CN111354804A - 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法 - Google Patents

基于Si锥/CuO异质结的自驱动光电探测器及其制备方法 Download PDF

Info

Publication number
CN111354804A
CN111354804A CN202010156794.6A CN202010156794A CN111354804A CN 111354804 A CN111354804 A CN 111354804A CN 202010156794 A CN202010156794 A CN 202010156794A CN 111354804 A CN111354804 A CN 111354804A
Authority
CN
China
Prior art keywords
electrode
cuo
substrate
cone
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010156794.6A
Other languages
English (en)
Other versions
CN111354804B (zh
Inventor
陈士荣
李心贺
丁宇嵩
王博
赵妍
吴春艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202010156794.6A priority Critical patent/CN111354804B/zh
Publication of CN111354804A publication Critical patent/CN111354804A/zh
Application granted granted Critical
Publication of CN111354804B publication Critical patent/CN111354804B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了基于Si锥/CuO异质结的自驱动光电探测器及其制备方法,是在带有绝缘层的Si基底上刻蚀形成Si锥阵列,再通过磁控溅射在Si锥阵列的上方沉积CuO薄膜,构建Si锥/CuO垂直结构异质结,然后再转移石墨烯到CuO薄膜上方作为透明顶电极、在Si基底背面刷涂底电极,即完成光电探测器的制作。本发明以高纯铜靶为靶材,利用磁控直流反应溅射,一步实现薄膜的沉积和异质结器件的制备,探测器性能优越、制备过程简单易行,与现行Si基半导体工艺具有良好的兼容性。

Description

基于Si锥/CuO异质结的自驱动光电探测器及其制备方法
技术领域
本发明涉及一种纳米光电探测器及其制备方法,具体涉及一种基于Si锥/CuO异质结的自驱动光电探测器及其制备方法。
背景技术
光电探测器是将光信号转化为电信号从而进行检测的电子器件,目前在民用、医用以及军事、航空等领域都有着广泛的应用。半导体光电探测器有光电导型、肖特基结型、pn结型,其中肖特基结型与pn结型均属于势垒型光电探测器。与光电导型光电探测器相比,势垒型光电探测器工作时可以不需外加偏压,且载流子弛豫时间较短、频率特性较强、响应速度较快。
现行微电子技术仍以硅基器件为研究基础,因而硅基光电探测器是发展时间最长、工艺技术最成熟的器件。随着纳米技术的发展,硅基纳米光电探测器也取得了长足的进展。如Ghosh等(Appl.Phys.Lett.2007,90,243106)利用低温水溶液的方法在p型硅上生长出排列整齐的ZnO纳米线阵列,制备出ZnO纳米线/硅异质结光电探测器,其对紫外光有显著的响应。平面硅刻蚀形成的Si纳米线阵列,由于具有良好的陷光效应,有望进一步提升光电探测器的性能。如Cao等(Small.2014,10,2345)将石墨烯氧化物(GO)纳米片的悬浮液简单滴铸在SiNW阵列顶部并随后进行热处理来形成RGO-SiNW阵列异质结,对红外光有极强的响应,可用作人体红外辐射的检测。
氧化铜(CuO)是窄带隙(1.35eV)的p型半导体材料,因其具有高理论容量、安全性、环境友好性、化学耐久性和耐辐射性等特性,一直受到科研工作者的关注,在近红外光电探测领域的应用也有报导。Chang等(Sens.And.Actu.A.2011,171,207-211)报道发现在铜线上的高密度氧化铜纳米线对近红外光有很高的响应度。Hong等(ACS.Appl.Mate.&.Inte.2014,6,20887-20894)通过涂覆一层p-氧化铜(CuO)纳米薄片的n-硅纳米线(n-SiNW)阵列制备了一种新型自供电宽带光电探测器,可用作可见光和近红外光电探测器。但是,通过旋涂的方式构建的Si基阵列异质结,异质结界面覆盖的均匀性、异质结质量等仍需显著提升。
发明内容
在现有技术存在的基础之上,本发明构建了基于Si锥/CuO异质结的自驱动光电探器,在制备器件的过程中,需要解决的技术问题包括:以液相刻蚀的Si锥为基础,通过磁控直流反应溅射沉积p型半导体材料CuO薄膜,构建良好的Si锥/CuO核壳异质结构,探讨其作为自驱动光电探测器的应用。
本发明解决技术问题,采用如下技术方案:
本发明首先公开了基于Si锥/CuO异质结的自驱动光电探测器,其特点于:以上表面带有绝缘层的平面硅作为基底;在所述基底的中间区域通过刻蚀去掉上部绝缘层并裸露出平面硅,形成探测器窗口;将所述探测器窗口内的硅刻蚀为硅锥阵列;在所述基底上通过磁控溅射沉积CuO薄膜,所述CuO薄膜完全覆盖探测器窗口,且与探测器窗口内的硅锥阵列构成Si锥/CuO异质结;在所述基底上转移石墨烯作为透明顶电极,所述石墨烯完全覆盖所述CuO薄膜;在位于非探测器窗口上方的石墨烯上沉积与石墨烯形成欧姆接触的第一金属薄膜电极,在平面硅的背面刷涂或真空蒸镀与平面硅形成欧姆接触的第二金属薄膜电极,从而构成基于Si锥/CuO异质结的自驱动光电探测器。
进一步地:所述平面硅导电类型为n型,电阻率为1-10Ω·cm;所述绝缘层为SiO2、Si3N4、Ta2O5、HfO2或Al2O3层,所述绝缘层的厚度为100-500nm、电阻率≥1×103Ω·cm。
进一步地,所述探测器窗口通过掩膜保护和刻蚀技术形成,边缘距离第一金属薄膜电极的最小距离≥1μm。
进一步地,所述CuO薄膜为单斜晶系,通过磁控直流反应溅射法制备,制备条件为:溅射前预抽本底真空度至3×10-4Pa以下;工作气体为纯度不低于99.99%的氩气和纯度不低于99.99%的氧气,氩气和氧气的气体流量分别为30sccm和15sccm;溅射功率为90W;溅射工作气压为1Pa,靶材与样品衬底间的距离为5cm,溅射时间为60-300s。溅射条件对是否能够构建Si锥/CuO异质结、所制作器件的性能等有极大影响,上述溅射的具体工艺是本发明筛选获得的最优参数。例如:溅射过程中,工作气体比例将对产物物相有显著影响,如当Ar:O2=10:1时,溅射90s所得产物薄膜的XRD图谱如图1所示,经比对可知,除衬底Si的衍射峰外,产物结晶性较差,可能为Cu的氧化物的混合物,因此不能获得纯相的异质结结构。溅射时间不同,沉积CuO薄膜的厚度不同;如果薄膜厚度过薄,在刻蚀后的Si锥表面不能形成连续、完整的覆盖,减小了异质结面积,从而降低器件性能。如果薄膜厚度过厚,由于透过薄膜入射到异质结界面的入射光相应减小,也将降低器件性能。
进一步地,所述石墨烯为通过化学气相沉积法获得的单层或双层石墨烯,迁移率为1000-15000cm2V-1s-1,通过PMMA辅助的湿法转移技术转移至基底上方。
进一步地,所述第一金属薄膜电极为Au电极、Ag电极、Ti/Au复合电极、Cr/Au复合电极、Ni/Au复合电极或Pt电极;所述Au电极、Ag电极、Pt电极的厚度为30-100nm;所述Ti/Au复合电极、Cr/Au复合电极、Ni/Au复合电极是分别在厚度5-10nm的Ti、Cr、Ni电极上继续沉积30-100nm的Au电极。
进一步地,所述第二金属薄膜电极(7)为In/Ga合金电极或Ag电极,通过刷涂或真空蒸镀的方式形成,厚度为30-100nm。
本发明还公开了所述自驱动光电探测器的制作方法,包括如下步骤:
s1、将带有绝缘层的平面硅依次用丙酮、酒精、去离子水超声清洗后,吹干备用;
s2、通过掩膜和刻蚀技术,在基底的中间区域通过刻蚀去掉上部绝缘层并裸露出平面硅,形成探测器窗口;
s3、将5g NAOH溶于5mL异丙醇与95mL去离子水的混合溶剂中,形成硅锥刻蚀液;将刻蚀好探测器窗口的基底放入硅锥刻蚀液中,在加热台上以80℃恒温加热40分钟,使探测器窗口内的平面硅刻蚀成硅锥阵列;刻蚀完成后依次用丙酮、酒精、去离子水超声清洗,吹干备用;
s4、通过磁控直流反应溅射,在所述基底上溅射沉积CuO薄膜,所述CuO薄膜完全覆盖探测器窗口,所述CuO薄膜与探测器窗口内的硅锥阵列构成Si锥/CuO异质结;溅射条件为:溅射前预抽本底真空度至气压低于3×10-4Pa;工作气体为纯度不低于99.99%的氩气和纯度不低于99.99%的氧气,氩气和氧气的气体流量分别为30sccm和15sccm;溅射功率为90W;溅射工作气压为1Pa,靶材与样品衬底间的距离为5cm,溅射时间为60-300s;
s5、将石墨烯转移至基底上方作为透明顶电极,所述石墨烯完全覆盖所述CuO薄膜;
S6、使用真空沉积技术或刷涂导电胶的方式,在位于非探测器窗口上方的石墨烯上沉积第一金属薄膜电极;对平面硅的背面打磨后,刷涂一层导电胶作为第二金属薄膜电极,即获得基于Si锥/CuO异质结的自驱动光电探测器。
与已有技术相比,本发明的有益效果体现在:
1、本发明采用磁控直流反应溅射的方法沉积CuO薄膜,实现了CuO薄膜在Si锥阵列表面的均匀包覆,获得了较好的Si/CuO核壳结构异质结,使器件性能更稳定、更优化。
2、本发明用新型二维材料石墨烯作为顶电极,有利于入射光的透过和光生载流子的收集,提升了器件的性能。
3、本发明器件的制备过程简单易行,与现行的硅基半导体工艺有良好的兼容性,易于实现器件在现有集成电路芯片上的集成。
附图说明
图1为当Ar:O2=10:1时,溅射90s所得Cu的氧化物薄膜的XRD图谱。
图2为基于Si锥/CuO异质结的自驱动光电探测器的器件结构示意图,其中:1为平面硅,2为绝缘层,3为硅锥阵列,4为CuO薄膜,5为石墨烯,6为第一金属薄膜电极,7为第二金属薄膜电极。
图3为本发明自驱动光电探测器的制备流程图。
图4为本发明实施例1中CuO薄膜的XRD图谱。
图5为本发明实施例1中Si锥的扫描电镜照片。
图6为本发明实施例1中Si锥/CuO异质结在365nm光照下的电流-电压特性曲线(a)和时间响应曲线(b)。
图7为本发明实施例1中Si锥/CuO异质结在530nm光照下的电流-电压特性曲线(a)和时间响应曲线(b)。
图8为本发明实施例1中Si锥/CuO异质结在970nm光照下的电流-电压特性曲线(a)和时间响应曲线(b)。
图9为本发明Si锥/CuO异质结光电探测器在频率为1kHz的脉冲光照下的时间响应,可见器件上升时间为0.22ms、下降时间为0.25ms。
图10为本发明实施例2中Si锥/CuO异质结在白光光照下的电流-电压特性曲线。
图11为本发明对比例1中光电探测器在普通白光光照下的电流-电压特性曲线,开路电压为0.06V、短路电流为0.02μA。
图12是本发明对比例1中光电探测器在零偏压、普通白光光照下的时间响应图谱,开关比约为51.3。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
参见图2,本实施例基于Si锥/CuO异质结的自驱动光电探测器是以上表面带有绝缘层2的平面硅1作为基底;在基底的中间区域通过刻蚀去掉上部绝缘层并裸露出平面硅,形成探测器窗口;将探测器窗口内的硅刻蚀为硅锥阵列3;在基底上通过磁控溅射沉积CuO薄膜4,CuO薄膜4完全覆盖探测器窗口,且与探测器窗口内的硅锥阵列3构成Si锥/CuO异质结;在基底上转移石墨烯5作为透明顶电极,石墨烯完全覆盖CuO薄膜;在位于非探测器窗口上方的石墨烯上沉积与石墨烯形成欧姆接触的第一金属薄膜电极6,在平面硅1的背面刷涂或真空蒸镀与平面硅形成欧姆接触的第二金属薄膜电极7,从而构成基于Si锥/CuO异质结的自驱动光电探测器。
具体的,本实施例中:平面硅1导电类型为n型,电阻率为1-10Ω·cm;绝缘层为300nm的SiO2绝缘层;第一金属薄膜电极是厚度为50nm的Ag电极,第二金属薄膜电极是In/Ga电极;探测器窗口通过掩膜保护和刻蚀技术形成,边缘距离第一金属薄膜电极的最小距离为1μm。
参见图3,本实施例制备基于Si锥/CuO异质结的自驱动光电探测器的具体步骤如下:
s1、将带有SiO2绝缘层的平面硅依次用丙酮、酒精、去离子水超声清洗后,吹干,作为基底备用。
s2、将带有直径3mm小孔的胶带贴在基底上作为掩膜保护,然后将基底放入BOE溶液(6gNH4Cl溶于3mL氢氟酸与10mL去离子水的混合溶剂中)中刻蚀5min,去除未遮挡的SiO2绝缘层并裸露出平面硅,形成直径3mm的探测器窗口。
s3、将5g NAOH溶于5mL异丙醇与95mL去离子水的混合溶剂中,形成硅锥刻蚀液;将刻蚀好探测器窗口的基底放入硅锥刻蚀液中,在加热台上以80℃恒温加热40分钟,使探测器窗口内的平面硅刻蚀成硅锥阵列;刻蚀完成后依次用丙酮、酒精、去离子水超声清洗,吹干备用。
s4、采用直径6cm的高纯Cu靶材,通过磁控直流反应溅射,在上述基底上溅射沉积CuO薄膜,CuO薄膜完全覆盖探测器窗口且面积小于绝缘层面积,CuO薄膜与探测器窗口内的硅锥阵列构成Si锥/CuO异质结。溅射条件为:采用直径为6cm、厚度为5mm的高纯Cu靶,溅射前预抽本底真空度至3×10-4Pa,溅射时通入30sccm的Ar和15sccm的O2,溅射功率90W,溅射时间150s,溅射工作气压1Pa,靶材与样品衬底间的距离为5cm。
s5、将石墨烯转移至基底上方作为透明顶电极,石墨烯完全覆盖CuO薄膜并同时覆盖部分绝缘层;
S6、在位于绝缘层上方的石墨烯上刷涂Ag导电胶,作为第一金属薄膜电极;对硅基底的背面打磨、刷涂In/Ga导电胶,形成第二金属薄膜电极,即获得基于Si锥/CuO异质结的自驱动光电探测器。
本实施例中CuO薄膜的XRD图谱如图4所示,由衍射峰可以看出,所得产物XRD图谱与JCPDS卡片号45-0937对应,可标定为单斜晶系CuO。
本实施例中Si锥的扫描电镜照片如图5所示,由图可看出显著的锥形结构,多数底部大小为2-3μm。
本实施例中Si锥/CuO异质结在365nm光照下的电流-电压特性曲线和时间响应曲线分别如图6(a)和(b)所示,图中可以看出器件具有显著的光伏特性,开路电压0.065V、短路电流为0.0278μA、零偏压下开关比为900,有望用作自驱动光电探测器。
本实施例中Si锥/CuO异质结在530nm光照下的电流-电压特性曲线和时间响应曲线分别如图7(a)和(b)所示,器件开路电压为0.12V、短路电流为0.116μA、零偏压下开关比为2000。
本实施例中Si锥/CuO异质结在970nm光照下的电流-电压特性曲线和时间响应曲线分别如图8(a)和(b)所示,器件开路电压为0.12V、短路电流为0.0843μA、开关比为1330。
本实施例中Si锥/CuO异质结光电探测器在频率为1kHz的脉冲光照下的时间响应如图9所示,可见器件上升时间为0.22ms、下降时间为0.25ms。
实施例2
本实施例自驱动光电探测器的制备方法与实施例1相同,区别仅在于本实施例中溅射时间为80s。本实施例所制备器件在白光光照下的电流-电压特性如图10所示,呈现显著的光伏特性,开路电压为0.14V,短路电流为8.66nA,有望用作自驱动光电探测器。与实施例1相比,器件的短路电流有所下降,这是因为溅射时间降低,薄膜的厚度降低,在刻蚀后的硅锥表面可能不能形成连续的均匀覆盖,异质结界面减小。
对比例1
本对比例光电探测器的制备方法与实施例1相同,区别仅在于本对比例中直接采用平面Si基底并按相同的方式沉积密CuO薄膜,形成平面Si/CuO异质结,不进行Si锥阵列的刻蚀。本实施例所制备器件在普通白光光照下的电流-电压特性曲线如图11所示、时间响应图谱如图12所示,可以看出器件的开路电压为0.06V、短路电流为0.02μA、开关比约为51.3。可见Si锥阵列器件性能较平面硅器件显著提升。

Claims (8)

1.基于Si锥/CuO异质结的自驱动光电探测器,其特征在于:以上表面带有绝缘层(2)的平面硅(1)作为基底;在所述基底的中间区域通过刻蚀去掉上部绝缘层并裸露出平面硅,形成探测器窗口;将所述探测器窗口内的硅刻蚀为硅锥阵列(3);在所述基底上通过磁控溅射沉积CuO薄膜(4),所述CuO薄膜(4)完全覆盖探测器窗口,且与探测器窗口内的硅锥阵列(3)构成Si锥/CuO异质结;在所述基底上转移石墨烯(5)作为透明顶电极,所述石墨烯完全覆盖所述CuO薄膜;在位于非探测器窗口上方的石墨烯上沉积与石墨烯形成欧姆接触的第一金属薄膜电极(6),在平面硅(1)的背面刷涂或真空蒸镀与平面硅形成欧姆接触的第二金属薄膜电极(7),从而构成基于Si锥/CuO异质结的自驱动光电探测器。
2.根据权利要求1所述的自驱动光电探测器,其特征在于:所述平面硅(1)导电类型为n型,电阻率为1-10Ω·cm;所述绝缘层(2)为SiO2、Si3N4、Ta2O5、HfO2或Al2O3层,所述绝缘层的厚度为100-500nm、电阻率≥1×103Ω·cm。
3.根据权利要求1所述的自驱动光电探测器,其特征在于:所述探测器窗口通过掩膜保护和刻蚀技术形成,边缘距离第一金属薄膜电极的最小距离≥1μm。
4.根据权利要求1所述的自驱动光电探测器,其特征在于:所述CuO薄膜为单斜晶系,通过磁控直流反应溅射法制备,制备条件为:溅射前预抽本底真空度至3×10-4Pa以下;工作气体为纯度不低于99.99%的氩气和纯度不低于99.99%的氧气,氩气和氧气的气体流量分别为30sccm和15sccm;溅射功率为90W;溅射工作气压为1Pa,靶材与样品衬底间的距离为5cm,溅射时间为60-300s。
5.根据权利要求1所述的自驱动光电探测器,其特征在于:所述石墨烯(4)为通过化学气相沉积法获得的单层或双层石墨烯,迁移率为1000-15000cm2V-1s-1,通过PMMA辅助的湿法转移技术转移至基底上方。
6.根据权利要求1所述的自驱动光电探测器,其特征在于:所述第一金属薄膜电极(6)为Au电极、Ag电极、Ti/Au复合电极、Cr/Au复合电极、Ni/Au复合电极或Pt电极;
所述Au电极、Ag电极、Pt电极的厚度为30-100nm;
所述Ti/Au复合电极、Cr/Au复合电极、Ni/Au复合电极是分别在厚度5-10nm的Ti、Cr、Ni电极上继续沉积30-100nm的Au电极。
7.根据权利要求1所述的自驱动光电探测器,其特征在于:所述第二金属薄膜电极(7)为In/Ga合金电极或Ag电极,通过刷涂或真空蒸镀的方式形成,厚度为30-100nm。
8.一种权利要求1-7中任意一项所述自驱动光电探测器的制作方法,其特征在于,包括如下步骤:
s1、将带有绝缘层的平面硅依次用丙酮、酒精、去离子水超声清洗后,吹干备用;
s2、通过掩膜和刻蚀技术,在基底的中间区域通过刻蚀去掉上部绝缘层并裸露出平面硅,形成探测器窗口;
s3、将5g NAOH溶于5mL异丙醇与95mL去离子水的混合溶剂中,形成硅锥刻蚀液;将刻蚀好探测器窗口的基底放入硅锥刻蚀液中,在加热台上以80℃恒温加热40分钟,使探测器窗口内的平面硅刻蚀成硅锥阵列;刻蚀完成后依次用丙酮、酒精、去离子水超声清洗,吹干备用;
s4、通过磁控直流反应溅射,在所述基底上溅射沉积CuO薄膜,所述CuO薄膜完全覆盖探测器窗口,所述CuO薄膜与探测器窗口内的硅锥阵列构成Si锥/CuO异质结;溅射条件为:溅射前预抽本底真空度至气压低于3×10-4Pa;工作气体为纯度不低于99.99%的氩气和纯度不低于99.99%的氧气,氩气和氧气的气体流量分别为30sccm和15sccm;溅射功率为90W;溅射工作气压为1Pa,靶材与样品衬底间的距离为5cm,溅射时间为60-300s;
s5、将石墨烯转移至基底上方作为透明顶电极,所述石墨烯完全覆盖所述CuO薄膜;
S6、使用真空沉积技术或刷涂导电胶的方式,在位于非探测器窗口上方的石墨烯上沉积第一金属薄膜电极;对平面硅的背面打磨后,刷涂一层导电胶作为第二金属薄膜电极,即获得基于Si锥/CuO异质结的自驱动光电探测器。
CN202010156794.6A 2020-03-09 2020-03-09 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法 Active CN111354804B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010156794.6A CN111354804B (zh) 2020-03-09 2020-03-09 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010156794.6A CN111354804B (zh) 2020-03-09 2020-03-09 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN111354804A true CN111354804A (zh) 2020-06-30
CN111354804B CN111354804B (zh) 2023-02-28

Family

ID=71197424

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010156794.6A Active CN111354804B (zh) 2020-03-09 2020-03-09 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN111354804B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114792742A (zh) * 2022-04-22 2022-07-26 深圳大学 一种基于改性SnTe薄膜的光电传感器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107123699A (zh) * 2017-06-08 2017-09-01 合肥工业大学 一种基于铜硫酸钾准一维纳米结构的自驱动近红外光电探测器及其制备方法
CN110190150A (zh) * 2019-05-29 2019-08-30 合肥工业大学 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法
CN110289335A (zh) * 2019-06-26 2019-09-27 合肥工业大学 基于In2Se3/Si垂直结构异质结的自驱动近红外长波光电探测器及其制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107123699A (zh) * 2017-06-08 2017-09-01 合肥工业大学 一种基于铜硫酸钾准一维纳米结构的自驱动近红外光电探测器及其制备方法
CN110190150A (zh) * 2019-05-29 2019-08-30 合肥工业大学 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法
CN110289335A (zh) * 2019-06-26 2019-09-27 合肥工业大学 基于In2Se3/Si垂直结构异质结的自驱动近红外长波光电探测器及其制作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONG-SIK KIM: ""High-performing ITO/CuO/n-Si photodetector with ultrafast photoresponse"", 《SENSORS AND ACTUATORS A》 *
QINGSHUI HONG: ""Self-Powered Ultrafast Broadband Photodetector Based on p−n Heterojunctions of CuO/Si Nanowire Array"", 《APPL. MATER. INTERFACES》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114792742A (zh) * 2022-04-22 2022-07-26 深圳大学 一种基于改性SnTe薄膜的光电传感器及其制备方法
CN114792742B (zh) * 2022-04-22 2024-04-02 深圳大学 一种基于改性SnTe薄膜的光电传感器及其制备方法

Also Published As

Publication number Publication date
CN111354804B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
Wang et al. Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors
Zhang et al. Millimeter-sized single-crystal CsPbrB3/CuI heterojunction for high-performance self-powered photodetector
Lin et al. Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function
US8641915B2 (en) Electronic device utilizing graphene electrodes and organic/inorganic hybrid composites and method of manufacturing the electronic device
KR101154347B1 (ko) 그래핀 박막과 나노 입자를 이용한 광검출기 및 그 제조 방법
JP2022519403A (ja) MXene改質ハイブリッド光変換器
CN103346199B (zh) 基于单层石墨烯/氧化锌纳米棒阵列肖特基结的紫外光电探测器及其制备方法
Lee et al. Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solid-state dye-sensitized solar cells
CN111613691B (zh) 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法
JP2015216379A (ja) ナノワイヤ構造を製造する方法
CN103482589B (zh) 一种一维硒化锡纳米阵列、其制备方法和应用
CN113972262B (zh) 氧化镓-二维p型范德华隧穿晶体管、双波段光电探测器件及制备方法
CN103077963A (zh) 一种欧姆接触电极、其制备方法及包含该欧姆接触电极的半导体元件
Geethu et al. Improving the performance of ITO/ZnO/P3HT: PCBM/Ag solar cells by tuning the surface roughness of sprayed ZnO
CN107275432A (zh) 一种晶体硅太阳能电池及其制备方法
US20140000713A1 (en) Mechanically stable device based on nano/micro wires and having improved optical properties and process for producing it
Wu et al. Van der Waals integration inch-scale 2D MoSe2 layers on Si for highly-sensitive broadband photodetection and imaging
CN102751374B (zh) 基于p-型ZnSe纳米线/n-型Si异质结的光电探测器及其制备方法
CN111354804B (zh) 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法
Luo et al. A self-powered ultraviolet photodetector with van der Waals Schottky junction based on TiO2 nanorod arrays/Au-modulated V2CTx MXene
CN105702774A (zh) 一种基于硅纳米线阵列的自驱动肖特基结近红外光电探测器及其制备方法
Li et al. CuI-Si heterojunction solar cells with carbon nanotube films as flexible top-contact electrodes
CN110993707B (zh) 基于氧化镓多层堆叠结构的pin二极管及其制备方法
CN116344662B (zh) 一种基于CdSe/MoS2异质结偏振光电探测器及其制备方法
CN109950364B (zh) 基于二维硒化亚锗光电探测器的成像元件制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant