CN110190150A - 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法 - Google Patents

基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法 Download PDF

Info

Publication number
CN110190150A
CN110190150A CN201910454920.3A CN201910454920A CN110190150A CN 110190150 A CN110190150 A CN 110190150A CN 201910454920 A CN201910454920 A CN 201910454920A CN 110190150 A CN110190150 A CN 110190150A
Authority
CN
China
Prior art keywords
silicon
electrode
area
substrate
pdse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910454920.3A
Other languages
English (en)
Other versions
CN110190150B (zh
Inventor
梁凤霞
赵兴远
范荣誉
罗林保
蒋静静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201910454920.3A priority Critical patent/CN110190150B/zh
Publication of CN110190150A publication Critical patent/CN110190150A/zh
Application granted granted Critical
Publication of CN110190150B publication Critical patent/CN110190150B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制备方法,是先在具有氧化硅层的n型轻掺硅片上刻蚀出硅锥结构,再在硅锥结构外包裹PdSe2薄膜,从而使二者形成异质结。本发明的光电探测器,器件制备过程简单、性能稳定、性能良好,为过渡族金属硒化物材料在光电探测器中的应用开拓了新的前景。

Description

基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电 探测器及其制作方法
技术领域
本发明属于半导体光电探测器领域,具体涉及一种基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法。
背景技术
光电探测器因为可以将光信号转换成为电信号输出而被广泛应用在光学通讯、成像、生物传感中。近年来随着石墨烯的出现,掀起了广泛的研究热潮,因其较高的电子迁移率而被应用于光电探测器中,但其无带隙、较低的吸光度以及高昂的制备成本,限制了石墨烯的进一步应用。随后出现了黑鳞,又被称为磷烯,它有较窄的带隙以及相对较高的电子迁移率,被用于红外器件的研究,但磷烯存在致命的缺陷—稳定性差。越来越多的研究者将目光转向亟待开发的过渡族金属硫属化物,过渡族硫属化物结合了石墨烯和黑磷的优异性质,其拥有相对较高的电子迁移率和合适的带隙,同时其带隙随厚度不同而变化。如MoS2的电子迁移率达到500cm2V-1s-1,有较宽的光吸收光谱,单层的MoS2具有1.8eV的直接带隙,随着厚度的增加,由直接带隙变为间接带隙,并且减小为1.3eV,同时还具备很好的稳定性。同样PtSe2和PdSe2的出现也引起了大家的关注,其具有较高的电子迁移率,带隙随厚度不同而变化,并且也具有较高的稳定性。
硅具有优良的加工工艺,刻蚀简单、尺寸形貌可控。通过碱法刻蚀能够获得较为致密均匀尺寸较小的金字塔状硅锥,硅锥具有较大的吸光面积,同时硅锥的小尺寸产生的限光效应,可以提高器件的光电性能。
发明内容
本发明的目的在于构建基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器,以期可以利用硅锥的小尺寸产生的限光效应,同时结合二维PdSe2薄膜自身高的导电表面态的特点,使所制备的光电探测器在紫外-可见-近红外光范围内响应灵敏。
本发明解决技术问题,采用如下技术方案:
基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器,其特点在于:以具有具有氧化硅层的n型轻掺硅片为基底;在所述基底的第一区域通过酸法刻蚀掉上部氧化硅,形成一个露出下部硅的窗口,再通过碱法刻蚀将窗口内的硅刻为硅锥结构;在所述基底的第二区域通过先蒸镀金属钯薄膜、再对金属钯薄膜进行硒化的方法,形成有PdSe2薄膜;所述第二区域与所述第一区域有重合区域;在所述基底的下表面设置有与硅锥结构形成欧姆接触的第一电极,在非重合区域的所述PdSe2薄膜上设置与PdSe2薄膜形成欧姆接触的第二电极;在所述重合区域内,所述PdSe2薄膜包裹所述硅锥结构,形成异质结。
进一步地,所述PdSe2薄膜的厚度在20-40nm之间。
进一步地,所述第一电极为In-Ga合金电极、Ti电极或Ag电极,所述第一电极的厚度为100nm-300nm。
进一步地,所述第二电极为Au电极或Pt电极,所述第二电极的厚度为50nm-100nm。
所述宽波段高性能光电探测器的制作方法,包括如下步骤:
A、将具有氧化硅层的n型轻掺硅片依次用丙酮、酒精、去离子水超声清洗后吹干,作为基底备用;
B、通过光刻的方式,在基底上形成一个作为第一区域的窗口,窗口外被光刻胶覆盖;然后将基底放入配置好的BOE溶液中,刻蚀5分钟后取出,立即使用去离子水冲洗3~5次,窗口中的氧化硅全部去除,露出硅,最后再使用丙酮冲洗去除光刻胶;
C、按照氢氧化钠、异丙醇和水的比例为5g:5mL:95mL,配置刻蚀液;再将完成步骤B的基底浸入刻蚀液中,加热至90℃,保温40min后立即取出,再使用盐酸浸泡10min以去除表面残余的NaOH,最后再依次用丙酮、酒精、去离子水超声清洗10min后吹干,即在第一区域内形成硅锥结构;
D、通过光刻的方式,在基底上形成一个作为第二区域的窗口,窗口外被光刻胶覆盖;所述第二区域与所述第一区域有重合区域;
使用电子束蒸发的方法在第二区域蒸镀5-10nm的钯薄膜,再使用丙酮冲洗去除光刻胶;
E、将完成步骤D的基底放入管式炉中,通过CVD的方法在硒的气氛中加热至450℃并保温1h,随炉冷却后即在第二区域形成PdSe2薄膜;
F、在基底的下表面涂抹第一电极,在非重合区域的所述PdSe2薄膜上蒸镀第二电极,即完成光电探测器的制作。
本发明的光电探测器是基于PdSe2/硅锥所形成的异质结,具体原理如下:硅的带隙在1.1eV,在紫外可见及近红外光都有较强的吸收,截止波长在1100nm,PdSe2薄膜在2000nm波长以内有明显的吸收,使器件在近红外区域也表现出良好的光电性能。
与已有技术相比,本发明的有益效果体现在:
1、本发明基于PdSe2薄膜和硅锥的包裹结构构造异质结光电探测器,器件制备过程简单、性能稳定、性能良好,为过渡族金属硒化物材料在光电探测器中的应用开拓了新的前景。
2、本发明的光电探测器,PdSe2在红外区有明显的吸收,拓宽了器件的红外区域光电性能,且硅锥具有较大的吸光面积,同时利用了硅锥的小尺寸产生的限光效应,从而提高了器件的光电性能。
3、本发明光电探测器,PdSe2薄膜和硅锥都具有很好的稳定性,因此制备的器件性能稳定。
附图说明
图1基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器的结构示意图;其中:1为Au电极,2为PdSe2薄膜,3为氧化硅,4为n型轻掺硅,5为In/Ga合金电极。
图2为本发明实施例1中所得硅锥的SEM图片。
图3为本发明实施例1中所得光电探测器样品和各组分材料的吸收光谱曲线。
图4为本发明实施例1中所得光电探测器在黑暗条件下的电流-电压特性曲线。
图5为本发明实施例1中所得光电探测器在不同波长下的归一化响应度和比探测率。
图6为发明实施例1中所得光电探测器在0V偏压、980nm波长的不同光功率的光照射下的响应度和探测率。
具体实施方式
下面结合附图对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
如图1所示,本实施例的光电探测器是以具有氧化硅层的n型轻掺硅片为基底(500微米厚的n型轻掺硅4上设有300nm厚的氧化硅3,轻掺硅电阻率为1~5Ω*cm);在基底的第一区域(1mm*5mm)通过酸法刻蚀掉上部氧化硅,形成一个露出下部硅的窗口,再通过碱法刻蚀将窗口内的硅刻为硅锥结构;在基底的第二区域(1mm*5mm,与第一区域相垂直,形成十字结构)通过先蒸镀金属钯薄膜、再对金属钯薄膜进行硒化的方法,形成有PdSe2薄膜2;第二区域与第一区域有1mm*1mm的重合区域;在基底的下表面设置有与硅锥结构形成欧姆接触的In/Ga合金电极(厚度约为300nm),在非重合区域的PdSe2薄膜上设置与PdSe2薄膜形成欧姆接触的Au电极(厚度为50nm);在重合区域内,PdSe2薄膜包裹硅锥结构,形成异质结。
本实施例宽波段高性能光电探测器的制作方法,包括如下步骤:
A、将具有300nm氧化硅层的n型轻掺硅片依次用丙酮、酒精、去离子水超声清洗10min后吹干,作为基底备用。
B、通过光刻的方式,在基底上形成一个作为第一区域的1mm*5mm窗口,窗口外被光刻胶覆盖;然后将基底放入配置好的BOE溶液中,刻蚀5分钟后取出,立即使用去离子水冲洗3次,窗口中的氧化硅全部去除,露出硅,最后再使用丙酮冲洗去除光刻胶。
C、按照氢氧化钠、异丙醇和水的比例为5g:5mL:95mL,配置刻蚀液;再将完成步骤B的基底浸入刻蚀液中,加热至90℃,保温40min后立即取出,再使用盐酸浸泡10min,最后再依次用丙酮、酒精、去离子水超声清洗10min后吹干,即在第一区域内形成硅锥结构。图2为本实施例所制得硅锥的SEM图片,从图中可以看出硅锥尺寸大小相对均匀,较为致密。
D、通过光刻的方式,在基底上形成一个作为第二区域的1mm*5mm窗口,窗口外被光刻胶覆盖;第二区域与第一区域垂直,有1mm*1mm的重合区域;
使用电子束蒸发的方法在第二区域蒸镀~10nm的钯薄膜,再使用丙酮冲洗去除光刻胶。
E、将完成步骤D的基底放入双温区管式炉的下游,将盛有0.2g纯度为99.99%的硒粉的瓷舟放入距离基底~15cm的上游;通入流量为50sccm的Ar/H2混合气体为保护气体,升温至450℃,保温1h之后随炉冷却,即在第二区域形成厚度~30nm的PdSe2薄膜。
F、在基底的下表面涂抹In/Ga合金电极,在非重合区域的PdSe2薄膜上蒸镀Au电极,即完成光电探测器的制作。
本实施例所得硅锥/PdSe2包裹结构和二硒化钯(PdSe2)、硅锥(pyramid Si)的吸收光谱曲线如图3所示。从图3可以看出,二硒化钯在可见光红外范围内有很大的吸收,硅锥在200-1100nm有较强的吸收,所以整个器件不仅在紫外和可见光范围内有良好的光响应,同时由于二硒化钯的红外吸收,提高了器件在近红外区域的光电性能。
图4为本实施例所得光电探测器在黑暗条件下测试的电流-电压特性曲线。从图4可以看出,器件在0V偏压下的暗电流为3.10×10-11A。
图5为本实施例所得光电探测器在不同波长下的归一化响应度和比探测率。从图5可以看出,器件对紫外-可见-近红外不同波长的光均有良好的响应,特别在980nm光照下,归一化响应度达到最高,比探测率达到1.4×1013Jones。
图6为本实施例所得光电探测器在0V偏压、980nm波长的不同光功率的光照射下的响应度和探测率,从图中可以看出,随着光功率降低,响应度和探测率变大,在0.13μW/cm2光照下,其响应度和探测率分别达到461mA/W和4.7×1014Jones。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器,其特征在于:以具有氧化硅层的n型轻掺硅片为基底;在所述基底的第一区域通过酸法刻蚀掉上部氧化硅,形成一个露出下部硅的窗口,再通过碱法刻蚀将窗口内的硅刻为硅锥结构;在所述基底的第二区域通过先蒸镀金属钯薄膜、再对金属钯薄膜进行硒化的方法,形成有PdSe2薄膜;所述第二区域与所述第一区域有重合区域;在所述基底的下表面设置有与硅锥结构形成欧姆接触的第一电极,在非重合区域的所述PdSe2薄膜上设置与PdSe2薄膜形成欧姆接触的第二电极;在所述重合区域内,所述PdSe2薄膜包裹所述硅锥结构,形成异质结。
2.根据权利要求1所述的宽波段高性能光电探测器,其特征在于:所述PdSe2薄膜的厚度在20-40nm之间。
3.根据权利要求1所述的宽波段高性能光电探测器,其特征在于:所述第一电极为In-Ga合金电极、Ti电极或Ag电极,所述第一电极的厚度为100nm-300nm。
4.根据权利要求1所述的宽波段高性能光电探测器,其特征在于:所述第二电极为Au电极或Pt电极,所述第二电极的厚度为50nm-100nm。
5.一种权利要求1~4中任意一项所述宽波段高性能光电探测器的制作方法,其特征在于,包括如下步骤:
A、将具有氧化硅层的n型轻掺硅片依次用丙酮、酒精、去离子水超声清洗后吹干,作为基底备用;
B、通过光刻的方式,在基底上形成一个作为第一区域的窗口,窗口外被光刻胶覆盖;然后将基底放入配置好的BOE溶液中,刻蚀5分钟后取出,立即使用去离子水冲洗3~5次,窗口中的氧化硅全部去除,露出硅,最后再使用丙酮冲洗去除光刻胶;
C、按照氢氧化钠、异丙醇和水的比例为5g:5mL:95mL,配置刻蚀液;再将完成步骤B的基底浸入刻蚀液中,加热至90℃,保温40min后立即取出,再使用盐酸浸泡10min以去除表面残余的NaOH,最后再依次用丙酮、酒精、去离子水超声清洗后吹干,即在第一区域内形成硅锥结构;
D、通过光刻的方式,在基底上形成一个作为第二区域的窗口,窗口外被光刻胶覆盖;所述第二区域与所述第一区域有重合区域;
使用电子束蒸发的方法在第二区域蒸镀5-10nm的钯薄膜,再使用丙酮冲洗去除光刻胶;
E、将完成步骤D的基底放入管式炉中,通过CVD的方法在硒的气氛中加热至450℃并保温1h,随炉冷却后即在第二区域形成PdSe2薄膜;
F、在基底的下表面涂抹第一电极,在非重合区域的所述PdSe2薄膜上蒸镀第二电极,即完成光电探测器的制作。
CN201910454920.3A 2019-05-29 2019-05-29 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法 Active CN110190150B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910454920.3A CN110190150B (zh) 2019-05-29 2019-05-29 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910454920.3A CN110190150B (zh) 2019-05-29 2019-05-29 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法

Publications (2)

Publication Number Publication Date
CN110190150A true CN110190150A (zh) 2019-08-30
CN110190150B CN110190150B (zh) 2021-11-30

Family

ID=67718407

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910454920.3A Active CN110190150B (zh) 2019-05-29 2019-05-29 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法

Country Status (1)

Country Link
CN (1) CN110190150B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111048621A (zh) * 2020-01-13 2020-04-21 重庆理工大学 一种基于石墨烯/二硒化铂/硅复合异质结的光电探测器及其制备方法
CN111354804A (zh) * 2020-03-09 2020-06-30 合肥工业大学 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法
CN113066888A (zh) * 2021-03-15 2021-07-02 中国石油大学(华东) 一种基于In2S3纳米片阵列/Si金字塔阵列异质结的自驱动光电探测器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449225A (zh) * 2018-10-29 2019-03-08 合肥工业大学 二硒化钯薄膜/n-型硅异质结光电探测器及其制备方法
CN109461789A (zh) * 2018-11-12 2019-03-12 郑州大学 基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449225A (zh) * 2018-10-29 2019-03-08 合肥工业大学 二硒化钯薄膜/n-型硅异质结光电探测器及其制备方法
CN109461789A (zh) * 2018-11-12 2019-03-12 郑州大学 基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LUO, LIN-BAO 等: "《PdSe2 Multilayer on Germanium Nanocones Array with Light Trapping Effect for sensitive Infrared Photodetector and Image Sensing Application》", 《ADVANCED FUNCTIONAL MATERIALS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111048621A (zh) * 2020-01-13 2020-04-21 重庆理工大学 一种基于石墨烯/二硒化铂/硅复合异质结的光电探测器及其制备方法
CN111354804A (zh) * 2020-03-09 2020-06-30 合肥工业大学 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法
CN111354804B (zh) * 2020-03-09 2023-02-28 合肥工业大学 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法
CN113066888A (zh) * 2021-03-15 2021-07-02 中国石油大学(华东) 一种基于In2S3纳米片阵列/Si金字塔阵列异质结的自驱动光电探测器

Also Published As

Publication number Publication date
CN110190150B (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
Spina et al. Micro-engineered CH $ _3 $ NH $ _3 $ PbI $ _3 $ nanowire/graphene phototransistor for low intensity light detection at room temperature
Luo et al. A graphene/single GaAs nanowire Schottky junction photovoltaic device
KR100997669B1 (ko) 스크린 인쇄법을 이용한 실리콘 태양전지 및 그 제조방법
CN104157721B (zh) 基于石墨烯/硅/石墨烯的雪崩光电探测器及其制备方法
CN111682088A (zh) 一种基于范德华异质结的隧穿型光电探测器及其制备方法
CN110190150A (zh) 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法
CN110047957A (zh) 一种中红外光探测器及其制备方法
CN104157720B (zh) 一种混合结构的石墨烯硅基雪崩光电探测器及制备方法
CN108281509A (zh) 氧化物半导体基光电探测器及提高其性能的方法
CN109216483A (zh) 单层MoS2同质结、光探测器及其制备方法、电子元件
Chen et al. Enhanced photoresponsivity in carbon quantum dots-coupled graphene/silicon Schottky-junction photodetector
Yin et al. Enhanced performance of UV photodetector based on ZnO nanorod arrays via TiO2 as electrons trap layer
KR101383940B1 (ko) 실리콘 태양전지 및 그 제조 방법
CN109256471A (zh) 一种无铅全无机钙钛矿铯铋碘薄膜/n-型硅异质结光电探测器及其制备方法
Li et al. High gain, broadband p-WSe2/n-Ge van der Waals heterojunction phototransistor with a Schottky barrier collector
CN103681938A (zh) 一种氮化硼-氧化锌量子点混合场效应光晶体管及其制造方法
Xiao et al. Enhanced photo-response performance of Cu 2 O-based graded heterojunction optoelectronic devices with a Ga 2 O 3 buffer layer
CN110611010B (zh) 一种硅纳米晶/石墨烯宽光谱光电探测器及其制备方法
CN104659152A (zh) 一种基于扭转双层石墨烯的光电探测器及其制备方法
CN113054050B (zh) 一种V2O5-Ga2O3异质结自供电日盲光电探测器及制备方法
CN115513327A (zh) 利用紫外光原位调控肖特基势垒高度的探测器及其制备方法
CN115621353A (zh) 一种具有栅压调控光电转化效率的硒氧铋/二碲化钼异质结光电晶体管及其制备方法和应用
CN108649095B (zh) 基于纳晶结构碳膜的场效应管结构光电器件及其制备方法
KR20110107934A (ko) 탄소나노튜브/ZnO 투명태양전지 및 그 제조방법
CN114420784B (zh) 一种基于二硒化铂和硅的异质结结构及光电探测器、及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant