CN109216496B - 应用派瑞林n薄膜直接生长石墨烯的硅肖特基结探测器 - Google Patents

应用派瑞林n薄膜直接生长石墨烯的硅肖特基结探测器 Download PDF

Info

Publication number
CN109216496B
CN109216496B CN201811231680.2A CN201811231680A CN109216496B CN 109216496 B CN109216496 B CN 109216496B CN 201811231680 A CN201811231680 A CN 201811231680A CN 109216496 B CN109216496 B CN 109216496B
Authority
CN
China
Prior art keywords
film
graphene
parylene
silicon
schottky junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811231680.2A
Other languages
English (en)
Other versions
CN109216496A (zh
Inventor
徐晨
董毅博
孙捷
解意洋
程传同
毛旭瑞
潘冠中
王秋华
钱峰松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201811231680.2A priority Critical patent/CN109216496B/zh
Publication of CN109216496A publication Critical patent/CN109216496A/zh
Application granted granted Critical
Publication of CN109216496B publication Critical patent/CN109216496B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了应用派瑞林N薄膜直接生长石墨烯的硅肖特基结探测器,属于半导体光电子器件技术领域。其基本结构从下往上依次为:下金属电极、轻掺杂n型硅、二氧化硅绝缘层、石墨烯薄膜、上金属电极。应用派瑞林N直接生长石墨烯,生长原理简单,生长速度快,石墨烯无需转移,大幅度提升器件制备效率。制得的石墨烯与衬底接触良好,石墨烯薄膜均匀,污染少,因此所得到的探测器一致性好。适合于未来石墨烯—硅肖特基结探测器的大规模产业化制备。

Description

应用派瑞林N薄膜直接生长石墨烯的硅肖特基结探测器
技术领域
本发明涉及一种新型的硅肖特基结探测器的制备方式,属于半导体光电子器件技术领域。
背景技术
硅肖特基结探测器由于其制备工艺相对简单、成本低,因此是目前可见光、近红外光探测领域最常用的探测器之一。目前,市面上常见的硅肖特基结探测器多是利用金属与硅形成肖特基结,金属不透光的特性导致入射光只能有很少一部分到达肖特基结的界面,因此探测器的探测率和响应度势必会受到影响。石墨烯是一种透明导电的材料,将其铺在硅表面可以与硅形成良好的肖特基结,同时,石墨烯的高透光度保证了能有更多的入射光到达肖特基结界面,是下一代硅肖特基结探测器的发展方向。但是目前报道的石墨烯—硅肖特基结探测器所采用的石墨烯几乎为化学气相沉积(CVD)法制备,石墨烯在使用过程中需要经过转移工艺将石墨烯从金属衬底转移到硅衬底上。转移工艺与目前半导体工艺不兼容,费时费力,同时,在转移过程中石墨烯不可避免的会引入掺杂和破损,因此,利用转移的石墨烯制备硅肖特基结探测器并不适用于未来大规模产业化。
发明内容
本发明的目的是提供一种高效率的石墨烯—硅肖特基结探测器的制备方法。利用派瑞林N薄膜作为碳源在硅表面直接生长石墨烯来制备肖特基结探测器,器件制备过程中无需转移石墨烯,能够大幅度提高石墨烯—硅肖特基结探测器的制备效率。
本发明应用派瑞林N直接生长石墨烯的硅肖特基结探测器的基本结构,从下往上依次为:下金属电极101、轻掺杂n型硅102、二氧化硅绝缘层103、石墨烯薄膜104和上金属电极105。
本发明中利用派瑞林N作为碳源来在硅表面直接生长石墨烯。派瑞林是一系列有机物的统称,其常被用在生物、电子领域作为柔性衬底或者绝缘涂层,派瑞林N是派瑞林家族的一员,派瑞林N其化学式如图2所示,只含有碳氢两种元素,非常适宜用作石墨烯生长的碳源。其制备方法主要是气相沉积法,因此制备出的派瑞林薄膜相较一些有机物旋凃工艺更加均匀,派瑞林N薄膜厚度在100nm以上时即可实现无针孔。
本发明中在硅衬底表面沉积一层派瑞林薄膜106,利用氩等离子体对派瑞林N薄膜进行表面刻蚀,刻蚀过程中派瑞林N薄膜表面会发生交联反应,即派瑞林分子之间相互键合交联成网络结构的较稳定分子(体型分子)的反应。交联反应只发生在派瑞林薄膜表面一层较薄区域,交联后的派瑞林薄膜在较高温度下能保持稳定不会分解。之后,在高温(1100℃)下快速退火,表面发生交联的派瑞林N薄膜层107会在高温下发生石墨化转变石墨烯,交联层107以下的派瑞林N会在温度到达650℃以上后就分解汽化。
本发明中由于发生交联的区域只有派瑞林表面的薄薄一层,因此最终得到的石墨烯薄膜也非常薄,约3nm。并且,通过控制氩等离子体刻蚀功率,可以控制交联层的厚度,继而控制得到的石墨烯薄膜的厚度,实现石墨烯薄膜厚度的可控生长。
本发明中使氩等离子的作用是使派瑞林N薄膜表面发生交联,除了氩等离子体,其他气体的等离子体或者电子辐照也可以实现同样的效果。
本发明将派瑞林N薄膜作为碳源直接生长的石墨烯用于硅肖特基结探测器的制备。
本发明提供了一种高效率的石墨烯—硅肖特基结探测器的制备方法,
步骤1、如图3所示,将外延片清洗后,光刻后,用光刻胶做掩膜,在有300nm二氧化硅层的轻掺杂硅衬底上刻蚀出硅窗口102。刻蚀方法为湿法腐蚀或者干法刻蚀。
步骤2、如图4所示,在衬底表面利用气相沉积法沉积派瑞林N薄膜106,薄膜厚度大于等于100nm。
步骤3、如图5所示,利用氩等离子刻蚀派瑞林N表面,使派瑞林N表面发生交联,形成一层几纳米厚的交联层107。
步骤4、如图6所示,在快速退火炉中1100℃快速退火30s,交联层的派瑞林N发生石墨化转变为石墨烯薄膜104,未发生交联的派瑞林N则在温度达到650℃以上时就分解汽化。
步骤5、如图7所示,光刻石墨烯图形,以光刻胶为掩膜,用氧等离子体刻蚀石墨烯,形成石墨烯104—硅102肖特基结窗口。
步骤6、光刻电极图形,在石墨烯上面和衬底背面利用溅射或者蒸发制作金属电极105和101,电极材料为Ti/Au,厚度为15nm/100nm。最终得到图1所示的应用派瑞林N直接生长石墨烯的硅肖特基结探测器。
与现有石墨烯—硅肖特基结探测器技术相比,本发明的优越性:
1.本发明的中的石墨烯采用派瑞林N直接生长得到,石墨烯无需转移,整个器件工艺流程被大大缩减,提高了器件的制备效率。石墨烯采用派瑞林N直接生长得到,因此污染更小,石墨烯与硅的接触更好,器件一致性更好,适合批量生长。
2.应用派瑞林N直接生长石墨烯,相较其他石墨烯直接生长方法,生长方法更简单,生长速度快。
3.在工艺中可以采用光刻胶做掩膜对派瑞林N薄膜局部进行氩等离子体刻蚀,这样可以得到图形化直接生长的石墨烯薄膜,石墨烯能够免于光刻。
附图说明
图1:应用派瑞林N直接生长石墨烯的硅肖特基结探测器示意图;
图2:派瑞林N的化学式;
图3:工艺步骤1示意图,已经刻蚀出硅窗口的二氧化硅/硅衬底;
图4:工艺步骤2示意图,衬底上沉积派瑞林N薄膜106;
图5:工艺步骤3示意图,氩等离子体刻蚀使派瑞林N薄膜表面形成一层交联层107;
图6:工艺步骤4示意图,快速退火使交联层107石墨化转变为石墨烯,未发生交联的派瑞林N层106则在温度达到650℃以上时就分解汽化;
图7:工艺步骤5示意图,光刻,将石墨烯刻蚀出图形;
图8:派瑞林N在硅衬底上直接生长得到的石墨烯的拉曼光谱,不同的谱线对应不同的氩等离子体刻蚀功率;
图9:石墨烯—硅肖特基结探测器在不同功率的792nm激光照射下的I-V特性曲线,入射的792nm激光的光功率由小到大分别为:0mW,0.2mW,0.64mW,1.62mW,2.51mW,3.49mW,4.37mW,5.27mW,6.05mW;
图10:石墨烯—硅肖特基结探测器在0V偏压下随光源开关的动态响应特性,入射光为792nm激光,功率1.4mW;
图中:101、下金属电极;102、轻掺杂n型硅;103、二氧化硅绝缘层;104、石墨烯薄膜;105、上金属电极;106、派瑞林N薄膜;107、派瑞林交联层。
具体实施方式
本发明的实施通过以下一个实施例给予说明。
如图1所示,应用派瑞林N直接生长石墨烯的硅肖特基结探测器结构,其从下往上依次为:101、下金属电极;102、轻掺杂n型硅;103、二氧化硅绝缘层;104、石墨烯薄膜;105、上金属电极。
其制作工艺方法如下例所示:
实施例1
步骤1、如图3所示,所选用的衬底为有300nm二氧化硅层的n型轻掺杂硅衬底(电阻率1-10Ω·cm),将外延片清洗后,光刻后,用光刻胶做掩膜,在二氧化硅层上刻蚀出1mm×1mm大小的硅窗口102。刻蚀方法为干法刻蚀,所用设备为反应离子刻蚀机。
步骤2、如图4所示,在衬底表面利用气相沉积法沉积200nm厚的派瑞林N薄膜106。
步骤3、如图5所示,利用氩等离子刻蚀派瑞林N表面,使派瑞林N表面发生交联,形成一层几纳米厚的交联层107。刻蚀流量为100sccm,刻蚀功率为220W,刻蚀时间为15s。
步骤4、如图6所示,在快速退火炉中1100℃快速退火30s,交联层的派瑞林N发生石墨化转变为石墨烯薄膜104,未发生交联的派瑞林N则在温度达到650℃以上时就分解汽化。退火气氛为氢气和氩气,流量分别为40sccm和960sccm。所用快速退火设备为Aixtron公司生产的BlackMagic垂直冷壁式石墨烯生长设备。最终得到的石墨烯的拉曼光谱如图8所示。
步骤5、如图7所示,光刻石墨烯图形,以光刻胶为掩膜,用氧等离子体刻蚀石墨烯,形成石墨烯104—硅102肖特基结窗口,石墨烯的尺寸为1.05mm×1.05mm。
步骤6、光刻电极图形,在石墨烯上面和衬底背面利用溅射制作金属电极105和101,电极材料为Ti/Au,厚度为15nm/100nm。最终得到图1所示的应用派瑞林N直接生长石墨烯的硅肖特基结探测器。
利用半导体参数分析仪对器件的I-V特性进行测试,如图9所示,选用792nm激光作为光源,可以看到在不同入射光功率下器件的I-V特性曲线。器件的动态响应特性如图10所示。经过计算,入射光功率为0.2mW时,0偏压下器件的响应度为205.7mA/W,4V反向偏压下,器件响应度为275.9mA/W。利用锁相放大器对器件的比探测率进行测试,测得在0V偏压下比探测率D*=4.93×109cmHz1/2/W,50mV反向偏压下,比探测率D*=4.18×109cmHz1/2/W。
以上所述仅为本发明的较佳实施方式,并不用以限制本发明,凡在本发明的精神和构思的前提下作出的任何修改、替换和改进等,均应认为包含在本发明的保护范围之内。

Claims (2)

1.应用派瑞林N薄膜直接生长石墨烯的硅肖特基结探测器,其特征在于:将派瑞林N薄膜作为碳源直接生长的石墨烯用于硅肖特基结探测器的制备;其特征在于:
该探测器从下往上的结构依次为:下金属电极(101)、轻掺杂n型硅(102)、二氧化硅绝缘层(103)、石墨烯薄膜(104)、上金属电极(105);
该探测器的实施方法的流程如下:
步骤1、将外延片清洗后,光刻后,用光刻胶做掩膜,在有300nm厚二氧化硅层的轻掺杂硅衬底上刻蚀出轻掺杂n型硅(102)的窗口;
步骤2、在衬底表面利用气相沉积法沉积派瑞林N薄膜(106),派瑞林N薄膜厚度大于等于100nm;
步骤3、利用氩等离子刻蚀派瑞林N薄膜的表面,使派瑞林N薄膜的表面发生交联,形成一层几纳米厚的交联层(107);
步骤4、在快速退火炉中1100℃快速退火30s,交联层的派瑞林N薄膜发生石墨化转变为石墨烯薄膜(104),未发生交联的派瑞林N薄膜则在温度达到650℃以上时就分解汽化;
步骤5、光刻石墨烯图形,以光刻胶为掩膜,用氧等离子体刻蚀石墨烯,形成石墨烯薄膜(104)—轻掺杂n型硅(102)肖特基结窗口;
步骤6、光刻电极图形,在石墨烯薄膜(104)上面和衬底背面利用溅射或者蒸发制作上金属电极(105)和下金属电极(101),电极材料为Ti/Au,厚度为15nm/100nm;最终得到应用派瑞林N薄膜直接生长石墨烯的硅肖特基结探测器。
2.根据权利要求1所述的应用派瑞林N薄膜直接生长石墨烯的硅肖特基结探测器,其特征在于:派瑞林N薄膜的刻蚀方法或者是电子辐照。
CN201811231680.2A 2018-10-22 2018-10-22 应用派瑞林n薄膜直接生长石墨烯的硅肖特基结探测器 Active CN109216496B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811231680.2A CN109216496B (zh) 2018-10-22 2018-10-22 应用派瑞林n薄膜直接生长石墨烯的硅肖特基结探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811231680.2A CN109216496B (zh) 2018-10-22 2018-10-22 应用派瑞林n薄膜直接生长石墨烯的硅肖特基结探测器

Publications (2)

Publication Number Publication Date
CN109216496A CN109216496A (zh) 2019-01-15
CN109216496B true CN109216496B (zh) 2020-01-10

Family

ID=64979947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811231680.2A Active CN109216496B (zh) 2018-10-22 2018-10-22 应用派瑞林n薄膜直接生长石墨烯的硅肖特基结探测器

Country Status (1)

Country Link
CN (1) CN109216496B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935654B (zh) * 2019-03-21 2020-12-29 电子科技大学 一种硅基二硫化钼异质结光电传感器及制备方法
CN110729380A (zh) * 2019-10-23 2020-01-24 电子科技大学 一种基于石墨烯墙/硅复合异质结的光电探测器及其制备方法
CN111244222B (zh) * 2020-01-20 2022-05-27 中国科学院半导体研究所 六方氮化硼紫外光探测器及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771092A (zh) * 2009-12-16 2010-07-07 清华大学 一种基于石墨烯/硅肖特基结的光伏电池及其制备方法
CN102180439A (zh) * 2011-03-31 2011-09-14 华中科技大学 一种表面集成石墨烯的碳微结构及其制备方法
CN103303910A (zh) * 2013-06-06 2013-09-18 中国科学技术大学 一种制备石墨烯的方法及其制备的石墨烯
CN105883779A (zh) * 2015-01-26 2016-08-24 中国科学院金属研究所 一种cvd生长大面积石墨烯的规模化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG184535A1 (en) * 2010-04-12 2012-11-29 Agency Science Tech & Res A photovoltaic uv detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771092A (zh) * 2009-12-16 2010-07-07 清华大学 一种基于石墨烯/硅肖特基结的光伏电池及其制备方法
CN102180439A (zh) * 2011-03-31 2011-09-14 华中科技大学 一种表面集成石墨烯的碳微结构及其制备方法
CN103303910A (zh) * 2013-06-06 2013-09-18 中国科学技术大学 一种制备石墨烯的方法及其制备的石墨烯
CN105883779A (zh) * 2015-01-26 2016-08-24 中国科学院金属研究所 一种cvd生长大面积石墨烯的规模化方法

Also Published As

Publication number Publication date
CN109216496A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
US20200227631A1 (en) Multilayer coatings formed on aligned arrays of carbon nanotubes
CN109216496B (zh) 应用派瑞林n薄膜直接生长石墨烯的硅肖特基结探测器
CN102597336B (zh) 石墨烯大面积沉积及掺杂技术及使用它的产品
KR101063359B1 (ko) 탄소재료, 이를 포함하는 적층체 및 그 제조방법
CN108767050B (zh) 基于氧化亚铜/氧化镓pn结的柔性紫外光电探测器及其制备方法
CN111613691B (zh) 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法
CN109727846A (zh) 大面积制备金属相与半导体相接触的二维碲化钼面内异质结的方法及应用
CN108767028B (zh) 基于氧化镓异质结结构的柔性日盲紫外探测器及其制备方法
CN111564509B (zh) 一种全氧化物柔性光电探测器及其制备方法与应用
CN109888051A (zh) 一种x射线探测器及其制造方法
Kovalenko et al. Diamond-based electrodes for organic photovoltaic devices
CN108666358A (zh) 过渡金属硫属化合物与氮化硼或石墨烯异质结的制备方法
Yim et al. Carbon–silicon schottky barrier diodes
CN110233173A (zh) 一种多功能器件及其制备方法
CN102593282A (zh) 一种ZnO纳米线阵列的掺杂方法
US11658232B2 (en) Field effect transistor based on graphene nanoribbon and method for making the same
US20220177313A1 (en) Graphene nanoribbon composite structure and method for making the same
Rodrigues Analysis of the current-transport mechanism across a CVD diamond/silicon interface
US11948793B2 (en) Field effect transistor based on graphene nanoribbon and method for making the same
CN110085679A (zh) n型氮化硼薄膜/p型单晶硅异质pn结原型器件及制备方法
CN104952703A (zh) 一种IIB-VIB族半导体/CdS纳米p-n结的制备方法
CN109449247A (zh) 锡掺杂氧化钼薄膜、基于锡掺杂氧化钼薄膜的宽光谱光电探测器阵列及其制备方法
Rusop et al. Structural, bonding and physical characteristics of phosphorus-doped hydrogenated amorphous carbon films grown by plasma-enhanced chemical vapor deposition
Shariffudin et al. Post annealing temperature effect on photoluminescence spectroscopy of ZnO thin film
CN112071942B (zh) 基于NiFe2O4/SiC紫外光电二极管及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant