CN113054050B - 一种V2O5-Ga2O3异质结自供电日盲光电探测器及制备方法 - Google Patents

一种V2O5-Ga2O3异质结自供电日盲光电探测器及制备方法 Download PDF

Info

Publication number
CN113054050B
CN113054050B CN202110299201.6A CN202110299201A CN113054050B CN 113054050 B CN113054050 B CN 113054050B CN 202110299201 A CN202110299201 A CN 202110299201A CN 113054050 B CN113054050 B CN 113054050B
Authority
CN
China
Prior art keywords
heterojunction
self
photoelectric detector
film
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110299201.6A
Other languages
English (en)
Other versions
CN113054050A (zh
Inventor
唐为华
李山
李培刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN202110299201.6A priority Critical patent/CN113054050B/zh
Publication of CN113054050A publication Critical patent/CN113054050A/zh
Application granted granted Critical
Publication of CN113054050B publication Critical patent/CN113054050B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供了一种V2O5‑Ga2O3异质结自供电日盲光电探测器及制备方法。所述探测器包括作为n型导电的Ga2O3材料和作为p型导电的V2O5材料形成的V2O5‑Ga2O3异质结,以及与上述材料欧姆接触的电极。本发明的制备方法通过对V2O5‑Ga2O3异质结进行二次退火,促进了平面异质结的形成和内建电场的产生,使异质界面可以有效分离激发态的电子‑空穴对,实现自供电工作模式。本发明提供的V2O5‑Ga2O3异质结自供电日盲光电探测器探测灵敏度高,响应速度快,其制备方法易于实现及有效,生产成本低,有利于生产和研究推广。

Description

一种V2O5-Ga2O3异质结自供电日盲光电探测器及制备方法
技术领域
本发明涉及一种自供电日盲光电探测器及其制备方法,尤其涉及V2O5-Ga2O3异质结的自供电日盲光电探测器和其制备方法,属于半导体光电子器件领域。
背景技术
光电探测器可以实现光信号到电信号的转变,其本质是电子吸收光子后,从半导体材料的价带跃迁到导带进入电流循环。故光电探测器的信号识别能力由半导体材料的禁带宽度决定。比如,Si的带隙宽度为1.1eV,对应的响应光波段为1120nm左右。当光子能量大于Si的带隙宽度值,即
Figure BDA0002985511820000011
时,该光子可以激励Si材料的基态电子产生跃迁行为。基于半导体材料禁带宽度的不同,近年来不同紫外波段的探测器都逐渐被开发研究。AlN(6.2eV)用于真空紫外光谱(10~200nm)的感应;Ga2O3(4.9eV)用于UVC(200~280nm)波段的响应探测;ZnMgO(3.9eV)用于UVB(280~320nm)波段的响应探测;GaN(3.4eV)用于UVA(320~400nm)波段的响应探测。其中,由于Ga2O3所响应的波段正好覆盖太阳光的日盲波段,故基于Ga2O3制备的光电探测器也称为日盲紫外光电探测器。日盲探测器在紫外光检测、臭氧层空洞监测、火险预警等方面具有广阔的应用前景,近年来成为研究热点。
随着研究的深入和工艺技术的提高,光电探测器已具备高灵敏度、超快响应速度等优点,但需要额外供电工作的缺点依然制约着其进一步的发展。开发自供电模式的光电探测器,是未来节约型社会导向的必然趋势。通过构建异质结界面,产生内建电场,可以在无外部能量供应的情况下,实现电子-空穴对的自动分离,实现自供电工作模式。因此,发展基于Ga2O3异质结的自供电光电探测器,是开拓绿色无能耗日盲探测器的重要一步。
发明内容
针对传统日盲紫外探测器需要额外供电工作的问题,本发明旨在提供一种基于V2O5-Ga2O3异质结的自供电日盲光电探测器及其制备方法。通过Ga2O3和V2O5薄膜的平面异质结构建,实现了日盲紫外探测的自供电工作模式。
为了实现V2O5-Ga2O3异质结探测器的自供电日盲探测效果,本发明一方面提供一种V2O5-Ga2O3异质结自供电日盲光电探测器,包括:V2O5-Ga2O3异质结,该V2O5-Ga2O3异质结由作为n型导电的Ga2O3材料和作为p型导电的V2O5材料形成;与所述Ga2O3材料欧姆接触的第一电极;与所述V2O5材料欧姆接触的第二电极。
根据本发明的优选实施方式,所述Ga2O3材料为薄膜,薄膜厚度为10nm~5μm。
根据本发明的优选实施方式,所述V2O5材料为薄膜,薄膜的厚度为5nm~500nm。
根据本发明的优选实施方式,所述第一电极和第二电极的材料为铝、铜、银、铂、钛、镓、铟和金中的一种或多种组合。
本发明的另一方面还提供一种V2O5-Ga2O3异质结自供电日盲光电探测器的制备方法,包括如下步骤:
在衬底上制备Ga2O3薄膜;
在所述Ga2O3薄膜的部分区域覆盖形成V2O5薄膜,以形成V2O5-Ga2O3平面异质结;
在未覆盖V2O5薄膜的Ga2O3薄膜上,以及V2O5薄膜上,分别形成第一电极和第二电极。
根据本发明的优选实施方式,所述形成V2O5薄膜的步骤包括:
在Ga2O3薄膜的部分区域旋涂三异丙氧基氧化钒溶液;
加热蒸干所述溶液的溶剂,使所述三异丙氧基氧化钒分解获得钒的氧化物;
对所述钒的氧化物进行退火。
根据本发明的优选实施方式,其特征在于,所述三异丙氧基氧化钒溶液的溶剂为甲醇、乙醇、丙醇和异丙醇中的一种或多种组合。
根据本发明的优选实施方式,所述三异丙氧基氧化钒溶液中的溶质与溶剂的体积比为1:2~1:1000。
根据本发明的优选实施方式,所述退火温度为300~700℃。
根据本发明的优选实施方式,所述退火的退火时间为5~200min。
本发明的有益效果在于,通过构建V2O5-Ga2O3平面异质结,提供了一种V2O5-Ga2O3异质结自供电日盲光电探测器及制备方法。所构建的V2O5-Ga2O3异质结具备自供电工作模式。并且本发明提供的V2O5-Ga2O3异质结自供电日盲光电探测器,探测灵敏度高,响应速度快。
附图说明
图1是本发明的V2O5-Ga2O3平面异质结自供电日盲光电探测器结构示意图。
图2是本发明的实施例所制备的在Al2O3衬底上的V2O5-Ga2O3异质结的XRD图谱。
图3显示了本发明的实施例所制备的V2O5-Ga2O3异质结自供电日盲光电探测器在无光和254nm光照下的暗电流和光电流。
图4显示了本发明的实施例所制备的V2O5-Ga2O3异质结自供电日盲光电探测器在0V偏压和1mW/cm2光强的254nm光照下随光开关循环的光响应电流。
图5是本发明的实施例所制备的V2O5-Ga2O3异质结自供电日盲光电探测器在0V偏压下的光谱响应曲线。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明提出的V2O5-Ga2O3异质结自供电日盲光电探测器包括V2O5-Ga2O3异质结,该V2O5-Ga2O3异质结由作为n型导电的Ga2O3材料和作为p型导电的V2O5材料形成。通常,该V2O5-Ga2O3异质结形成于衬底上。本发明所构建的V2O5-Ga2O3异质结,在平面界面处形成内建电场,无需外部电场也可以分离电子-空穴对。电子通过n型导电材料Ga2O3导出,空穴通过p型材料V2O5导出,实现日盲光信号到电信号的转变,从而使基于V2O5-Ga2O3异质结光电探测器具备自供电工作模式。
例如,可以在诸如蓝宝石(Al2O3)的衬底上形成Ga2O3薄膜,在所述Ga2O3薄膜的部分区域上,覆盖形成V2O5薄膜,由此形成V2O5-Ga2O3平面异质结。经发明人理论推算和实验测定,Ga2O3薄膜的厚度在10nm~5μm之间较为合适,更优选为200nm~500nm,而V2O5薄膜的厚度在5nm~500nm之间较为合适,更优选为10nm~50nm。
此外,该自供电日盲光电探测器还包括与所述Ga2O3材料欧姆接触的第一电极;与所述V2O5材料欧姆接触的第二电极。例如,可以在未覆盖V2O5薄膜的Ga2O3薄膜上形成第一电极,以及在V2O5薄膜上形成第二电极。铝、铜、银、铂、钛、镓、铟和金均以为作为单独电极材料,但也不排除其中多种材料的组合,或者上述材料的合金。
在制备上述V2O5-Ga2O3异质结自供电日盲光电探测器时,可以采用合适的方法在Ga2O3材料上形成V2O5材料,使之构成异质结。Ga2O3材料和V2O5材料都优选为形成薄膜,由此可形成平面异质结。Ga2O3薄膜可以通过金属有机物化学气象沉积(MOCVD)、脉冲激光沉积、分子束外延或磁控溅射中的一种或多种组合技术制备,如前所述,可以在诸如蓝宝石(Al2O3)的衬底上形成Ga2O3薄膜。
在形成了Ga2O3薄膜之后,可以在所述Ga2O3薄膜的部分区域覆盖形成V2O5薄膜,这样就形成了V2O5-Ga2O3平面异质结。作为具体实施方式的一种,形成V2O5薄膜的步骤如下:在Ga2O3薄膜的部分区域旋涂三异丙氧基氧化钒溶液,三异丙氧基氧化钒溶液的溶剂为甲醇、乙醇、丙醇和异丙醇中的一种或多种组合,溶液中的溶质与溶剂的体积比优选为1:2~1:1000,更优选为1:20~1:200;所选用的旋涂速度为1000~6000转/分钟,优选为2500~4000转/分钟。
接着,加热蒸干所述溶液的溶剂,使所述三异丙氧基氧化钒分解获得钒的氧化物(VOx);最一对所述钒的氧化物进行退火,形成V2O5-Ga2O3平面异质结。退火气氛为空气、氧气、氩气、氮气中的一种或多种组合,退火温度为300℃~700℃,优选为400℃~600℃,退火时间为5min~200min,优选为30min~90min。
在上述步骤之后,为完成日盲光电探测器的制备,在未覆盖V2O5薄膜的Ga2O3薄膜上和V2O5薄膜上分别形成第一电极和第二电极。电极例如可通过电镀的方式形成。优选的,与Ga2O3材料欧姆接触的第一电极含有铟或钛,与V2O5材料欧姆接触的第二电极含有铟、铝或钛。以下通过一个具体实施例来更加清楚的解释本发明的结构和步骤。需要注意的是,下面的实施例仅仅是举例,本发明可以在上述方法和结构的基础上进行各种可能的实施。
具体实施例
在该实施中,通过金属有机物化学气象沉积(MOCVD)方法,在(0001)取向的蓝宝石(Al2O3)衬底上制备Ga2O3薄膜。镓源为三乙基镓,氧源为氧气,载气为氩气,制备温度为700~900℃,沉积速率为1~3μm/h。所制备的Ga2O3薄膜为β相,薄膜厚度为400nm。为了制备V2O5薄膜,将三异丙氧基氧化钒与异丙醇按照溶剂与溶质体积比为1:50的比率配置前驱体溶液。通过掩膜技术,将Ga2O3薄膜覆盖一半的面积,在未覆盖区域,以3000转/分钟的转速,旋涂三异丙氧基氧化钒与异丙醇的前驱体溶液。将覆盖均匀前驱体的Ga2O3薄膜放置于100℃的热平台,加热10min,蒸干溶剂并使三异丙氧基氧化钒分解,获得钒的氧化物(VOx)。去掉掩膜板,将初步获得的VOx-Ga2O3异质结进行二次退火,退火温度为500℃,退火气氛为空气,升温速度为5℃/min,高温保持时间为60min。退火后,形成V2O5-Ga2O3平面异质结,其XRD图谱如图2所示,Ga2O3
Figure BDA0002985511820000051
取向的β相薄膜,V2O5为(001)取向。
为了构建V2O5-Ga2O3平面异质结光电探测器,通过掩膜板和磁控溅射技术,在V2O5薄膜和Ga2O3薄膜镀上钛金电极,其中与薄膜接触的金属为钛。所制备的V2O5-Ga2O3光电探测器的结构示意图如图1所示。图1中,01为Al2O3衬底,02为n型Ga2O3薄膜,03为p型V2O5薄膜,04为与Ga2O3材料欧姆接触的第一电极,05为与V2O5材料欧姆接触的第二电极
通过光电探测设备,测试的V2O5-Ga2O3光电探测器的暗电流如图3虚线所示,在-5V的偏压下,暗电流只有0.77pA。在254nm波段的光照下,光照强度1mW/cm2测得的光电流如图3实线所示。在-5V偏压下,光电流高达504nA,其光暗比高达6.55×105,显示了超高的光响应能力。同时,从电流-电压曲线还可以看出,所制备的异质结光电探测器具备自供电工作的能力,其光电流拥有0.3V的开路电压。
为了验证本发明提供的V2O5-Ga2O3光电探测器具备自供电工作能力,在1mW/cm2光强的254nm光照下,使器件在0偏压下工作,测得时间-电流曲线如图4所示。在无外部供电的情况下,所制备的V2O5-Ga2O3光电探测器依然可以对254nm光产生响应,电流高达27nA,说明V2O5-Ga2O3异质结光电探测器是一个自供电器件。
为了说明本发明制备的V2O5-Ga2O3异质结光电探测器是日盲紫外探测器,对器件进行了200~700nm波段的光谱响应测试,得到的光谱响应曲线如图5所示。本发明提供的V2O5-Ga2O3异质结光电探测器的主要响应波段在200~270nm,为日盲紫外区域,说明该探测器为日盲探测器。
根据实施例的实验结果,说明根据本发明制备的V2O5-Ga2O3异质结光电探测器探测灵敏度高,响应速度快,是一种性能优异的自供电日盲光电探测器。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种V2O5-Ga2O3异质结自供电日盲光电探测器,其特征在于,包括:
V2O5-Ga2O3异质结,该V2O5-Ga2O3异质结由作为n型导电的Ga2O3材料和作为p型导电的V2O5材料形成,且该V2O5-Ga2O3异质结是通过VOx-Ga2O3异质结退火形成;
与所述Ga2O3材料欧姆接触的第一电极;
与所述V2O5材料欧姆接触的第二电极。
2.根据权利要求1所述的V2O5-Ga2O3异质结自供电日盲光电探测器,其特征在于,所述Ga2O3材料为薄膜,薄膜厚度为10 nm~5 μm。
3.根据权利要求1所述的V2O5-Ga2O3异质结自供电日盲光电探测器,其特征在于,所述V2O5材料为薄膜,薄膜的厚度为5nm~500 nm。
4.根据权利要求1所述的V2O5-Ga2O3异质结自供电日盲光电探测器,其特征在于,所述第一电极和第二电极的材料为铝、铜、银、铂、钛、镓、铟和金中的一种或多种组合。
5.一种V2O5-Ga2O3异质结自供电日盲光电探测器的制备方法,其特征在于,包括如下步骤:
在衬底上制备Ga2O3薄膜;
在所述Ga2O3薄膜的部分区域覆盖形成VOx薄膜,再退火形成V2O5薄膜,以从VOx-Ga2O3异质结形成V2O5-Ga2O3平面异质结;
在未覆盖V2O5薄膜的Ga2O3薄膜上,以及V2O5薄膜上,分别形成第一电极和第二电极。
6.如权利要求5所述的V2O5-Ga2O3异质结自供电日盲光电探测器的制备方法,其特征在于,所述形成V2O5薄膜的步骤包括:
在Ga2O3薄膜的部分区域旋涂三异丙氧基氧化钒溶液;
加热蒸干所述溶液的溶剂,使所述三异丙氧基氧化钒分解获得钒的氧化物;
对所述钒的氧化物进行退火。
7.如权利要求6所述的V2O5-Ga2O3异质结自供电日盲光电探测器的制备方法,其特征在于,所述三异丙氧基氧化钒溶液的溶剂为甲醇、乙醇、丙醇和异丙醇中的一种或多种组合。
8.如权利要求7所述的V2O5-Ga2O3异质结自供电日盲光电探测器的制备方法,其特征在于,所述三异丙氧基氧化钒溶液中的溶质与溶剂的体积比为1:2~1:1000。
9.根据权利要求6所述的V2O5-Ga2O3异质结自供电日盲光电探测器的制备方法,其特征在于,所述退火的退火温度为300~700 ℃。
10.根据权利要求9所述的V2O5-Ga2O3异质结自供电日盲光电探测器的制备方法,其特征在于,所述退火的退火时间为5~200 min。
CN202110299201.6A 2021-03-21 2021-03-21 一种V2O5-Ga2O3异质结自供电日盲光电探测器及制备方法 Active CN113054050B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110299201.6A CN113054050B (zh) 2021-03-21 2021-03-21 一种V2O5-Ga2O3异质结自供电日盲光电探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110299201.6A CN113054050B (zh) 2021-03-21 2021-03-21 一种V2O5-Ga2O3异质结自供电日盲光电探测器及制备方法

Publications (2)

Publication Number Publication Date
CN113054050A CN113054050A (zh) 2021-06-29
CN113054050B true CN113054050B (zh) 2022-09-23

Family

ID=76514017

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110299201.6A Active CN113054050B (zh) 2021-03-21 2021-03-21 一种V2O5-Ga2O3异质结自供电日盲光电探测器及制备方法

Country Status (1)

Country Link
CN (1) CN113054050B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284375A (zh) * 2021-12-24 2022-04-05 广东省科学院微生物研究所(广东省微生物分析检测中心) 一种自供电异质结深紫外光电探测器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229373A (zh) * 2016-08-30 2016-12-14 浙江理工大学 基于β‑Ga2O3/NSTO异质结可零功耗工作的日盲紫外光电探测器及其制备方法
CN108231910A (zh) * 2018-02-09 2018-06-29 沈阳工程学院 一种柔性基片衬底的异质结构薄膜及其制备方法
WO2020247061A1 (en) * 2019-06-06 2020-12-10 Bowling Green State University METHOD FOR TUNING ELECTRICAL PROPERTIES OF OXIDE SEMICONDUCTORS AND THE DEVELOPMENT OF HIGHLY CONDUCTIVE P-TYPE AND N-TYPE Ga2O3
CN112086344A (zh) * 2020-09-22 2020-12-15 中山大学 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229373A (zh) * 2016-08-30 2016-12-14 浙江理工大学 基于β‑Ga2O3/NSTO异质结可零功耗工作的日盲紫外光电探测器及其制备方法
CN108231910A (zh) * 2018-02-09 2018-06-29 沈阳工程学院 一种柔性基片衬底的异质结构薄膜及其制备方法
WO2020247061A1 (en) * 2019-06-06 2020-12-10 Bowling Green State University METHOD FOR TUNING ELECTRICAL PROPERTIES OF OXIDE SEMICONDUCTORS AND THE DEVELOPMENT OF HIGHLY CONDUCTIVE P-TYPE AND N-TYPE Ga2O3
CN112086344A (zh) * 2020-09-22 2020-12-15 中山大学 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
超宽禁带半导体β-Ga2O3及深紫外透明电极、日盲探测器的研究进展;郭道友等;《物理学报》;2019;第68卷(第7期);078501 *

Also Published As

Publication number Publication date
CN113054050A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
Huang et al. A simple, repeatable and highly stable self-powered solar-blind photoelectrochemical-type photodetector using amorphous Ga 2 O 3 films grown on 3D carbon fiber paper
KR100847741B1 (ko) p-n접합 계면에 패시베이션층을 구비하는 점 접촉 이종접합 실리콘 태양전지 및 그의 제조방법
Pang et al. Self-powered behavior based on the light-induced self-poling effect in perovskite-based transport layer-free photodetectors
CN109686844B (zh) 一种基于钙钛矿自供电行为的光敏传感器
Hiramoto et al. Conduction type control from n to p type for organic pigment films purified by reactive sublimation
Yu et al. The influence of the electron transport layer on charge dynamics and trap-state properties in planar perovskite solar cells
CN113054050B (zh) 一种V2O5-Ga2O3异质结自供电日盲光电探测器及制备方法
US20030217769A1 (en) Stacked photovoltaic element
CN110190150A (zh) 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法
Yadav et al. Development of visible-blind UV photodetector using solution processed Ag-ZnO nanostructures
CN111987185A (zh) 一种具有光电二极管效应的双钙钛矿薄膜器件及其制备方法和应用
Wagner et al. n‐CdS/n‐GaAs voltage‐enhanced photoanode
CN113804292B (zh) 光电化学型自供电日盲深紫外光电探测器及其制备方法
CN107564991B (zh) 肖特基蓝紫光探测器及其制备方法
CN114695430A (zh) 双极性响应双色探测器、其制备方法及应用
Tracey et al. Sol-gel derived TiO2/lead phthalocyanine photovoltaic cells
CN108649095B (zh) 基于纳晶结构碳膜的场效应管结构光电器件及其制备方法
Ramprakash et al. Photoelectrochemical study of screen-printed cadmium sulphide electrodes
Fu et al. Al-nanoparticle sensitized β-Ga 2 O 3-based solar-blind photodetector fabricated via focused ion beam micro/nano processing
CN113437164B (zh) 光导型全硅基日盲紫外探测器及其制作方法
Cruz et al. Manufacturing procedures of a CdS/CdTe thin film solar cell
KR102493413B1 (ko) 투명 태양전지 및 그 제조방법
Yang et al. Laser hyperdoping of silicon films for sub-bandgap photoconversion enhancement
JP4766363B2 (ja) ダイヤモンド紫外光センサー素子及びその製造方法
KR810001712B1 (ko) 실리콘 확산 태양전지의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant