CN115036386A - 一种基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器及其制备方法 - Google Patents

一种基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器及其制备方法 Download PDF

Info

Publication number
CN115036386A
CN115036386A CN202210617422.8A CN202210617422A CN115036386A CN 115036386 A CN115036386 A CN 115036386A CN 202210617422 A CN202210617422 A CN 202210617422A CN 115036386 A CN115036386 A CN 115036386A
Authority
CN
China
Prior art keywords
self
heterojunction
film
metal electrode
photoelectric detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210617422.8A
Other languages
English (en)
Inventor
吴春艳
朱晨岳
杨震
解光军
黄明乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Xianhu Semiconductor Technology Co ltd
Original Assignee
Hefei Xianhu Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Xianhu Semiconductor Technology Co ltd filed Critical Hefei Xianhu Semiconductor Technology Co ltd
Priority to CN202210617422.8A priority Critical patent/CN115036386A/zh
Publication of CN115036386A publication Critical patent/CN115036386A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器及其制备方法,是在β‑Ga2O3薄膜上通过紫外曝光光刻和电子束蒸发技术,形成一对叉指电极,其中一侧为欧姆接触的第一金属电极,另一侧电极区域通过电子束蒸发沉积铜薄膜,调节沉积条件使铜膜在沉积的过程中自发氧化形成CuxO,之后在薄膜上方继续通过电子束蒸发沉积第二金属电极,即通过一次光刻,完成异质结的构建和金属电极的沉积。该异质结器件具有良好的自驱动日盲深紫外探测特性。本发明的器件与Ga2O3基光电导型探测器相比,具有响应速度快、紫外可见光抑制比高、暗电流低的优势。

Description

一种基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器及其 制备方法
技术领域
本发明属于光电探测器技术领域,具体涉及一种基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器及其制备方法。
背景技术
深紫外光电探测器广泛应用于军事和民用监视领域,包括导弹预警、短程通信安全、臭氧空洞监测、化学/生物分析等。传统的硅材料可以用于制备商用紫外光电探测器(例如光电二极管和光电倍增管),但其较窄的禁带宽度(1.1~1.3eV)使得硅基光电探测器在用于检测日盲波段时通常需要昂贵的光学滤波器,并且当暴露在远远超出带隙能量的辐射下时,器件更容易老化,这限制了其在日盲型探测领域的应用。随着半导体材料的发展,超宽带半导体 (UWBG)作为一类带隙大于4.4eV的半导体材料,成为最适合用于深紫外光电探测的候选材料。近年来,已经有各种各样的宽禁带半导体被用于深紫外光电探测,例如AlxGa1-xN, ZnxMg1-xO和金刚石等。但是这些超宽带半导体材料制备的光电探测器中,基于金刚石的探测器的量子效率通常较低,并且其带隙不可灵活的调谐,其光谱响应被限制在225nm以下(≈ 5.5eV)。AlGaN虽有一个可调的带隙(通过铝含量调整),但生长过程通常会导致高位错和缺陷密度。三元氧化物(如MgZnO和Zn2GeO4)制备的UV-C光电探测器的合金化过程将导致不必要的缺陷,并阻碍器件的整体性能。
氧化镓(Ga2O3)作为一种典型超宽禁带半导体材料,具有较高的热稳定性、化学稳定性和平均透过率等特点,其吸收截止波长在240-280nm范围内,可以工作于整个日盲区域。氧化镓通常有五种不同的形态,分别为α,β,γ,δ和ε。在这五种异构体中,β-Ga2O3具有最大的物理化学稳定性,因此目前报道的日盲区深紫外光电探测器(DUVPD)大多基于β-Ga2O3。Ga2O3基光电导型探测器件具有较大的增益,但是暗电流较高且响应速度较慢,而p-n结器件则具有良好的自驱动特性,可实现更高的探测灵敏度和更快的响应速度,因而备受瞩目。由于Ga2O3的p型掺杂工艺尚未解决,人们通常采用溅射沉积等工艺过程,沉积其它p型氧化物材料(如NiO,Cu2O,Ir2O3等),与Ga2O3构成p-n异质结,但这种工艺过程较为复杂。
发明内容
针对上述技术背景中的问题,本发明的目的在于提供在现有技术的基础之上,本发明旨在通过一种较为简单的工艺,实现Ga2O3/CuxO异质结的构建,并进而实现高紫外/可见抑制比、高灵敏度、快速响应的自驱动深紫外光电探测。
为了实现以上目的,本发明采用的技术方案为:
一种基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器,在β-Ga2O3薄膜上,通过紫外曝光光刻和电子束蒸发技术,形成一对叉指电极,其中一侧为欧姆接触的第一金属电极,另一侧为CuxO/第二金属电极。
进一步地:所述β-Ga2O3薄膜为通过金属有机化学气相沉积法在单面抛光的蓝宝石衬底上生长而成,以硅烷作为掺杂源进行硅掺杂,掺杂浓度为6×1017cm-3
进一步地:所述叉指电极共10对电极,各电极的长度为2500μm,电极的宽度为10μm,沟道的宽度为10μm。
进一步地:第一金属电极为Ti/Au双层金属电极,其中Ti的厚度为20-50nm,Au的厚度为50-100nm。
进一步地:所述CuxO薄膜是以纯度不低于99.99%的Cu颗粒为铜源,通过电子束蒸发过程中Cu的自发氧化形成,蒸发时控制真空室气压为9.8×10-3Pa、蒸发速率为
Figure BDA0003673799860000021
通过膜厚仪控制蒸发薄膜的厚度为16nm。
进一步地:所述第二金属电极为与CuxO薄膜形成欧姆接触的Au、Pt或其多层电极;所述第二金属电极的厚度为50-100nm。
本发明的另一目的在于,提供一种如上所述的基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器的制备方法,按如下步骤进行:
步骤1、将蓝宝石衬底依次通过酒精、丙酮、去离子水超声清洗;
步骤2、将衬底放入MOCVD系统的反应腔中;维持反应腔的压强和温度分别为50-70Torr 和800-900℃,以三乙基镓和氧气为前驱体,氩气为载气,硅烷为掺杂源,进行n型掺杂的β-Ga2O3薄膜的生长;
步骤3、通过一次紫外曝光光刻和电子束蒸发沉积,形成一侧欧姆接触的叉指电极的第一金属电极,蒸发时真空室气压为4.5×10-3Pa;
步骤4、通过第二次紫外曝光光刻,形成另一侧叉指电极区域,以纯度不低于99.99%的 Cu颗粒为铜源进行蒸发,控制真空室气压为9.8×10-3Pa、蒸发速率为
Figure BDA0003673799860000022
使得蒸发过程中Cu自发氧化形成CuxO薄膜,之后将真空室气压降至4.5×10-3Pa,以
Figure BDA0003673799860000023
的蒸发速率蒸镀50-100nm的第二金属电极,完成器件制备。
进一步地,步骤2中,维持反应腔的压强和温度分别为60Torr和830℃。
进一步地,步骤2中,β-Ga2O3薄膜的沉积生长中,控制三乙基镓和氧气的气体流量分别为70sccm、1000sccm,氩气的气体流量为1000sccm,硅烷的气体流量为5sccm。
进一步地,步骤3中,第一金属电极为Ti/Au双层金属电极,蒸发时Ti的蒸发速率为
Figure BDA0003673799860000024
Figure BDA0003673799860000031
Au的蒸发速率为
Figure BDA0003673799860000032
与现有技术相比,本发明具有以下优点:
1、本发明通过电子束蒸发沉积条件的控制,实现Cu膜蒸发过程中自发氧化形成p型CuxO 薄膜,在该薄膜上方继续沉积金属电极。通过一次紫外曝光光刻,即可完成异质结的制备,省略了溅射工艺,简化了工艺过程,降低了制备成本。
2、本发明的CuxO薄膜完全被后续沉积的不透明的金属电极覆盖,不会吸收入射光,因而确保了Ga2O3器件的深紫外探测性能。
附图说明
图1为本发明基于Ga2O3/CuxO异质结自驱动深紫外探测器的结构示意图,图中1为第一金属电极,2为第二金属电极,3为CuxO薄膜,4为Ga2O3薄膜,5为蓝宝石衬底。
图2为本发明实施例1所制备的β-Ga2O3薄膜的拉曼光谱图谱。
图3为本发明实施例1中CuxO薄膜的XPS图谱,其中a为Cu 2p的XPS图谱,插图为 CuLMM的俄歇峰,b为Cu 2p3/2图谱分峰拟合结果。
图4为本发明实施例1制得的Ga2O3/CuxO异质结自驱动深紫外探测器在黑暗条件下的电流-电压(I-V)特性曲线。
图5为本发明实施例1制得的Ga2O3/CuxO异质结自驱动深紫外探测器在不同波长光照下的电流-电压(I-V)特性的半对数曲线。
图6为本发明实施例1制得的Ga2O3/CuxO异质结自驱动深紫外探测器在不同波长下的响应度。
图7为本发明实施例1制得的Ga2O3/CuxO异质结自驱动深紫外探测器在不同光强度265 nm光照下的电流-电压(I-V)曲线。
图8为本发明实施例1制得的Ga2O3/CuxO异质结自驱动深紫外探测器零偏压下的电流- 时间(I-T)曲线。
图9为本发明实施例1制得的Ga2O3/CuxO异质结自驱动深紫外探测器零偏压下的响应度和比探测率随光照强度变化的曲线。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
参见图1,本实施例的自驱动深紫外光电探测器是在蓝宝石衬底5上利用金属有机化学气相沉积(MOCVD)法生成β-Ga2O3薄膜4,在β-Ga2O3薄膜4上进行一次光刻形成一侧叉指电极,蒸发欧姆接触的Ti/Au双层金属电极。在β-Ga2O3薄膜4上通过二次光刻在另一侧形成叉指电极区域,通过电子束热蒸发形成CuxO薄膜3,随后蒸发第二金属电极。Ga2O3/CuxO 形成异质结,从而完成自驱动的深紫外光电探测器的制备。
其中,在本实施例中所述叉指电极共10对电极,各电极的长度为2500μm,电极的宽度为10μm,沟道的宽度为10μm。
其中,Ti的厚度为20-50nm,Au的厚度为50-100nm。具体地,在本实施例1中Ti的厚度为20nm,Au的厚度为50nm;在其他实施例中,Ti的厚度可以为30nm、40nm、或50nm, Au的厚度为60nm、70nm、80nm、90nm、或100nm。
其中,第二金属电极为与CuxO薄膜形成欧姆接触的Au、Pt或其多层电极,第二金属电极的厚度为50-100nm;具体地,在本实施例1中采用第二金属电Au,厚度为50nm;在其他实施例中,厚度可以为60nm、70nm、80nm、90nm、或100nm。
本实施例的自驱动的深紫外光电探测器按如下步骤制得:
步骤1、将(0001)晶向的蓝宝石衬底依次通过酒精、丙酮、去离子水超声清洗。
步骤2、将衬底放入MOCVD系统的反应腔中;维持反应腔的压强和温度分别为60Torr 和830℃,以三乙基镓(70sccm)和氧气(1000sccm)为前驱体,氩气(1000sccm)为载气,硅烷(5sccm)为掺杂源,进行n型掺杂的β-Ga2O3薄膜的生长,生长的厚度为300nm。
步骤3、通过一次紫外曝光光刻和电子束蒸发沉积,形成一侧欧姆接触的叉指电极Ti/Au,蒸发时真空室气压为4.5×10-3Pa,Ti的蒸发速率为
Figure BDA0003673799860000041
蒸发的厚度为20nm,Au的蒸发速率为
Figure BDA0003673799860000042
蒸发的厚度为50nm。
步骤4、通过第二次紫外曝光光刻,形成另一侧叉指电极区域,以纯度不低于99.99%的 Cu颗粒为铜源进行蒸发,控制真空室气压为9.8×10-3Pa、蒸发速率为
Figure BDA0003673799860000043
使得蒸发过程中Cu自发氧化形成CuxO薄膜,蒸发的厚度为16nm。之后将真空室气压降至4.5×10-3Pa,以
Figure BDA0003673799860000044
的蒸发速率蒸镀50nm的第二金属电极Au,完成器件制备。
图2为本发明实施例1所制备的β-Ga2O3薄膜的拉曼光谱图谱,说明了β-Ga2O3薄膜的生成。
图3为本发明实施例1中CuxO薄膜的XPS图谱,其中a为Cu 2p的XPS图谱,插图为 CuLMM的俄歇峰,Cu 2p的XPS图谱有两个显著的卫星峰,表明产物薄膜有显著的氧化现象。b为Cu 2p3/2图谱分峰拟合结果,峰值分别为932.6eV和934.2eV,说明铜的氧化物薄膜中存在一价铜离子和二价铜离子。
图4为本发明实施例1制得的自驱动深紫外探测器在黑暗条件下的电流-电压特性曲线,说明该探测器具有整流特性,但是整流比较低,可能是因为CuxO薄膜的厚度较薄,载流子较易隧穿形成较大的反向电流。
图5为本发明实施例1制得的自驱动深紫外探测器在不同波长下(分别为265nm、300 nm、430nm)的电流-电压特性的对数曲线,说明该探测器对不同的波长都有响应,且对265 nm的光响应最强。
图6为本发明实施例1制得的自驱动深紫外探测器在光照强度在同一功率0.265mWcm-2时不同波长(分别为265nm、300nm、430nm)的响应度,其抑制比分别为R265/R430=1200,R265/R300=25,呈现出对日盲紫外区域的高光谱选择性。
图7为本发明实施例1制得的自驱动深紫外探测器在强度为21.1μW/cm2至1250μW/cm2 (分别为21.1μW/cm2、88.5μW/cm2、138μW/cm2、214μW/cm2、265μW/cm2、356μW/cm2、 485μW/cm2、613μW/cm2、738μW/cm2、995mW/cm2、1250mW/cm2)的265nm光照下的电流-电压曲线。
图8为本发明实施例1制得的自驱动深紫外探测器在零偏压下光照强度为21.1μW/cm2至1250μW/cm2(分别为21.1μW/cm2、88.5μW/cm2、138μW/cm2、214μW/cm2、265μW/cm2、 356μW/cm2、485μW/cm2、613μW/cm2、738μW/cm2、995mW/cm2、1250mW/cm2)的265 nm光照下的光响应曲线,可以看出该器件的光电流随着入射光强度的增加而增加,具有良好的线性关系,说明265nm光照下产生的光生载流子可以有效的被内建电场分离并产生光电流。
图9为本发明实施例1制得的自驱动深紫外探测器对265nm光的响应度和比探测率随光功率变化的曲线,在21.1μW cm-2光强下,零偏压下响应度和比探测率分别达到0.41mAW-1和2.62×1010Jones,随着光照强度的增加,二者均降低,表明光生载流子越多,光照强度越高,复合损耗越大。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器,其特征在于:在β-Ga2O3薄膜上,通过紫外曝光光刻和电子束蒸发技术,形成一对叉指电极,其中一侧为欧姆接触的第一金属电极,另一侧为CuxO/第二金属电极。
2.根据权利要求1所述的基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器,其特征在于:所述β-Ga2O3薄膜为通过金属有机化学气相沉积法在单面抛光的蓝宝石衬底上生长而成,以硅烷作为掺杂源进行硅掺杂,掺杂浓度为6×1017cm-3
3.根据权利要求1所述的基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器,其特征在于:所述叉指电极共10对电极,各电极的长度为2500μm,电极的宽度为10μm,沟道的宽度为10μm。
4.根据权利要求1所述的基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器,其特征在于:第一金属电极为Ti/Au双层金属电极,其中Ti的厚度为20-50nm,Au的厚度为50-100nm。
5.根据权利要求1所述的基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器,其特征在于:所述CuxO薄膜是以纯度不低于99.99%的Cu颗粒为铜源,通过电子束蒸发过程中Cu的自发氧化形成,蒸发时控制真空室气压为9.8×10-3Pa、蒸发速率为
Figure FDA0003673799850000011
通过膜厚仪控制蒸发薄膜的厚度为16nm。
6.根据权利要求1所述的基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器,其特征在于:所述第二金属电极为与CuxO薄膜形成欧姆接触的Au、Pt或其多层电极;所述第二金属电极的厚度为50-100nm。
7.一种权利要求1~6中任意一项所述的基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器的制备方法,其特征在于,按如下步骤进行:
步骤1、将蓝宝石衬底依次通过酒精、丙酮、去离子水超声清洗;
步骤2、将衬底放入MOCVD系统的反应腔中;维持反应腔的压强和温度分别为50-70Torr和800-900℃,以三乙基镓和氧气为前驱体,氩气为载气,硅烷为掺杂源,进行n型掺杂的β-Ga2O3薄膜的生长;
步骤3、通过一次紫外曝光光刻和电子束蒸发沉积,形成一侧欧姆接触的叉指电极的第一金属电极,蒸发时真空室气压为4.5×10-3Pa;
步骤4、通过第二次紫外曝光光刻,形成另一侧叉指电极区域,以纯度不低于99.99%的Cu颗粒为铜源进行蒸发,控制真空室气压为9.8×10-3Pa、蒸发速率为
Figure FDA0003673799850000012
使得蒸发过程中Cu自发氧化形成CuxO薄膜,之后将真空室气压降至4.5×10-3Pa,以
Figure FDA0003673799850000013
s-1的蒸发速率蒸镀50-100nm的第二金属电极,完成器件制备。
8.根据权利要求7所述的基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器的制备方法,其特征在于,步骤2中,维持反应腔的压强和温度分别为60Torr和830℃。
9.根据权利要求7所述的基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器的制备方法,其特征在于,步骤2中,β-Ga2O3薄膜的沉积生长中,控制三乙基镓和氧气的气体流量分别为70sccm、1000sccm,氩气的气体流量为1000sccm,硅烷的气体流量为5sccm。
10.根据权利要求7所述的基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器的制备方法,其特征在于,步骤3中,第一金属电极为Ti/Au双层金属电极,蒸发时Ti的蒸发速率为
Figure FDA0003673799850000021
Au的蒸发速率为
Figure FDA0003673799850000022
CN202210617422.8A 2022-06-01 2022-06-01 一种基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器及其制备方法 Pending CN115036386A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210617422.8A CN115036386A (zh) 2022-06-01 2022-06-01 一种基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210617422.8A CN115036386A (zh) 2022-06-01 2022-06-01 一种基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN115036386A true CN115036386A (zh) 2022-09-09

Family

ID=83123327

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210617422.8A Pending CN115036386A (zh) 2022-06-01 2022-06-01 一种基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN115036386A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321294A (zh) * 2018-02-05 2018-07-24 合肥工业大学 一种存储机制可调的薄膜阻变存储器及其制备方法
CN108767050A (zh) * 2018-05-30 2018-11-06 张权岳 基于氧化亚铜/氧化镓pn结的柔性紫外光电探测器及其制备方法
CN110571301A (zh) * 2019-07-31 2019-12-13 中国科学技术大学 氧化镓基日盲探测器及其制备方法
CN111129122A (zh) * 2019-12-13 2020-05-08 中国科学技术大学 基于氧化镓的异质结半导体结构及其器件
CN111613691A (zh) * 2020-04-16 2020-09-01 浙江理工大学 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法
CN112086344A (zh) * 2020-09-22 2020-12-15 中山大学 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用
CN113097336A (zh) * 2021-03-22 2021-07-09 西安邮电大学 一种非对称电极msm结构氧化镓紫外探测器
KR20220068811A (ko) * 2020-11-19 2022-05-26 세종대학교산학협력단 자외선 검출 소자 및 이의 제조 방법
CN114566562A (zh) * 2022-03-09 2022-05-31 浙江理工大学 一种抗辐照氧化镓紫外探测器及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321294A (zh) * 2018-02-05 2018-07-24 合肥工业大学 一种存储机制可调的薄膜阻变存储器及其制备方法
CN108767050A (zh) * 2018-05-30 2018-11-06 张权岳 基于氧化亚铜/氧化镓pn结的柔性紫外光电探测器及其制备方法
CN110571301A (zh) * 2019-07-31 2019-12-13 中国科学技术大学 氧化镓基日盲探测器及其制备方法
CN111129122A (zh) * 2019-12-13 2020-05-08 中国科学技术大学 基于氧化镓的异质结半导体结构及其器件
CN111613691A (zh) * 2020-04-16 2020-09-01 浙江理工大学 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法
CN112086344A (zh) * 2020-09-22 2020-12-15 中山大学 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用
KR20220068811A (ko) * 2020-11-19 2022-05-26 세종대학교산학협력단 자외선 검출 소자 및 이의 제조 방법
CN113097336A (zh) * 2021-03-22 2021-07-09 西安邮电大学 一种非对称电极msm结构氧化镓紫外探测器
CN114566562A (zh) * 2022-03-09 2022-05-31 浙江理工大学 一种抗辐照氧化镓紫外探测器及其制备方法

Similar Documents

Publication Publication Date Title
Ahmed et al. Fabrication and characterization of high performance MSM UV photodetector based on NiO film
Huang et al. A simple, repeatable and highly stable self-powered solar-blind photoelectrochemical-type photodetector using amorphous Ga 2 O 3 films grown on 3D carbon fiber paper
CN108281509B (zh) 氧化物半导体基光电探测器及提高其性能的方法
Chen et al. The effect of oxygen vacancy concentration on indium gallium oxide solar blind photodetector
Shiau et al. Ultraviolet photodetectors based on MgZnO thin film grown by RF magnetron sputtering
Bhardwaj et al. High responsivity Mg x Zn 1–x O based ultraviolet photodetector fabricated by dual ion beam sputtering
CN109037374B (zh) 基于NiO/Ga2O3的紫外光电二极管及其制备方法
Zhu et al. Influence of deposition temperature on amorphous Ga2O3 solar-blind ultraviolet photodetector
CN108878576B (zh) 一种氧化镓基紫外探测器
Ferhati et al. Post-annealing effects on RF sputtered all-amorphous ZnO/SiC heterostructure for solar-blind highly-detective and ultralow dark-noise UV photodetector
Chen et al. Photoelectrical and low-frequency noise characteristics of ZnO nanorod photodetectors prepared on flexible substrate
CN112103354A (zh) 透明Ga2O3的p-i-n异质结构日盲型紫外光探测器及其制备方法
Liu et al. Mg 0.35 Zn 0.65 O/Al/ZnO photodetectors with capability of identifying ultraviolet-A/ultraviolet-B
CN113675297A (zh) 一种氧化镓/氮化镓异质结光电探测器及其制备方法
Yadav et al. Development of visible-blind UV photodetector using solution processed Ag-ZnO nanostructures
Liu et al. An Amorphous (Al 0.12 Ga 0.88) 2 O 3 Deep Ultraviolet Photodetector
JP2000196134A (ja) 可視―ブラインドuv検出器
Chen et al. Amorphous MgInO ultraviolet solar-blind photodetectors
Caputo et al. Detailed study of amorphous silicon ultraviolet sensor with chromium silicide window layer
Yang et al. Zero-biased solar-blind photodetector based on ZnBeMgO/Si heterojunction
CN115036386A (zh) 一种基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器及其制备方法
CN113804292B (zh) 光电化学型自供电日盲深紫外光电探测器及其制备方法
CN110350043B (zh) 一种自组装结晶/非晶氧化镓相结光电探测器及其制造方法
Hwang et al. Mg x Zn 1–x O/ZnO Quantum Well Photodetectors Fabricated by Radio-Frequency Magnetron Sputtering
Liu et al. Performance improvement of co-sputtering AlGaZnO solar-blind photodetectors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination