CN107123699A - 一种基于铜硫酸钾准一维纳米结构的自驱动近红外光电探测器及其制备方法 - Google Patents

一种基于铜硫酸钾准一维纳米结构的自驱动近红外光电探测器及其制备方法 Download PDF

Info

Publication number
CN107123699A
CN107123699A CN201710427948.9A CN201710427948A CN107123699A CN 107123699 A CN107123699 A CN 107123699A CN 201710427948 A CN201710427948 A CN 201710427948A CN 107123699 A CN107123699 A CN 107123699A
Authority
CN
China
Prior art keywords
kcu
near infrared
self
quasi
planar silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710427948.9A
Other languages
English (en)
Other versions
CN107123699B (zh
Inventor
吴春艳
王友义
徐际宇
吴亚东
陆杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Luyang Technology Innovation Group Co.,Ltd.
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201710427948.9A priority Critical patent/CN107123699B/zh
Publication of CN107123699A publication Critical patent/CN107123699A/zh
Application granted granted Critical
Publication of CN107123699B publication Critical patent/CN107123699B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种基于铜硫酸钾准一维纳米结构的自驱动近红外光电探测器及其制备方法,其特征在于:将由KCu7S4准一维纳米结构通过LB技术组装而成的KCu7S4单层膜转移到构建有绝缘区域的n型硅基底上,KCu7S4单层膜与硅基底接触形成Si/KCu7S4异质结,在绝缘区域上方沉积与KCu7S4单层膜形成欧姆接触的第一金属薄膜电极,在硅基底背面制备与硅形成欧姆接触的第二金属薄膜电极,即获得自驱动近红外光电探测器。本发明的自驱动近红外光电探测器制备过程简单易行,器件性能优越,且与现行半导体工艺具有良好的兼容性。

Description

一种基于铜硫酸钾准一维纳米结构的自驱动近红外光电探测 器及其制备方法
技术领域
本发明涉及一种自驱动近红外光电探测器及其制备方法,具体地说是基于铜硫酸钾准一维纳米结构的自驱动近红外光电探测器及其制备方法。
背景技术
光电探测器是将光信号转化为电信号的半导体器件。人眼可感知的波长范围为380-780nm,而日常生活中又存在大量的红外光,因此光电探测器也可以认为是人眼的一个有效延伸。中、远红外光(3~14μm)的穿透能力强,因此被广泛应用于军事领域,在红外侦察、红外制导、红外夜视、红外隐身等方面都有重要的应用。如美国陆军研究实验室与洛克韦尔科学公司合作,通过分子束外延技术,在CdSexTe1-x/Si复合衬底上生长的长波红外材料Hg0.78Cd0.22Te(Proc.of SPIE.2006,6206,620611),有望应用于更加经济耐用的第三代红外焦平面阵列的制造。但是其一般工作在低温,价格昂贵,所以很难推广到民用领域。
近年来,近红外光(780~2526nm)光电探测器在医学成像技术、光通讯、工业自动控制、环境监测、火险报警等领域的广泛应用需求,推动了高性能、低成本的近红外光电探测器的研究。目前780~1100nm范围内主要使用Si光电二极管,而1100~2526nm范围内使用较多的则是InGaAs和PbS探测器。
随着纳米技术的发展,纳米光电探测器的发展逐渐兴起。2016年,Huang Tan等使用化学气相沉积(CVD)的方式,制备了基于单根In0.65Ga0.35As纳米线的近红外光电探测器,该器件对于波长范围1100~2000nm的近红外光有很好的响应,在0.5V偏压、1600nm(光强15.8mW cm-2)光照射下,响应度达到了6.5×103A W-1、外部量子效率达到了5.04×105%(Nano-Micro Lett.2016,8,29)。与光电导型光电探测器相比,肖特基结或p-n结型光电探测器具有更为优良的高频特性,并且由于光生伏特效应,该类器件有望构建自驱动光电探测器,在无需外加电源的条件下工作,随着便携式设备和可穿戴设备的广泛使用,这一类型光电探测器尤为引人关注。如K.Das等报道了基于单根p型掺杂的Si纳米线和Cr/Au电极形成的肖特基结,该器件具有良好的光伏特性,在900nm光照下,零偏压时响应度达到了2×104A W-1,探测率约为1013cm Hz1/2W-1(Nanoscale,2014,6,11232)。
为了进一步提升器件性能,研究者们开始探讨具有较大结区面积的、基于纳米线阵列或薄膜结构的近红外光电探测器的构建。Hui Wang等使用紫外光刻技术在二氧化硅片上,定义出极其规整的图案,然后使材料顺着图案的边缘生长,获得了非常有序的MeSq纳米线组装成的二维薄膜,制备的器件在808nm的光照下,开关比为1600,超过了大部分的有机光电探测器(ACS Appl.Mater.Interfaces 2016,8,7912)。合肥工业大学吴春艳研究团队也通过将Si片刻蚀成Si纳米线阵列,在纳米线表面均匀包覆Cu膜,构建了Si/Cu核壳结构异质结,器件在光强为0.22mW cm-2的980nm近红外光照下呈显著的光伏特性,具有良好的自驱动近红外光电探测效果(J.Mater.Chem.C 2016,4,10804)。
然而,目前基于纳米线阵列或者薄膜的近红外光电探测器,常需要使用分子束外延生长、物理气相沉积等高真空薄膜制备技术,或者需借助紫外曝光光刻等微细加工技术来实现,较高的设备条件和制作成本,在一定程度上限制了其推广。
发明内容
在现有技术存在的基础之上,本发明旨在构建基于铜硫酸钾准一维纳米结构的自驱动近红外光电探测器,在纳米光电探测器发展领域有着重要的意义,所要解决的技术问题是通过Langmuir-Blodgett(LB)技术,将KCu7S4准一维纳米结构组装成单层膜,并将其转移到n型硅基底上形成Si/KCu7S4异质结,从而构建自驱动近红外光电探测器。
本发明解决技术问题,采用如下技术方案:
本发明基于铜硫酸钾准一维纳米结构的自驱动近红外光电探测器,其特点在于:是以平面硅为基底,在平面硅上表面的局部位置构建有绝缘区域;在平面硅上表面转移有由KCu7S4准一维纳米结构通过LB技术组装而成的KCu7S4单层膜;所述KCu7S4单层膜部分位于所述绝缘区域上,剩余部分直接与平面硅上表面接触,形成Si/KCu7S4异质结;在所述KCu7S4单层膜上方沉积有第一金属薄膜电极,与所述KCu7S4单层膜形成欧姆接触;所述第一金属薄膜电极位于所述绝缘区域的上方,且不超出所述绝缘区域所在的区域;在所述平面硅的背面刷涂有第二金属薄膜电极,与硅形成欧姆接触。
优选的,所述平面硅的导电类型为n型,电阻率为1-10Ω·㎝。
优选的,所述绝缘区域为绝缘胶带、SiO2绝缘层、Si3N4绝缘层、HfO2绝缘层或Al2O3绝缘层,其中绝缘层的电阻率不小于1×103Ω·cm、厚度为100-500nm。
优选的,所述KCu7S4准一维纳米结构的轴向长度不小于10μm、径向长度为100-1000nm。
优选的,所述第一金属薄膜电极为Au电极、Ti/Au复合电极、Cr/Au复合电极、Ni/Au复合电极或Pt电极;所述Au电极、Pt电极的厚度为30-100nm;所述Ti/Au复合电极、Cr/Au复合电极、Ni/Au复合电极分别是在厚度3-10nm的Ti、Cr、Ni上沉积有30-100nm厚的Au。
优选的,所述第二金属薄膜电极(5)为In/Ga电极或Ag电极,通过刷涂相应导电胶的方式形成。
本发明自驱动近红外光电探测器的制备方法,包括如下步骤:
A、将平面硅依次用丙酮、酒精、去离子水超声清洗后,吹干,作为基底备用;
B、在平面硅上表面的局部位置构建绝缘区域;
C、将KCu7S4准一维纳米结构的粉末加入质量浓度为3~5%的PVP水溶液中,搅拌6h,从而在KCu7S4准一维纳米结构表面包覆一层PVP,以增加其在后续LB过程所用溶剂中的分散性,然后离心、取出沉淀物并烘干备用;
D、将2mg包覆了PVP的KCu7S4准一维纳米结构粉末分散于0.5mL N,N-二甲基甲酰胺和0.5mL三氯甲烷的混合液中,获得含有KCu7S4的溶液;然后用5mL的注射器将含有KCu7S4的溶液逐滴加入到装有去离子水的LB水槽中;将构建有绝缘区域的平面硅放置于LB水槽底部,30分钟后开始挤压液面,速度为20cm2min-1;当液面的表面压力达到5~25mN/m的时候,缓慢的将平面硅提上来,从而在平面硅上形成KCu7S4单层膜;
E、使用电子束蒸发镀膜的方式,在KCu7S4单层膜上沉积第一金属薄膜电极,为避免第一金属薄膜电极与平面硅的接触,使第一金属薄膜电极位于所述绝缘区域的上方,且不超出所述绝缘区域所在的区域;第一金属薄膜电极沉积时真空室气压不高于6×10-3Pa、蒸发速率为0.01-0.05nm/s;
F、将平面硅的背面打磨、刷涂一层导电胶,形成第二金属薄膜电极,即获得基于KCu7S4准一维纳米结构的自驱动近红外光电探测器。
与已有技术相比,本发明的有益效果体现在:
1、本发明通过Langmuir-Blodgett(LB)技术,将高结晶性的准一维纳米结构在液面自组装形成单层膜,与传统高真空镀膜技术相比,既保持了准一维纳米结构良好的电输运特性,又显著降低了制备难度和成本;
2、本发明器件制备过程简单易行,与现行硅工艺具有良好的兼容性,易于实现器件在现有集成电路芯片上的集成。
附图说明
图1是本发明基于铜硫酸钾准一维纳米结构的自驱动近红外光电探测器的器件结构示意图;其中1为平面硅,2为绝缘区域,3为KCu7S4单层膜,4为第一金属薄膜电极,5为第二金属薄膜电极。
图2是本发明基于铜硫酸钾准一维纳米结构的自驱动近红外光电探测器的器件制备过程示意图。
图3为本发明实施例1中Si/KCu7S4异质结的光谱响应,图中可以看出器件在较宽的光谱范围内(约600-1100nm)有显著的光响应。
图4为本发明实施例1中Si/KCu7S4异质结的典型电流-电压特性曲线,图中可以看出在980nm光照下(光强约300μW cm-2),器件具有显著的光伏特性,开路电压为0.135V,短路电流为1620nA,填充因子为24.23%。
图5为本发明实施例1中Si/KCu7S4异质结零偏压下的时间响应图谱,图中可以看出器件开关比约8000,具有良好的可重复性和稳定性。
图6为本发明实施例1中Si/KCu7S4异质结在频率为50kHz的入射光下的时间响应图谱,图中可以看出器件上升时间和下降时间分别为7.4μs和8.6μs。
图7为本发明实施例1中Si/KCu7S4异质结光电流-光强拟合曲线。
图8为本发明实施例1中Si/KCu7S4异质结光电流分布图,图中可以看出器件具有较好的均匀性。
图9为本发明实施例2中Si/KCu7S4异质结的典型电流-电压特性曲线,图中可以看出在980nm光照下(光强约300μW cm-2),器件具有显著的光伏特性,开路电压为0.117V,短路电流为3.27nA,填充因子为16.91%。
图10为本发明实施例3中Si/KCu7S4异质结的典型电流-电压特性曲线,图中可以看出在980nm光照下(光强约300μW cm-2),器件具有显著的光伏特性,开路电压为0.064V,短路电流为299nA,填充因子为23.52%。
具体实施方式
下面结合附图对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
参见图1,本发明的自驱动近红外光电探测器是以平面硅1为基底,在平面硅1上表面的局部位置构建有绝缘区域2;在平面硅1上表面转移有由KCu7S4准一维纳米结构通过LB技术组装而成的KCu7S4单层膜3;KCu7S4单层膜3部分位于绝缘区域2上,剩余部分直接与平面硅上表面接触,形成Si/KCu7S4异质结;在KCu7S4单层膜3上方沉积有第一金属薄膜电极4,与KCu7S4单层膜3形成欧姆接触;第一金属薄膜电极4位于绝缘区域2的上方,且不超出绝缘区域2所在的区域;在平面硅1的背面刷涂有第二金属薄膜电极5,与硅形成欧姆接触。
具体的:本实施例通过在平面硅上表面的一侧粘贴绝缘胶带的方式构建有绝缘区域;本实施例所用KCu7S4准一维纳米结构为溶液法合成的KCu7S4纳米线;所用平面硅导电类型为n型,电阻率为1-10Ω·㎝;第一金属薄膜电极是厚度为50nm的Au电极,第二金属薄膜电极是In/Ga电极。
具体的,KCu7S4准一维纳米结构的制备方法如下:
将3.88g NaOH和5.11g KOH加入到30mL去离子水中,磁力搅拌使其溶解并降至室温,然后依次加入0.51g CuCl2·2H2O、300μL乙二胺、2.88g Na2S·9H2O、3mL水合肼,充分搅拌后放入80℃的恒温干燥箱中反应50分钟,取出上层絮状产物,离心清洗,直至上层清液酸碱度达到中性,之后再用酒精清洗2-3次,即得产物KCu7S4准一维纳米结构。之后放置于60℃的恒温干燥箱中干燥4小时,得到的粉末备用。
如图2所示,本实施例自驱动近红外光电探测器的制备方法如下:
A、将平面硅依次用丙酮、酒精、去离子水超声清洗后,吹干,作为基底备用;
B、在平面硅上表面的一侧粘贴绝缘胶带,构建绝缘区域;
C、将KCu7S4准一维纳米结构的粉末加入质量浓度为4%的PVP水溶液中,搅拌6h,从而在KCu7S4准一维纳米结构表面包覆一层PVP,以增加其在后续LB过程所用溶剂中的分散性,然后离心、取出沉淀物并烘干备用;
D、将2mg包覆了PVP的KCu7S4准一维纳米结构粉末分散于0.5mL的N,N-二甲基甲酰胺(DMF)和0.5mL的三氯甲烷(CHCl3)的混合溶液中,获得含有KCu7S4的溶液;之后用5mL的注射器将含有KCu7S4的溶液逐滴加入Langmuir-Blodgett(LB)(KSV NIMA,Alter 2006)水槽中(水槽中的液体为去离子水)。将贴有绝缘胶带的硅片放置于水槽底部,30分钟之后,开始挤压液面,速度为20cm2min-1。当液面的表面压力达到25mN/m的时候,缓慢的将硅片提上来,从而在平面硅上形成KCu7S4单层膜;
E、使用电子束蒸发镀膜的方式,在KCu7S4单层膜上沉积Au电极,为避免Au电极与平面硅的接触,使Au电极位于绝缘胶带的上方,且不超出绝缘胶带所在的区域;沉积时真空室气压为6×10-3Pa,蒸发速率为0.05nm/s。
F、将平面硅的背面打磨、刷涂一层In/Ga导电胶,形成In/Ga电极,即获得基于KCu7S4准一维纳米结构的自驱动近红外光电探测器。
本实施例所得自驱动近红外光电探测器的光谱响应如图3所示,可以看出器件在较宽的光谱范围内(约600-1100nm)有显著的光响应。
本实施例自驱动近红外光电探测器在光强为300μW cm-2、980nm单色光照下,呈现显著的光伏特性,如图4所示,开路电压为0.135V、短路电流为1620nA、填充因子为24.23%。
本实施例自驱动近红外光电探测器在零偏压下的时间响应图谱如图5所示,可以看出器件开关比约8000,具有良好的可重复性和稳定性。
本实施例自驱动近红外光电探测器在频率为50kHz的入射光下的时间响应图谱如图6所示,可以看出器件上升时间和下降时间分别为7.4μs和8.6μs。
本实施例自驱动近红外光电探测器的光电流-光强拟合曲线如图7所示。
本实施例自驱动近红外光电探测器的光电流分布图如图8所示,可以看出器件具有较好的均匀性。
实施例2
本实施例的自驱动近红外光电探测器及其制备方法与实施例1相同,区别仅在于步骤D中表面压力为5mN/m。
本实施例所制备的自驱动近红外光电探测器在光强为300μW cm-2、波长980nm单色光照射下,呈现显著的光伏特性,如图9所示,开路电压为0.117V、短路电流为3.27nA、填充因子为16.91%。
实施例3
本实施例的自驱动近红外光电探测器及其制备方法与实施例1相同,区别仅在于步骤D中表面压力为15mN/m。
本实施例所制备的自驱动近红外光电探测器在光强为300μW cm-2、波长980nm单色光照射下,呈现显著的光伏特性,如图10所示,开路电压为0.064V、短路电流为299nA、填充因子为23.52%。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种基于铜硫酸钾准一维纳米结构的自驱动近红外光电探测器,其特征在于:是以平面硅(1)为基底,在所述平面硅(1)上表面的局部位置构建有绝缘区域(2);在所述平面硅(1)上表面转移有由KCu7S4准一维纳米结构通过LB技术组装而成的KCu7S4单层膜(3);所述KCu7S4单层膜(3)部分位于所述绝缘区域(2)上,剩余部分直接与平面硅上表面接触,形成Si/KCu7S4异质结;在所述KCu7S4单层膜(3)上方沉积有第一金属薄膜电极(4),与所述KCu7S4单层膜(3)形成欧姆接触;所述第一金属薄膜电极(4)位于所述绝缘区域(2)的上方,且不超出所述绝缘区域(2)所在的区域;在所述平面硅(1)的背面刷涂有第二金属薄膜电极(5),与硅形成欧姆接触。
2.根据权利要求1所述的自驱动近红外光电探测器,其特征在于:所述平面硅(1)的导电类型为n型,电阻率为1-10Ω·㎝。
3.根据权利要求1所述的自驱动近红外光电探测器,其特征在于:所述绝缘区域(2)为绝缘胶带、SiO2绝缘层、Si3N4绝缘层、HfO2绝缘层或Al2O3绝缘层,其中绝缘层的电阻率不小于1×103Ω·cm、厚度为100-500nm。
4.根据权利要求1所述的自驱动近红外光电探测器,其特征在于:所述KCu7S4准一维纳米结构的轴向长度不小于10μm、径向长度为100-1000nm。
5.根据权利要求1所述的自驱动近红外光电探测器,其特征在于:所述第一金属薄膜电极(4)为Au电极、Ti/Au复合电极、Cr/Au复合电极、Ni/Au复合电极或Pt电极;
所述Au电极、Pt电极的厚度为30-100nm;
所述Ti/Au复合电极、Cr/Au复合电极、Ni/Au复合电极分别是在厚度3-10nm的Ti、Cr、Ni上沉积有30-100nm厚的Au。
6.根据权利要求1所述的自驱动近红外光电探测器,其特征在于:所述第二金属薄膜电极(5)为In/Ga电极或Ag电极,通过刷涂相应导电胶的方式形成。
7.一种权利要求1~6中任意一项所述自驱动近红外光电探测器的制备方法,其特征在于包括如下步骤:
A、将平面硅依次用丙酮、酒精、去离子水超声清洗后,吹干,作为基底备用;
B、在平面硅上表面的局部位置构建绝缘区域;
C、将KCu7S4准一维纳米结构的粉末加入质量浓度为3~5%的PVP水溶液中,搅拌6h,从而在KCu7S4准一维纳米结构表面包覆一层PVP,然后离心、取出沉淀物并烘干备用;
D、将2mg包覆了PVP的KCu7S4准一维纳米结构粉末分散于0.5mL N,N-二甲基甲酰胺和0.5mL三氯甲烷的混合液中,获得含有KCu7S4的溶液;然后用5mL的注射器将含有KCu7S4的溶液逐滴加入到装有去离子水的LB水槽中;将构建有绝缘区域的平面硅放置于LB水槽底部,30分钟后开始挤压液面,速度为20cm2min-1;当液面的表面压力达到5~25mN/m的时候,缓慢的将平面硅提上来,从而在平面硅上形成KCu7S4单层膜;
E、使用电子束蒸发镀膜的方式,在KCu7S4单层膜上沉积第一金属薄膜电极,为避免第一金属薄膜电极与平面硅的接触,使第一金属薄膜电极位于所述绝缘区域的上方,且不超出所述绝缘区域所在的区域;第一金属薄膜电极沉积时真空室气压不高于6×10-3Pa、蒸发速率为0.01-0.05nm/s;
F、将平面硅的背面打磨、刷涂一层导电胶,形成第二金属薄膜电极,即获得基于KCu7S4准一维纳米结构的自驱动近红外光电探测器。
CN201710427948.9A 2017-06-08 2017-06-08 一种基于铜硫酸钾准一维纳米结构的自驱动近红外光电探测器及其制备方法 Active CN107123699B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710427948.9A CN107123699B (zh) 2017-06-08 2017-06-08 一种基于铜硫酸钾准一维纳米结构的自驱动近红外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710427948.9A CN107123699B (zh) 2017-06-08 2017-06-08 一种基于铜硫酸钾准一维纳米结构的自驱动近红外光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN107123699A true CN107123699A (zh) 2017-09-01
CN107123699B CN107123699B (zh) 2018-12-11

Family

ID=59729230

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710427948.9A Active CN107123699B (zh) 2017-06-08 2017-06-08 一种基于铜硫酸钾准一维纳米结构的自驱动近红外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN107123699B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321294A (zh) * 2018-02-05 2018-07-24 合肥工业大学 一种存储机制可调的薄膜阻变存储器及其制备方法
CN111354804A (zh) * 2020-03-09 2020-06-30 合肥工业大学 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法
WO2022088204A1 (zh) * 2020-10-30 2022-05-05 苏州大学 一种紫外-可见-近红外硅基光电探测器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102086025A (zh) * 2011-01-07 2011-06-08 中国科学技术大学 一维柔性纳米材料组装体的制备方法
CN103280484A (zh) * 2013-05-28 2013-09-04 合肥工业大学 p-型石墨烯薄膜/n-型Ge肖特基结近红外光电探测器及其制备方法
US9090468B2 (en) * 2007-11-21 2015-07-28 Nanomaterials Technology Pte Ltd Process of making metal chalcogenide particles
CN104876179A (zh) * 2015-04-16 2015-09-02 华中科技大学 一种非接触式一维纳米材料阵列的大面积组装方法
EP3042981A1 (en) * 2015-01-09 2016-07-13 Vito NV An electrochemical process for preparing a compound comprising a metal or metalloid and a peroxide, ionic or radical species
CN105932091A (zh) * 2016-07-13 2016-09-07 合肥工业大学 一种自驱动二维碲化钼同型异质结近红外光电探测器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9090468B2 (en) * 2007-11-21 2015-07-28 Nanomaterials Technology Pte Ltd Process of making metal chalcogenide particles
CN102086025A (zh) * 2011-01-07 2011-06-08 中国科学技术大学 一维柔性纳米材料组装体的制备方法
CN103280484A (zh) * 2013-05-28 2013-09-04 合肥工业大学 p-型石墨烯薄膜/n-型Ge肖特基结近红外光电探测器及其制备方法
EP3042981A1 (en) * 2015-01-09 2016-07-13 Vito NV An electrochemical process for preparing a compound comprising a metal or metalloid and a peroxide, ionic or radical species
CN104876179A (zh) * 2015-04-16 2015-09-02 华中科技大学 一种非接触式一维纳米材料阵列的大面积组装方法
CN105932091A (zh) * 2016-07-13 2016-09-07 合肥工业大学 一种自驱动二维碲化钼同型异质结近红外光电探测器及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321294A (zh) * 2018-02-05 2018-07-24 合肥工业大学 一种存储机制可调的薄膜阻变存储器及其制备方法
CN108321294B (zh) * 2018-02-05 2021-08-17 合肥工业大学 一种存储机制可调的薄膜阻变存储器及其制备方法
CN111354804A (zh) * 2020-03-09 2020-06-30 合肥工业大学 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法
CN111354804B (zh) * 2020-03-09 2023-02-28 合肥工业大学 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法
WO2022088204A1 (zh) * 2020-10-30 2022-05-05 苏州大学 一种紫外-可见-近红外硅基光电探测器及其制备方法

Also Published As

Publication number Publication date
CN107123699B (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
Liu et al. Silicon/perovskite core–shell heterojunctions with light-trapping effect for sensitive self-driven near-infrared photodetectors
Xie et al. Core–shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors
Fan et al. Challenges and prospects of nanopillar-based solar cells
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
Liang et al. Interface engineering to boost photoresponse performance of self-powered, broad-bandwidth PEDOT: PSS/Si heterojunction photodetector
Peng et al. Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion
Yuhas et al. Nanowire-based all-oxide solar cells
Eze et al. Enhanced inorganic CsPbIBr2 perovskite film for a sensitive and rapid response self-powered photodetector
CN105720197B (zh) 一种自驱动宽光谱响应硅基杂化异质结光电传感器及其制备方法
TW201201393A (en) Solar cell and method for fabricating the heterojunction thereof
CN107123699B (zh) 一种基于铜硫酸钾准一维纳米结构的自驱动近红外光电探测器及其制备方法
Yang et al. A self-powered, visible-blind ultraviolet photodetector based on n-Ga: ZnO nanorods/p-GaN heterojunction
CN109698278A (zh) 一种有机无机复合结构自驱动日盲紫外探测器及制备方法
CN109216483A (zh) 单层MoS2同质结、光探测器及其制备方法、电子元件
CN101853894A (zh) 一种纳米线异质结阵列基紫外光探测器及其制备方法
CN105702774B (zh) 一种基于硅纳米线阵列的自驱动肖特基结近红外光电探测器及其制备方法
Popoola et al. Fabrication of bifacial sandwiched heterojunction photoconductor–type and MAI passivated photodiode–type perovskite photodetectors
Abdul-Hameed et al. Fabrication of a high sensitivity and fast response self-powered photosensor based on a core-shell silicon nanowire homojunction
KR20140026415A (ko) 나노/마이크로 와이어들에 기반하고 개선된 광학 특성을 갖는 기계적으로 안정한 디바이스 및 이의 제조 방법
Mondal et al. Silicon nanowire arrays with nitrogen-doped graphene quantum dots for photodetectors
Veerbeek et al. Molecular monolayers for electrical passivation and functionalization of silicon-based solar energy devices
CN109449243A (zh) 基于二维二硫化钼纳米薄膜与碲化镉晶体的ii型异质结近红外光电探测器及其制备方法
CN109216484A (zh) 一种石墨烯/AlGaAs多结异质太阳能电池及其制备方法
CN108493327A (zh) Spiro-MeOTAD/ZnO压电式纳米发电机及其制备方法
CN108878575A (zh) 一种基于硅/氟化石墨烯的双工作模式宽波段光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220120

Address after: 230001 floor 6, block B, blue diamond Shangjie, No. 335, Suixi Road, Bozhou road street, Luyang District, Hefei City, Anhui Province

Patentee after: Hefei Luyang Technology Innovation Group Co.,Ltd.

Address before: Tunxi road in Baohe District of Hefei city of Anhui Province, No. 193 230009

Patentee before: Hefei University of Technology

TR01 Transfer of patent right