶共溅射。
9.根据权利要求7所述的方法制备得到的n型氮化硼薄膜与p型硅基底构成一种异质pn结,当在氮化硼薄膜所在电极上加负电压时,此pn结处于正偏,电流可以畅通地流过此界面;测试所述异质pn结的I-V曲线,可以观察到所述异质pn结具有明显的整流特性,具有较高的整流率、较高的击穿电压和工作电压以及较低的漏电流。
10.一种权利要求1~6任一所述的一种n型氮化硼薄膜/p型单晶硅异质pn结原型器件在半导体器件等领域的应用。
CN201910382492.8A 2019-05-09 2019-05-09 n型氮化硼薄膜/p型单晶硅异质pn结原型器件及制备方法 Pending CN110085679A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110678790.9A CN113675261A (zh) 2019-05-09 2019-05-09 n型氮化硼薄膜/p型单晶硅异质pn结原型器件及制备方法
CN201910382492.8A CN110085679A (zh) 2019-05-09 2019-05-09 n型氮化硼薄膜/p型单晶硅异质pn结原型器件及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910382492.8A CN110085679A (zh) 2019-05-09 2019-05-09 n型氮化硼薄膜/p型单晶硅异质pn结原型器件及制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202110678790.9A Division CN113675261A (zh) 2019-05-09 2019-05-09 n型氮化硼薄膜/p型单晶硅异质pn结原型器件及制备方法

Publications (1)

Publication Number Publication Date
CN110085679A true CN110085679A (zh) 2019-08-02

Family

ID=67419381

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910382492.8A Pending CN110085679A (zh) 2019-05-09 2019-05-09 n型氮化硼薄膜/p型单晶硅异质pn结原型器件及制备方法
CN202110678790.9A Pending CN113675261A (zh) 2019-05-09 2019-05-09 n型氮化硼薄膜/p型单晶硅异质pn结原型器件及制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202110678790.9A Pending CN113675261A (zh) 2019-05-09 2019-05-09 n型氮化硼薄膜/p型单晶硅异质pn结原型器件及制备方法

Country Status (1)

Country Link
CN (2) CN110085679A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110791805A (zh) * 2019-10-31 2020-02-14 中国电子科技集团公司第十三研究所 一种衬底、外延片及其生长方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1211636A (zh) * 1998-07-24 1999-03-24 吉林大学 单晶硅-纳米晶立方氮化硼薄膜类p-n结及其制作方法
CN101719504A (zh) * 2009-12-03 2010-06-02 厦门大学 用于光电单片集成的硅基光电探测器及其制备方法
CN102332495A (zh) * 2011-09-26 2012-01-25 中国科学院宁波材料技术与工程研究所 一种晶体硅太阳能电池的制作方法
CN103031516A (zh) * 2013-01-18 2013-04-10 浙江大学 一种六角相氮化硼薄膜的制备方法
CN109161844A (zh) * 2018-08-03 2019-01-08 吉林大学 一种包络高取向氮化硼纳米晶的硼碳氮薄膜及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882366B (zh) * 2015-03-31 2017-12-05 浙江工业大学 一种n型纳米金刚石薄膜/p型单晶硅的异质pn结原型器件及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1211636A (zh) * 1998-07-24 1999-03-24 吉林大学 单晶硅-纳米晶立方氮化硼薄膜类p-n结及其制作方法
CN101719504A (zh) * 2009-12-03 2010-06-02 厦门大学 用于光电单片集成的硅基光电探测器及其制备方法
CN102332495A (zh) * 2011-09-26 2012-01-25 中国科学院宁波材料技术与工程研究所 一种晶体硅太阳能电池的制作方法
CN103031516A (zh) * 2013-01-18 2013-04-10 浙江大学 一种六角相氮化硼薄膜的制备方法
CN109161844A (zh) * 2018-08-03 2019-01-08 吉林大学 一种包络高取向氮化硼纳米晶的硼碳氮薄膜及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110791805A (zh) * 2019-10-31 2020-02-14 中国电子科技集团公司第十三研究所 一种衬底、外延片及其生长方法

Also Published As

Publication number Publication date
CN113675261A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
CN109461790B (zh) 氧化镓/石墨烯异质结零功耗光电探测器及其制造方法
CN109037374A (zh) 基于NiO/Ga2O3的紫外光电二极管及其制备方法
CN104882366B (zh) 一种n型纳米金刚石薄膜/p型单晶硅的异质pn结原型器件及其制备方法
CN105489694A (zh) 氧化锌/硅p-n异质结紫外光探测器及其制备方法
CN108767050A (zh) 基于氧化亚铜/氧化镓pn结的柔性紫外光电探测器及其制备方法
CN107425090B (zh) 垂直型光电探测器及其制备方法
Al-Hardan et al. Low power consumption UV sensor based on n-ZnO/p-Si junctions
Hu et al. Fabrication and properties of a solar-blind ultraviolet photodetector based on Si-doped β-Ga2O3 film grown on p-Si (111) substrate by MOCVD
CN110265500B (zh) 一种4H-SiC像素肖特基辐射探测器及其制备方法
CN108520899A (zh) 渐变Al组分AlGaN/GaN肖特基二极管及其制备方法
CN109216496B (zh) 应用派瑞林n薄膜直接生长石墨烯的硅肖特基结探测器
Parkhomenko et al. Electrical properties of p-NiO/n-Si heterostructures based on nanostructured silicon
CN110085679A (zh) n型氮化硼薄膜/p型单晶硅异质pn结原型器件及制备方法
Jeong et al. Preparation of born-doped a-SiC: H thin films by ICP-CVD method and to the application of large-area heterojunction solar cells
CN102365765A (zh) 肖特基型结型器件、使用其的光电转换器件和太阳能电池
CN113113507A (zh) 基于NiO/GaN p-n结自供电紫外探测器及制备方法
CN103137770A (zh) 一种石墨烯/Si p-n 双结太阳能电池及其制备方法
CN111710752A (zh) 基于立方氮化硼厚膜的msm型深紫外光电探测器及制备方法
CN204118109U (zh) 一种新型复合透明电极的led芯片
CN206480639U (zh) 一种变掺杂变组分AlGaAsGaAs核辐射探测器
CN107170853B (zh) 一种复合结构的GaN/CdZnTe薄膜紫外光探测器的制备方法
CN106024862B (zh) 一种带有电极的金刚石薄膜/GaN异质结的制备方法
CN102569486A (zh) 一种肖特基栅场效应紫外探测器及其制备方法
CN110061046B (zh) n型硼碳氮薄膜/p型单晶硅异质pn结原型器件及制备方法
CN111354804B (zh) 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190802