CN111613691B - 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法 - Google Patents

基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法 Download PDF

Info

Publication number
CN111613691B
CN111613691B CN202010299593.1A CN202010299593A CN111613691B CN 111613691 B CN111613691 B CN 111613691B CN 202010299593 A CN202010299593 A CN 202010299593A CN 111613691 B CN111613691 B CN 111613691B
Authority
CN
China
Prior art keywords
copper
flexible
array
nano
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010299593.1A
Other languages
English (en)
Other versions
CN111613691A (zh
Inventor
常裕鑫
王顺利
陶江伟
张丽滢
郭道友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN202010299593.1A priority Critical patent/CN111613691B/zh
Publication of CN111613691A publication Critical patent/CN111613691A/zh
Application granted granted Critical
Publication of CN111613691B publication Critical patent/CN111613691B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明涉及一种基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及制备方法,所述探测器包括依次设置的柔性铜片衬底,所述柔性铜片衬底的至少一侧具有氧化铜层,位于所述铜片衬底一侧的氧化铜层上设置β‑Ga2O3纳米柱阵列,位于所述β‑Ga2O3纳米柱阵列上的石墨烯/Ag纳米线复合层,位于所述石墨烯/Ag纳米线复合层上的Ag电极,所述氧化铜与所述β‑Ga2O3纳米柱阵列之间形成氧化铜/氧化镓纳米柱阵列pn结,所述柔性铜片衬底作为铜电极与所述Ag电极形成通路。本发明的紫外探测器,具有三维空间异质结界面结构和日盲特性,具有优异的化学和热稳定性,柔性可弯曲,耐压强,工作温度和功耗低,重复性良好,可定向识别波长位于日盲波段的200‑280nm的紫外光。

Description

基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其 制备方法
技术领域
本发明属于紫外光电探测器技术领域,具体涉及一种基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及制备方法。
技术背景
β-Ga2O3是一种具有天然的日盲特性的半导体材料,可以定向检测200-280nm的紫外光,由于不受太阳光背景辐射的影响,日盲紫外探测灵敏度极高,因此氧化镓常用于制作日盲型的深紫外光电器件。然而,常见的氧化镓基紫外光电探测器件是在刚性衬底(如石英、蓝宝石、硅片等)或是柔性衬底(高分子类化合物)上生长薄膜,刚性衬底无法弯曲,柔性衬底不耐高温,且存在导电导热性差等缺点,极大地限制了其在柔性光电器件中的应用。
随着人们对可穿戴电子产品需求的增多,对柔性可弯曲光电器件的研究越来越广泛。
到目前为止,已有相关实验(专利号:201710012296.2)基于柔性氧化镓纳米带的日盲紫外光电探测器的报道,但是此类探测器是将已经合成的氧化镓纳米带转移到柔性基底上,具有与基底贴合不牢固、稳定性差和电极制作难度大等缺点。
发明内容
本发明的目的是提供一种灵敏度高、稳定性好、响应时间短、具有日盲特性的基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法。
为了解决上述技术问题,本发明提供一种技术方案为:一种基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器,包括依次设置的柔性铜片衬底,柔性铜片衬底的至少一侧具有氧化铜层,位于铜片衬底一侧的氧化铜层上设置β-Ga2O3纳米柱阵列,位于β-Ga2O3纳米柱阵列上的石墨烯/Ag纳米线复合层,位于石墨烯/Ag纳米线复合层上的Ag电极,氧化铜与β-Ga2O3纳米柱阵列之间形成氧化铜/氧化镓纳米柱阵列pn结,柔性铜片衬底作为铜电极与Ag电极形成通路。
其中,氧化铜/氧化镓纳米柱阵列pn结由p型CuO薄膜和n型β-Ga2O3纳米柱阵列构成。
其中,氧化铜层的厚度为300~500nm,β-Ga2O3纳米柱阵列是由若干β-Ga2O3纳米柱构成,β-Ga2O3纳米柱的直径为50-200nm,β-Ga2O3纳米柱的长度为1.0~1.5μm。
其中,柔性铜片衬底的厚度为0.1mm。
其中,石墨烯/Ag纳米线复合层包括石墨烯层及位于石墨烯层上的Ag纳米线,Ag纳米线位于Ag电极和石墨烯层之间。
其中,铜电极的接线处和Ag电极的接线处,位于柔性铜片衬底的同一侧。
其中,紫外探测器定向探测波长为200-280nm的日盲紫外光。
本发明还包括第二种技术方案,一种基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器的制备方法,包括以下步骤:
一,将金属铜片衬底依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,用干燥的氮气吹干;将清洗干净的金属铜片置入马弗炉中,并在500℃下退火0.5h,使金属铜表面形成一层致密的CuO薄膜,即形成CuO/Cu片衬底,待用;
二,取浓度为10-15g/L的Ga(NO3)3溶液置于反应釜内胆中,然后将步骤一所得的CuO/Cu片衬底斜靠在反应釜内胆中,并浸没于硝酸镓溶液中;
三、将反应釜转移至烘箱中,在150℃下反应5-8h,随后取出样品,清洗,烘干,退火得到CuO/β-Ga2O3纳米柱阵列,其中,退火温度为700-800℃,退火时间为1.0-2.0小时;
四、在步骤三得到的CuO/β-Ga2O3纳米柱阵列上用湿法转移法覆盖一层石墨烯,并滴涂银纳米线溶液,制作石墨烯/Ag纳米线复合透明导电电极;
五、在步骤四所得的石墨烯/Ag纳米线复合电极上方沉积一块银胶作为上电极,刮去样品边缘表面部分,露出金属铜表面,作为柔性探测器的下电极。
其中,步骤二中Ga(NO3)3溶液的浓度为10-15g/L。
其中,步骤四中银纳米线溶液的浓度为0.5-1.0mol/L。
本发明的有益效果:
(1)本发明的基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器,氧化铜/氧化镓纳米柱阵列与柔性铜片衬底结合牢固,金属铜衬底作为柔性下电极易获得、易加工,导电、导热性、耐高温性极佳,极大降低了紫外探测器的成本;石墨烯和Ag复合电极增强器件导电性和透光率,易获得加工,导电性良好,降低了制作紫外探测器的成本;本发明的探测器可探测200-280nm的日盲紫外光,可弯曲和折叠,可应用于便捷式可穿戴紫外线检测设备。本发明的探测器,性能稳定,反应灵敏,具有日盲光电特性。所采用的β-Ga2O3异质结纳米柱阵列均匀、有序,纳米柱尺寸可控。
(2)本发明的基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器日盲紫外探测器,β-Ga2O3异质结纳米柱的直径为50-100nm,光电性能更佳。
(3)本发明的基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器日盲紫外探测器,金属铜衬底厚度为0.1mm,柔性和牢固性更佳。
(4)本发明的制备方法,通过在柔性铜片衬底上原位合成氧化铜/氧化镓纳米柱阵列,使得氧化铜/氧化镓纳米柱阵列与柔性衬底结合牢固。氧化铜/氧化镓纳米柱阵列pn结阵列均匀、有序,尺寸可控;探测器柔性可弯曲、便于大面积制备、重复性好,在可穿戴设备、紫外线检测等领域具有很大的应用前景。
(5)本发明的制备方法,采用水热法制备氧化镓纳米柱阵列,制备的β-Ga2O3纳米柱阵列的方法具有成本低、工艺可控、可大面积制备、重复性好。
(6)本发明的制备方法,通过合理的控制反应条件,可以获得有序的氧化铜/氧化镓控制纳米柱阵列及尺寸。
附图说明
图1是基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器的结构示意图;
图2是CuO薄膜的XRD图谱;
图3是β-Ga2O3异质结纳米柱阵列的XRD图谱;
图4是β-Ga2O3异质结纳米柱阵列的SEM照片;
图5是基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器在不同偏压下对254nm紫外光响应的I-t图;
图6基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器在0偏压下对不同功率的254nm紫外光响应的I-t图。
具体实施方式
下面结合附图对本发明的内容进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。居于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的其他实施例,都属于本发明保护的范围。
实施例1
基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器的制备方法,包括以下步骤:
(1)将金属铜片衬底依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,用干燥的氮气吹干;将清洗干净的金属铜片置入马弗炉中,并在500℃下退火0.5h,使金属铜表面形成一层致密的CuO薄膜,待用。
(2)取20mL浓度为10g/L的Ga(NO3)3溶液置于反应釜内胆中,然后将步骤(1)所得的CuO/Cu片衬底斜靠在反应釜内胆中,并浸没于硝酸镓溶液中。
(3)将反应釜转移至烘箱中,在150℃下反应5h,随后取出样品,用去离子水和无水乙醇交替清洗3次,烘干后在马弗炉中退火得到CuO/β-Ga2O3纳米柱阵列,其中,退火温度为700℃,退火时间为2.0小时。
(4)在步骤(3)得到的CuO/β-Ga2O3纳米柱阵列上用湿法转移法覆盖一层石墨烯,并滴涂银纳米线溶液,制作石墨烯/Ag纳米线复合透明导电电极。
(5)在步骤(4)所得的石墨烯/Ag纳米线复合电极上方沉积一块银胶作为上电极,刮去样品边缘表面部分,露出金属铜表面,作为柔性探测器的下电极。
具体地,所述的步骤(2)中Ga(NO3)3溶液的浓度为10g/L,所述的步骤(3)采用水热法制备β-Ga2O3氧化镓纳米柱阵列。在CuO/Cu衬底上生长GaOOH纳米柱阵列,并进一步退火,将GaOOH纳米柱阵列转化为β-Ga2O3纳米柱阵列,最终形成pn结结构的CuO/β-Ga2O3纳米柱阵列。所述的步骤(4)中银纳米线溶液的浓度为0.5mol/L。
其中步骤(5)中刮去样品边缘表面部分,露出金属铜表面,漏出的金属铜表面与Ag电极位于柔性铜片衬底的同一侧。
将步骤(1)所得样品进行XRD分析,如图2所示,所有的衍射峰均为氧化铜的特征峰,表明金属铜表面形成了一层氧化铜薄膜。步骤(3)所得样品对应的XRD图谱中(-201)、(-201)、(-401)、(002)、(-111)、(111)、(401)(-311)、(-112)、(-312)、(510)、(203)、(-313)、(020)、(403)、(-421)、(-222)和(421)衍射峰均为β-Ga2O3相的特征峰(图3),没有发现其它杂质的特征峰,表明在氧化铜薄膜表面上生长的是β-Ga2O3材料。将步骤(3)中所得样品在扫描电镜中观察,发现纳米柱生长均匀,如图4所示,显示β-Ga2O3异质结纳米柱的直径为100-200nm,高度为1.0-1.5μm。
对步骤(5)中所得的基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器进行光电性能测试。图5给出了在0V、1V、3V和5V偏压及光强为3000μW/cm2的254nm光照下通过不断开关光源测得的I-t曲线,重复测试4个I-t循环,表现出很好的重复性。在黑暗情况,5V偏压下,该探测器的暗电流为200pA,当光强为3000μW/cm2的254nm紫外光照射后,电流迅速增加至300pA,灵敏度高。在相同光照强度下,利用365nm的紫外光对所得CuO/β-Ga2O3/C/Ag异质结纳米阵列柔性紫外探测器件进行光电检测,发现并无光电流响应,表明本发明所得的柔性紫外探测器具有日盲特性。CuO是一种廉价易得的p型半导体材料,构建CuO/β-Ga2O3 pn结结构,能够通过界面处高效地电荷传输调控来提高光响应速度,CuO和β-Ga2O3两种材料的界面存在电势差,有效地促进了电子空穴的分离,进而提高了其光电性能。图6给出了在零偏压下及各强度光强下器件对于254nm光照下通过不断开关光源测得的I-t曲线,重复测试4个I-t循环,同样表现出很好的重复性,表现出良好的自供电效应,表明器件可以进行零功耗工作,高效节能,有望在移动可穿戴等紫外探测等领域得到广泛应用。
具体地,通过上述方法获得的基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器,如图1所示,包括依次设置的柔性铜片衬底1,柔性铜片衬底1的至少一侧具有氧化铜层2,位于柔性铜片衬底1一侧的氧化铜层2上设置β-Ga2O3纳米柱阵列3,位于β-Ga2O3纳米柱阵列3上的石墨烯/Ag纳米线复合层4,位于石墨烯/Ag纳米线复合层4上的Ag电极5,氧化铜层2与β-Ga2O3纳米柱阵列3之间形成氧化铜/氧化镓纳米柱阵列pn结,柔性铜片衬底1作为铜电极与Ag电极5形成通路。
本发明实施例中,氧化铜层2位于所述柔性铜片衬底1的四周,其中,氧化铜层2上设置开口漏出铜片作为铜电极。
本发明的柔性紫外探测器,柔性铜片衬底1作为柔性下电极易获得、易加工,导电、导热性和耐高温性极佳,极大降低了紫外探测器的成本,提高探测器的稳定性;另一方面,石墨烯和Ag复合电极增强器件导电性和透光率。本发明的具有pn结结构的(Cu/CuO/β-Ga2O3/C/Ag)紫外探测器,具有三维空间异质结界面结构和日盲特性,具有优异的化学和热稳定性,柔性可弯曲,耐压强,工作温度和功耗低,重复性良好,可定向识别波长位于日盲波段的200-280nm的紫外光。
其中,氧化铜/氧化镓纳米柱阵列pn结由p型CuO薄膜和n型β-Ga2O3纳米柱阵列3构成。
其中,氧化铜层2的厚度为300~500nm。具体的,本发明中氧化铜层2的厚度为300nm,在其他实施例中,氧化铜层2的厚度为400nm、450nm、或500nm。
其中,β-Ga2O3纳米柱阵列3是由若干β-Ga2O3纳米柱构成,β-Ga2O3纳米柱的直径为100-200nm,β-Ga2O3纳米柱的长度为1-1.5μm。通过控制氧化铜层2的厚度和β-Ga2O3纳米柱的尺寸,可以使得柔性紫外探测器灵敏度提高。
其中,柔性铜片衬底1的厚度为0.1mm。
其中,石墨烯/Ag纳米线复合层4包括石墨烯层及位于石墨烯层上的Ag纳米线,Ag纳米线位于Ag电极5和石墨烯层之间。配合银纳米线溶液的使用可以减少石墨烯在转移和去胶过程中的破损并提升性能。
其中,铜电极的接线处和Ag电极5的接线处,位于柔性铜片衬底1的同一侧。
其中,紫外探测器定向探测波长为200-280nm的日盲紫外光,可弯曲和折叠,可应用于便捷式可穿戴紫外线检测设备。
实施例2
步骤(1)、(4)和(5)均与实施例1相同。步骤(2)中Ga(NO3)3溶液密度为15g/L,步骤(3)中在150℃下反应6h,水热生长羟基氧化镓,随后将GaOOH转移到马弗炉中退火,生长β-Ga2O3纳米柱阵列,其中,GaOOH的退火温度为750℃,退火时间为2小时。所得β-Ga2O3异质结纳米阵列的晶体结构、化学成分以及基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器的光电特性均与实例1类似,基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器的结构与实施例1的不同之处在于,本发明实施例中,β-Ga2O3纳米柱的直径为100-150nm,其他与实施例1相同。
实施例3
步骤(1)、(4)和(5)均与实施例1相同。步骤(2)中Ga(NO3)3溶液密度为12g/L,步骤(3)中在150℃下反应8h,水热生长羟基氧化镓,随后将GaOOH转移到马弗炉中退火,生长β-Ga2O3纳米柱阵列,其中,GaOOH的退火温度为800℃,退火时间为1小时。所得β-Ga2O3异质结纳米阵列的晶体结构、化学成分以及基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器的光电特性均与实例1类似,基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器的结构与实施例1的不同之处在于,本发明实施例中,β-Ga2O3纳米柱的直径为,50-100nm,其他与实施例1相同。
实施例4
步骤(1)、(4)和(5)均与实施例1相同。步骤(2)中Ga(NO3)3溶液密度为15g/L,步骤(3)中在150℃下反应7h,水热生长羟基氧化镓,随后将GaOOH转移到马弗炉中退火,生长β-Ga2O3纳米柱阵列,其中,GaOOH的退火温度为780℃,退火时间为1.5小时,得到CuO/β-Ga2O3纳米柱阵列。所得β-Ga2O3异质结纳米阵列的晶体结构、化学成分以及基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器的光电特性均与实例1类似,基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器的结构与实施例1的不同之处在于,本发明实施例中,β-Ga2O3纳米柱的直径为,80-120nm,其他与实施例1相同。
实施例5
步骤(1)、(4)和(5)均与实施例1相同。步骤(2)中Ga(NO3)3溶液密度为12g/L,步骤(3)中在150℃下反应6h,水热生长羟基氧化镓,随后将GaOOH转移到马弗炉中退火,生长β-Ga2O3纳米柱阵列,其中,GaOOH的退火温度为720℃,退火时间为2小时。所得β-Ga2O3异质结纳米阵列的晶体结构、化学成分以及基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器的光电特性均与实例1类似,基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器的结构与实施例1的不同之处在于,本发明实施例中,β-Ga2O3纳米柱的直径为,50-200nm,其他与实施例1相同。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上、在本发明的方法和原则之内,所作的任何修改等同替换、改进,均应包含在本发明的保护范围之内。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器的制备方法,其特征在于,包括以下步骤:
一,将金属铜片衬底依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,用干燥的氮气吹干;将清洗干净的金属铜片置入马弗炉中,并在500℃下退火0.5h,使金属铜表面形成一层致密的CuO薄膜,即形成CuO/Cu片衬底,待用;
二,取浓度为10-15g/L的Ga(NO3)3溶液置于反应釜内胆中,然后将步骤一所得的CuO/Cu片衬底斜靠在反应釜内胆中,并浸没于硝酸镓溶液中;
三、将反应釜转移至烘箱中,在150℃下反应5-8h,随后取出样品,清洗,烘干,退火得到CuO/β-Ga2O3纳米柱阵列,其中,退火温度为700-800℃,退火时间为1.0-2.0小时;
四、在步骤三得到的CuO/β-Ga2O3纳米柱阵列上用湿法转移法覆盖一层石墨烯,并滴涂银纳米线溶液,制作石墨烯/Ag纳米线复合透明导电电极;
五、在步骤四所得的石墨烯/Ag纳米线复合电极上方沉积一块银胶作为上电极,刮去样品边缘表面部分,露出金属铜表面,作为柔性探测器的下电极。
2.根据权利要求1所述的基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器的制备方法,其特征在于,所述步骤二中Ga(NO3)3溶液的浓度为10-15g/L。
3.根据权利要求1所述的基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器的制备方法,其特征在于,所述的步骤四中银纳米线溶液的浓度为0.5-1.0mol/L。
4.根据权利要求1所述的基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器的制备方法,其特征在于,所述的步骤四的将反应釜转移至烘箱中,在150℃下反应5-8h,反应生成的样品为在CuO/Cu衬底上生长GaOOH纳米柱阵列。
5.一种采用上述权利要求1-4任一项所述的方法制备的基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器,其特征在于,包括依次设置的柔性铜片衬底,所述柔性铜片衬底的至少一侧具有氧化铜层,位于所述铜片衬底一侧的氧化铜层上设置β-Ga2O3纳米柱阵列,位于所述β-Ga2O3纳米柱阵列上的石墨烯/Ag纳米线复合层,位于所述石墨烯/Ag纳米线复合层上的Ag电极,所述氧化铜与所述β-Ga2O3纳米柱阵列之间形成氧化铜/氧化镓纳米柱阵列pn结,所述柔性铜片衬底作为铜电极与所述Ag电极形成通路。
6.根据权利要求5所述的基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器,其特征在于,所述氧化铜/氧化镓纳米柱阵列pn结由p型CuO薄膜和n型β-Ga2O3纳米柱阵列构成。
7.根据权利要求5所述的基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器,其特征在于,所述氧化铜层的厚度为300~500nm,所述β-Ga2O3纳米柱阵列是由若干β-Ga2O3纳米柱构成,β-Ga2O3纳米柱的直径为50-200nm,β-Ga2O3纳米柱的长度为1.0-1.5μm。
8.根据权利要求5所述的基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器,其特征在于,柔性铜片衬底的厚度为0.1mm。
9.根据权利要求5所述的基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器,其特征在于,所述石墨烯/Ag纳米线复合层包括石墨烯层及位于所述石墨烯层上的Ag纳米线,所述Ag纳米线位于所述Ag电极合所述石墨烯层之间。
10.根据权利要求5所述的基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器,其特征在于,所述铜电极的接线处和所述Ag电极的接线处,位于所述柔性铜片衬底的同一侧。
CN202010299593.1A 2020-04-16 2020-04-16 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法 Expired - Fee Related CN111613691B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010299593.1A CN111613691B (zh) 2020-04-16 2020-04-16 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010299593.1A CN111613691B (zh) 2020-04-16 2020-04-16 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN111613691A CN111613691A (zh) 2020-09-01
CN111613691B true CN111613691B (zh) 2022-01-04

Family

ID=72201503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010299593.1A Expired - Fee Related CN111613691B (zh) 2020-04-16 2020-04-16 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN111613691B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112382691B (zh) * 2020-10-16 2022-05-17 华南师范大学 含氮化镓/氧化镓纳米柱阵列的自供电探测器及制备方法
CN113437165B (zh) * 2021-06-24 2022-09-09 中国科学技术大学 一种光电探测器及其制备方法
CN114122171B (zh) * 2021-11-29 2023-07-28 西安邮电大学 氧化镓基日盲紫外光强度探测器及其制备方法
CN114577863A (zh) * 2022-03-01 2022-06-03 国网电力科学研究院武汉南瑞有限责任公司 氧化镓薄膜氢气传感器制备方法及氧化镓薄膜氢气传感器
CN114744060B (zh) * 2022-04-14 2023-08-29 浙江理工大学 一种电网电晕监测器及其制备方法
CN115036386A (zh) * 2022-06-01 2022-09-09 合肥仙湖半导体科技有限公司 一种基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104975344A (zh) * 2015-07-09 2015-10-14 中国科学院上海微系统与信息技术研究所 基于氧化亚铜薄膜衬底低成核密度石墨烯单晶的制备方法
CN204857768U (zh) * 2015-04-30 2015-12-09 南京大学 紫外半导体发光器件
CN105742398A (zh) * 2016-03-18 2016-07-06 浙江理工大学 基于β-Ga2O3/SiC异质结薄膜的日盲型紫外探测器及其制备方法
CN108767050A (zh) * 2018-05-30 2018-11-06 张权岳 基于氧化亚铜/氧化镓pn结的柔性紫外光电探测器及其制备方法
CN110729376A (zh) * 2019-10-23 2020-01-24 昆明物理研究所 基于氧化镍/β-三氧化二镓异质结的紫外探测器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204857768U (zh) * 2015-04-30 2015-12-09 南京大学 紫外半导体发光器件
CN104975344A (zh) * 2015-07-09 2015-10-14 中国科学院上海微系统与信息技术研究所 基于氧化亚铜薄膜衬底低成核密度石墨烯单晶的制备方法
CN105742398A (zh) * 2016-03-18 2016-07-06 浙江理工大学 基于β-Ga2O3/SiC异质结薄膜的日盲型紫外探测器及其制备方法
CN108767050A (zh) * 2018-05-30 2018-11-06 张权岳 基于氧化亚铜/氧化镓pn结的柔性紫外光电探测器及其制备方法
CN110729376A (zh) * 2019-10-23 2020-01-24 昆明物理研究所 基于氧化镍/β-三氧化二镓异质结的紫外探测器及其制备方法

Also Published As

Publication number Publication date
CN111613691A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
CN111613691B (zh) 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
CN112382691B (zh) 含氮化镓/氧化镓纳米柱阵列的自供电探测器及制备方法
Pudasaini et al. Aluminum oxide passivated radial junction sub-micrometre pillar array textured silicon solar cells
CN108767028B (zh) 基于氧化镓异质结结构的柔性日盲紫外探测器及其制备方法
Hsueh et al. Crystalline-Si photovoltaic devices with ZnO nanowires
Fu et al. Enhanced photoresponse in ZnO nanorod array/p-GaN self-powered ultraviolet photodetectors via coupling with CuO nanostructures
Sun et al. Research on piezo-phototronic effect in ZnO/AZO heterojunction flexible ultraviolet photodetectors
Şakar et al. Ultraviolet and visible photo-response of transparent conductive Al-doped ZnO (AZO)/n-Silicon isotype heterojunction device
Liang et al. Multilayer α′-4H-borophene growth on gallium arsenide towards high-performance near-infrared photodetector
Huang et al. Dual functional modes for nanostructured p-Cu2O/n-Si heterojunction photodiodes
CN104183665A (zh) 基于p-型ZnSe纳米线/n-型Si异质结的光电探测器的制备方法
CN112635587A (zh) 基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器及其制备方法
Majumder et al. Optimization of the growth conditions of Cu 2 O thin films and subsequent fabrication of Cu 2 O/ZnO heterojunction by m-SILAR method
Thamri et al. Study of the performance of a ZnO-NiO/Si nanocomposite-based solar cell
Kim et al. Hybrid structures of ITO-nanowire-embedded ITO film for the enhanced Si photodetectors
CN111354804B (zh) 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法
CN111463297B (zh) 基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器及其制备方法
CN114744060B (zh) 一种电网电晕监测器及其制备方法
CN104952703A (zh) 一种IIB-VIB族半导体/CdS纳米p-n结的制备方法
CN117936648A (zh) 钒氧化物纳米带/硅异质结及其制备方法和在光电探测器中的应用
Abidin et al. Growth Time Dependence on ZnO Nanorods Photoanode for Solar Cell Applications
Liu et al. A Sensitive UV Photodetector Based on Non-Wide Bandgap MAPbBr 3 Nanosheet
Liu et al. CuSCN/Si heterojunction near-infrared photodetector based on micro/nano light-trapping structure
CN107240620B (zh) 一种光响应敏感的碲化铋薄膜和硅基片形成的pn结材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220104