CN114566562A - 一种抗辐照氧化镓紫外探测器及其制备方法 - Google Patents

一种抗辐照氧化镓紫外探测器及其制备方法 Download PDF

Info

Publication number
CN114566562A
CN114566562A CN202210221904.1A CN202210221904A CN114566562A CN 114566562 A CN114566562 A CN 114566562A CN 202210221904 A CN202210221904 A CN 202210221904A CN 114566562 A CN114566562 A CN 114566562A
Authority
CN
China
Prior art keywords
interdigital electrode
film
thin film
beta
gallium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210221904.1A
Other languages
English (en)
Inventor
叶俊皓
常蒙蒙
张晓龙
赵天丽
邢志文
郭道友
王顺利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN202210221904.1A priority Critical patent/CN114566562A/zh
Publication of CN114566562A publication Critical patent/CN114566562A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种抗辐照氧化镓紫外探测器及其制备方法,包括蓝宝石单晶衬底、n型β‑Ga2O3薄膜、Ti/Au叉指电极,所述β‑Ga2O3薄膜通过MOCVD法沉积在所述蓝宝石单晶衬底上,所述Ti/Au叉指电极包括Ti薄膜叉指电极与Au薄膜叉指电极,所述Ti薄膜叉指电极设置于所述β‑Ga2O3薄膜上方,所述Au薄膜叉指电极与所述Ti薄膜叉指电极形状完全一致,所述Au薄膜叉指电极置于所述Ti薄膜叉指电极上方,性能稳定,对深紫外波段(220nm‑280nm)的光谱具有日盲特性,抗辐照性能优异,响应度和灵敏度高,在医疗卫生、低温冷链、物流运输、食品安全、生鲜加工等领域具有很大的应用前景。

Description

一种抗辐照氧化镓紫外探测器及其制备方法
技术领域
本发明涉及紫外光电探测器技术领域,具体涉及到一种抗辐照氧化镓紫外探测器及其制备方法。
背景技术
随着疫情逐渐趋于常态化,国家对疫情采取的各种有力措施,加强了人们对于周遭环境监测与控制的重视,紫外辐射杀菌消毒由于其高效性以及不会造成二次污染的优势受到了进一步的关注。但同时紫外消杀效果与辐射安全是一枚硬币的两面,因此紫外辐射剂量的监测对于消毒杀菌也同样至关重要。周遭环境的紫外消杀责任重大,且任务量相当繁重,例如在机场车站等行李物品的统一集中消毒处理中,需在短时间内,针对病毒的紫外消杀快速完成,所需的紫外辐射剂量翻倍,因此对紫外探测器的监测率及抗辐照性能要求极高。
利用宽禁带半导体日盲紫外探测器可以对紫外辐射剂量进行监测,同时半导体材料的抗辐射性能也是紫外监测的关键问题。Ga2O3具有超宽禁带和良好的化学稳定性和热稳定性,可以定向检测200-280nm的紫外光,是天然的紫外探测材料,避免了合金化等复杂问题,在紫外探测中优势明显。同时,Ga2O3辐照硬度高,线性衰减系数大,具有优异的抗辐照性能。
发明内容
为了克服上述现有技术中的缺陷,本发明提供了一种抗辐照氧化镓紫外探测器及其制备方法,灵敏度高、稳定性好,抗辐照能力强,可以用于高能紫外脉冲消杀工作,克服高能紫外脉冲激光辐照的同时,对紫外脉冲激光剂量进行监测,提高消杀效率。
技术方案
一种抗辐照氧化镓紫外探测器,包括蓝宝石单晶衬底、n型β-Ga2O3薄膜、Ti/Au叉指电极,所述β-Ga2O3薄膜通过MOCVD法沉积在所述蓝宝石单晶衬底上,所述Ti/Au叉指电极包括Ti薄膜叉指电极与Au薄膜叉指电极,所述Ti薄膜叉指电极设置于所述β-Ga2O3薄膜上方,所述Au薄膜叉指电极与所述Ti薄膜叉指电极形状完全一致,所述Au薄膜叉指电极置于所述Ti薄膜叉指电极上方。
进一步的,所述Ti薄膜叉指电极厚度为20nm,所述Au薄膜叉指电极厚度为100nm。
进一步的,所述β-Ga2O3薄膜2的面积与所述蓝宝石单晶衬底相同。
进一步的,所述Ti/Au叉指电极长度为480μm,宽度为10μm,间距为10μm。
一种抗辐照氧化镓紫外探测器的制备方法具有以下步骤:
第一步,在超声中依次用丙酮、无水乙醇和去离子水对蓝宝石单晶衬底进行清洗处理;
第二步,在MOCVD反应炉中,在第一步清洗过的所述蓝宝石单晶衬底上生长β-Ga2O3薄膜;
第三步,在第二步沉积好的β-Ga2O3薄膜上,使用光刻掩膜版进行紫外光刻,光刻之后暴露出电极位置,通过离子束溅射技术沉积Ti/Au电极,再通过剥离技术(Lift-off)和清洗过程完成沉积,并在N2中进行1分钟的退火,温度为470℃。
有益效果
本发明与现有技术相比,具有以下有益效果:
1、抗辐照氧化镓紫外探测器具有工艺可控性强,操作简单,且重复测试具有可恢复性等特点,具有很大的应用前景;
2、抗辐照氧化镓紫外探测器性能稳定,对200-280nm波段的紫外光进行直接探测,具有反应灵敏、分辨率高、作用距离远、不受太阳光的干扰等优点;
3、抗辐照氧化镓紫外探测器具有优异的抗紫外辐照能力,可应用于快速高效的紫外消杀工作中,克服辐照剂量大,能量高的紫外脉冲辐射,监测紫外辐照剂量达到合格杀菌强度,突破极速杀菌,大大提高紫外消杀效率,可应用于医疗卫生、低温冷链、物流运输、食品安全、生鲜加工等领域。
附图说明
图1是本发明一种抗辐照氧化镓紫外探测器的结构示意图;
图2是100MeV质子辐照前后氧化镓紫外探测器的紫外可见吸收谱;
图3是100MeV质子辐照前后氧化镓紫外探测器在±30V偏压下的I-T图(光强为600μW/cm2);
图4是100MeV质子辐照后氧化镓紫外探测器暗态下与254nm光照下的I-V图。
附图标记
蓝宝石单晶衬底1、n型β-Ga2O3薄膜2、Ti/Au叉指电极3。
具体实施方式
为更好地说明阐述本发明内容,下面结合附图和实施实例进行展开说明:
由图1-图4所示,本发明公开了一种抗辐照氧化镓紫外探测器,包括蓝宝石单晶衬底1、 n型β-Ga2O3薄膜2、Ti/Au叉指电极3,所述β-Ga2O3薄膜2通过MOCVD法沉积在所述蓝宝石单晶衬底1上,所述Ti/Au叉指电极3包括Ti薄膜叉指电极与Au薄膜叉指电极,所述Ti 薄膜叉指电极设置于所述β-Ga2O3薄膜2上方,所述Au薄膜叉指电极与所述Ti薄膜叉指电极形状完全一致,所述Au薄膜叉指电极置于所述Ti薄膜叉指电极上方。
进一步的,所述Ti薄膜叉指电极厚度为20nm,所述Au薄膜叉指电极厚度为100nm。
进一步的,所述β-Ga2O3薄膜2的面积与所述蓝宝石单晶衬底1相同。
进一步的,所述Ti/Au叉指电极3长度为480μm,宽度为10μm,间距为10μm。
一种抗辐照氧化镓紫外探测器的制备方法,包括以下步骤:
第一步,在超声中依次用丙酮、无水乙醇和去离子水对蓝宝石单晶衬底1进行清洗处理;
第二步,在MOCVD反应炉中,在第一步清洗过的所述蓝宝石单晶衬底1上生长β-Ga2O3薄膜;
第三步,在第二步沉积好的β-Ga2O3薄膜上,使用光刻掩膜版进行紫外光刻,光刻之后暴露出电极位置,通过离子束溅射技术沉积Ti/Au电极,再通过剥离技术(Lift-off)和清洗过程完成沉积,并在N2中进行1分钟的退火,温度为470℃。
具体地,在在超声中依次用丙酮、无水乙醇和去离子水对蓝宝石单晶衬底1进行清洗处理;然后在MOCVD反应炉中在第一步清洗过的蓝宝石单晶衬底1上生长β-Ga2O3薄膜2;最后在第二步沉积好的β-Ga2O3薄膜2上,使用光刻掩膜版进行紫外光刻,光刻之后暴露出电极位置,通过离子束溅射技术沉积Ti/Au电极,再通过剥离技术(Lift-off)和清洗过程完成沉积;并在N2中进行1分钟的退火,温度为470℃,制备获得用于高能紫外脉冲消杀监测系统的抗辐照氧化镓紫外探测器;
将获得的抗辐照氧化镓紫外探测器在室温下进行100MeV质子辐照,质子垂直入射,剂量率为1×1012n/cm2·s,辐照前后Ga2O3薄膜的吸收边都在250nm左右,对应带隙为5eV,具有明显的日盲紫外光敏感特性,证明高能粒子辐照并未对氧化镓紫外探测器的光谱选择性产生影响,体现了氧化镓紫外探测器优异的抗辐照性能;
图3为在±30V偏压及光强为600μW/cm2的254nm光照下通过不断灯开灯关测得的100MeV质子辐照前后Ga2O3薄膜基日盲紫外探测器的I-t曲线,重复多个I-t循环后,发现该辐照后的氧化镓紫外探测器依旧表现出很好的重复性,且辐照后的氧化镓紫外探测器的光电流增加;
图4为100MeV质子辐照后,氧化镓紫外探测器在黑暗下与254nm(光强为1200μW/cm2) 光照下的I-V曲线,辐照后的Ga2O3薄膜紫外探测器在黑暗下测得的电流依旧非常小(在20V电压下仅为8nA),而在光强为1200μW/cm2的254nm光照下,电流都迅速增加(在20V电压下为mA级别),再结合Ga2O3薄膜260nm的吸收边,可以说明高能粒子辐照后的Ga2O3探测器依旧具有明显的日盲紫外光电特性,且辐照后的Ga2O3探测器拥有非常大的光暗比(在20V电压下光暗比为有5个数量级之差)。
因此,Ga2O3薄膜的日盲紫外探测器可应用于高能紫外脉冲消杀系统的紫外强度监测工作,克服强紫外辐照,在医疗卫生、低温冷链、物流运输、食品安全、生鲜加工等领域具有很大的应用前景,为环境卫生安全提供巨大帮助。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明技术方案进行了详细的说明,本领域的技术人员应当理解,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行同等替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神与范围。

Claims (5)

1.一种抗辐照氧化镓紫外探测器,其特征在于,包括蓝宝石单晶衬底(1)、n型β-Ga2O3薄膜(2)、Ti/Au叉指电极(3),所述β-Ga2O3薄膜(2)通过MOCVD法沉积在所述蓝宝石单晶衬底(1)上,所述Ti/Au叉指电极(3)包括Ti薄膜叉指电极与Au薄膜叉指电极,所述Ti薄膜叉指电极设置于所述β-Ga2O3薄膜(2)上方,所述Au薄膜叉指电极与所述Ti薄膜叉指电极形状完全一致,所述Au薄膜叉指电极置于所述Ti薄膜叉指电极上方。
2.根据权利要求1所述的一种抗辐照氧化镓紫外探测器,其特征在于,所述Ti薄膜叉指电极厚度为20nm,所述Au薄膜叉指电极厚度为100nm。
3.根据权利要求1所述的一种抗辐照氧化镓紫外探测器,其特征在于,所述β-Ga2O3薄膜(2)的面积与所述蓝宝石单晶衬底(1)相同。
4.根据权利要求1所述的一种抗辐照氧化镓紫外探测器,其特征在于,所述Ti/Au叉指电极(3)长度为480μm,宽度为10μm,间距为10μm。
5.一种抗辐照氧化镓紫外探测器的制备方法,其特征在于,包括以下步骤:
第一步,在超声中依次用丙酮、无水乙醇和去离子水对蓝宝石单晶衬底(1)进行清洗处理;
第二步,在MOCVD反应炉中,在第一步清洗过的所述蓝宝石单晶衬底(1)上生长β-Ga2O3薄膜;
第三步,在第二步沉积好的β-Ga2O3薄膜上,使用光刻掩膜版进行紫外光刻,光刻之后暴露出电极位置,通过离子束溅射技术沉积Ti/Au电极,再通过剥离技术(Lift-off)和清洗过程完成沉积,并在N2中进行1分钟的退火,温度为470℃。
CN202210221904.1A 2022-03-09 2022-03-09 一种抗辐照氧化镓紫外探测器及其制备方法 Pending CN114566562A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210221904.1A CN114566562A (zh) 2022-03-09 2022-03-09 一种抗辐照氧化镓紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210221904.1A CN114566562A (zh) 2022-03-09 2022-03-09 一种抗辐照氧化镓紫外探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN114566562A true CN114566562A (zh) 2022-05-31

Family

ID=81718264

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210221904.1A Pending CN114566562A (zh) 2022-03-09 2022-03-09 一种抗辐照氧化镓紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN114566562A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115036386A (zh) * 2022-06-01 2022-09-09 合肥仙湖半导体科技有限公司 一种基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409963A (zh) * 2016-09-21 2017-02-15 浙江理工大学 一种Zn:Ga2O3薄膜基MSM结构日盲紫外光电探测器及其制备方法
CN110416334A (zh) * 2018-08-31 2019-11-05 西安电子科技大学 一种基于异质外延Ga2O3薄膜深紫外光电探测器的制备方法
CN110854233A (zh) * 2019-11-17 2020-02-28 金华紫芯科技有限公司 一种Ga2O3薄膜基日盲紫外探测器、制备方法及应用
WO2021094880A1 (en) * 2019-11-12 2021-05-20 King Abdullah University Of Science And Technology Optoelectronic device formed on a flexible substrate
CN114141909A (zh) * 2021-11-26 2022-03-04 北京铭镓半导体有限公司 在蓝宝石衬底生长不同晶向氧化镓薄膜的方法及基于该薄膜的紫外光探测器的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409963A (zh) * 2016-09-21 2017-02-15 浙江理工大学 一种Zn:Ga2O3薄膜基MSM结构日盲紫外光电探测器及其制备方法
CN110416334A (zh) * 2018-08-31 2019-11-05 西安电子科技大学 一种基于异质外延Ga2O3薄膜深紫外光电探测器的制备方法
WO2021094880A1 (en) * 2019-11-12 2021-05-20 King Abdullah University Of Science And Technology Optoelectronic device formed on a flexible substrate
CN110854233A (zh) * 2019-11-17 2020-02-28 金华紫芯科技有限公司 一种Ga2O3薄膜基日盲紫外探测器、制备方法及应用
CN114141909A (zh) * 2021-11-26 2022-03-04 北京铭镓半导体有限公司 在蓝宝石衬底生长不同晶向氧化镓薄膜的方法及基于该薄膜的紫外光探测器的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115036386A (zh) * 2022-06-01 2022-09-09 合肥仙湖半导体科技有限公司 一种基于Ga2O3/CuxO异质结的自驱动深紫外光电探测器及其制备方法

Similar Documents

Publication Publication Date Title
Liu et al. A high-performance ultraviolet solar-blind photodetector based on a β-Ga 2 O 3 Schottky photodiode
Qin et al. Metal–semiconductor–metal ε-Ga2O3 solar-blind photodetectors with a record-high responsivity rejection ratio and their gain mechanism
Guo et al. Fabrication of β-Ga 2 O 3 thin films and solar-blind photodetectors by laser MBE technology
Su et al. Novel bezno based self‐powered dual‐color uv photodetector realized via a one‐step fabrication method
Yu et al. Surface modification of β-Ga2O3 layer using pt nanoparticles for improved deep UV photodetector performance
Chen et al. The effect of oxygen vacancy concentration on indium gallium oxide solar blind photodetector
CN108231924A (zh) 生长在r面蓝宝石衬底上的非极性AlGaN基MSM型紫外探测器及其制备方法
Zhang et al. Transition of photoconductive and photovoltaic operation modes in amorphous Ga2O3-based solar-blind detectors tuned by oxygen vacancies
CN103646986A (zh) 一种AlGaN基双色日盲紫外探测器及制作方法
Bellucci et al. Optimization of black diamond films for solar energy conversion
CN114566562A (zh) 一种抗辐照氧化镓紫外探测器及其制备方法
Li et al. Radiation effects on GaAs/AlGaAs core/shell ensemble nanowires and nanowire infrared photodetectors
Vu et al. The enhancement mechanism of photo-response depending on oxygen pressure for Ga2O3 photo detectors
CN109873047A (zh) 一种新型异质结光子型红外探测器及制备方法及应用
CN111564504A (zh) 一种日盲紫外探测器及其制备方法
Wang et al. A solar-blind ultraviolet photodetector with graphene/MgZnO/GaN vertical structure
Aggarwal et al. Inclination of screw dislocations on the performance of homoepitaxial GaN based UV photodetectors
Brendel et al. Degradation of AlGaN-based metal-semiconductor-metal photodetectors
BenMoussa et al. Developments, characterization and proton irradiation damage tests of AlN detectors for VUV solar observations
Yadav et al. Development of visible-blind UV photodetector using solution processed Ag-ZnO nanostructures
Hsu et al. Influence of oxygen on the performance of indium titanium zinc oxide UV sensors fabricated via RF sputtering
CN113054050B (zh) 一种V2O5-Ga2O3异质结自供电日盲光电探测器及制备方法
Cicek et al. Comparison of ultraviolet APDs grown on free-standing GaN and sapphire substrates
Poti et al. High responsivity GaN-based UV detectors
Sheu et al. Surface plasmon-enhanced GaN metal–insulator–semiconductor ultraviolet detectors with Ag nanoislands embedded in a silicon dioxide gate layer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination