CN109449243A - 基于二维二硫化钼纳米薄膜与碲化镉晶体的ii型异质结近红外光电探测器及其制备方法 - Google Patents

基于二维二硫化钼纳米薄膜与碲化镉晶体的ii型异质结近红外光电探测器及其制备方法 Download PDF

Info

Publication number
CN109449243A
CN109449243A CN201811336892.7A CN201811336892A CN109449243A CN 109449243 A CN109449243 A CN 109449243A CN 201811336892 A CN201811336892 A CN 201811336892A CN 109449243 A CN109449243 A CN 109449243A
Authority
CN
China
Prior art keywords
molybdenum disulfide
cadmium
film
disulfide nano
telluride crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811336892.7A
Other languages
English (en)
Inventor
吴翟
赵智慧
王媛鸽
贾诚
吴恩平
史志锋
李新建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN201811336892.7A priority Critical patent/CN109449243A/zh
Publication of CN109449243A publication Critical patent/CN109449243A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了基于二维二硫化钼纳米薄膜与碲化镉晶体的II型异质结近红外光电探测器及其制备方法,是在碲化镉晶体表面平铺有二维二硫化钼纳米薄膜,在二维二硫化钼纳米薄膜和碲化镉晶体上分别设置有与其呈欧姆接触的金属电极,碲化镉与二硫化钼形成II型异质结、两金属电极作为两输出级,即构筑成为异质结型近红外光电探测器。本发明的近红外光电探测器,制备工艺简单,在室温下实现了高响应度、高探测率和快响应速度,并为高性能宽波段的红外探测器的设计提供了一种途径。

Description

基于二维二硫化钼纳米薄膜与碲化镉晶体的II型异质结近红 外光电探测器及其制备方法
技术领域
本发明涉及一种由二维二硫化钼纳米薄膜与碲化镉晶体构筑的II型异质结近红外光电探测器及其制备方法,属于光电探测技术领域。
背景技术
近年来,由于其在国防和军事应用、工业自动化、环境监测和生物医学等方面的重要价值,许多研究人员致力于开发新型高性能红外光电探测器。目前,大多数商业红外光电探测器一般由某些窄带隙半导体如铟镓砷、碲镉汞等制成。但是,这些红外光电探测器的应用受到其复杂的制备工艺、高成本和低温操作条件的限制。自从发现石墨烯独特的光电特性,二维层状材料引起了人们的极大关注。与传统的块状半导体材料相比,二维材料更适合于光电探测器的制备:首先,二维材料的宽光谱响应可以为设计在不同波长下工作的光电探测器提供更大的灵活性;其次,二维材料表面上的自由悬键使得它们可以与其他半导体结合,克服晶格的限制;第三,二维材料的强光物质相互作用提供了设计小型化红外光电探测器的可能,这在传统的基于块状半导体的红外光电探测器中很难实现。鉴于上述优点,二维材料为高性能红外光电探测器的制备提供了理想的设计平台。
作为研究最多的二维材料之一,二硫化钼(MoS2)对于不同的层数具有从1.2eV到1.9eV的带隙,对应于从可见光到近红外的波长。由于这种独特性质,二硫化钼已成为开发各种电子和光电子器件的优秀候选者。然而,二维层状材料通常具有对入射光的吸收率低的缺点,这将导致较小的电流开/关比和低比探测率。为了克服二维材料的这些缺点,研究人员们已经做了很多研究,最有效的解决方案之一是与其他半导体构建异质结构,这可以增强光激发电子空穴对的生成和分离。此外,II型异质结带对准的设计可以扩展光谱响应的范围,超出半导体带隙的限制范围。因此,预计通过构建二硫化钼异质结器件可以实现高性能红外光电探测器。
发明内容
本发明是为了避免上述现有技术所存在的不足之处,提供一种工艺简单、适合大规模生产、稳定可靠、探测响应速度较快的异质结型近红外光电探测器及其制备方法,以促进二维材料在高性能红外光电探测器中的应用。
本发明为实现发明目的,采用如下技术方案:
本发明首先公开了基于二维二硫化钼纳米薄膜与碲化镉晶体的II型异质结型近红外光电探测器,其特点在于:
所述的II型异质结近红外光电探测器是在碲化镉晶体表面的部分区域平铺有二维二硫化钼纳米薄膜;在所述二维二硫化钼纳米薄膜上设置有与所述二维二硫化钼纳米薄膜呈欧姆接触的第一金属电极,在所述碲化镉晶体上设置有与所述碲化镉晶体呈欧姆接触的第二金属电极,所述第二金属电极与所述二维二硫化钼纳米薄膜间隔设置;
所述碲化镉晶体与二维二硫化钼纳米薄膜之间形成II型异质结,并以所述第一金属电极和所述第二金属电极作为两输出级,构筑成为II型异质结近红外光电探测器。
进一步地,所述碲化镉晶体的导电类型为p型、电阻率为1×103-1×107Ω·cm-1Ω·cm-1
进一步地,所述二维二硫化钼纳米薄膜的厚度在0.65~100纳米范围内。
进一步地,所述第一金属电极与所述第二金属电极各自独立的选自是金、银、铂、铝、铜或钛。
本发明还公开了上述II型异质结近红外光电探测器的制备方法,其特点在于:首先,通过两步热分解方法制备二维二硫化钼纳米薄膜;然后将所得二维二硫化钼纳米薄膜转移到碲化镉晶体表面;最后再通过热蒸发或电子束镀膜方法在二维二硫化钼纳米薄膜上制备第一金属电极、在碲化镉晶体上制备第二金属电极,即完成II型异质结近红外光电探测器的制备。
进一步地,通过两步热分解方法制备二维二硫化钼纳米薄膜的步骤如下:
(1)依次用丙酮、乙醇和去离子水对二氧化硅衬底进行超声清洗,然后烘干;再用氩等离子体处理二氧化硅衬底5-30分钟;
(2)将0.25g的(NH4)2MoS4加入20mL二甲基甲酰胺中,并磁力搅拌1-2小时,获得前驱体溶液;
(3)通过旋涂法将前驱体溶液旋涂在衬底上,先以500转/分钟的旋涂速度旋涂10秒,再以5000转/分钟的旋涂速度旋涂30秒,然后烘干,形成(NH4)2MoS4薄膜;
(4)将(NH4)2MoS4薄膜在通入氩氢混合气体(氩氢体积比为9:1)的气氛下,以500℃的温度、1.1torr的压力,退火60分钟;然后再将(NH4)2MoS4薄膜在通入氩气和硫蒸汽混合气体的气氛下,以800℃的温度、525torr的压力,退火40分钟,即形成MoS2纳米薄膜。
进一步地,将二维二硫化钼纳米薄膜转移到碲化镉晶体上的方法为:
(1)将聚甲基丙烯酸甲酯溶在苯甲醚中,配成50mg/mL的溶液,然后在50~60℃加热,使聚甲基丙烯酸甲酯完全溶解;
(2)在生长有二维二硫化钼纳米薄膜的氧化硅片上旋涂一层聚甲基丙烯酸甲酯溶液;
(3)将涂有聚甲基丙烯酸甲酯溶液的样品放入1mol/L的KOH溶液中,1-24小时后,把剥离下来的薄膜转移至去离子水中清洗,然后再转移至碲化镉晶体上,烘干,再用丙酮、去离子水冲洗,最后晾干即可。
与已有技术相比,本发明有益效果体现在:
本发明通过一种工艺简单、成本低廉的方法制备了具有II型异质结能带排列的MoS2/CdTe异质结器件,该探测器在200-1700纳米的波长范围内都有明显的光响应,且在室温下具备了较高的比探测率、较高的响应度以及较快的探测速度。本发明这种将二维材料与传统半导体材料相结合的通用策略将促进二维材料在光电子领域的应用。
附图说明
图1为本发明基于二维二硫化钼纳米薄膜与碲化镉晶体的II型异质结近红外光电探测器的结构示意图,图中标号:1为碲化镉晶体,2为二维二硫化钼纳米薄膜,3为第一金属电极,4为第二金属电极。
图2为二硫化钼纳米薄膜的原子力显微镜图,所测得薄膜厚度为3.04纳米。
图3为基于实施例1中所制备的光电探测器在黑暗下和在不同波长光照下的电流-电压曲线。
图4为基于实施例1中所制备的光电探测器在780纳米波长,0V、-5V、-10V、-15V、-20V电压下的光响应-时间曲线。
图5为基于实施例1中所制备的光电探测器在200纳米波长下的光响应曲线。
图6为基于实施例1中所制备的光电探测器在1700纳米波长下的光响应曲线。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合实施例对本发明的具体实施方式做详细的说明。以下内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。
实施例1
参见图1,本实施例基于二维二硫化钼纳米薄膜与碲化镉晶体的II型异质结近红外光电探测器,具有如下结构:在碲化镉晶体1表面的部分区域平铺有二维二硫化钼纳米薄膜2;在二维二硫化钼纳米薄膜2上设置有与二维二硫化钼纳米薄膜2呈欧姆接触的第一金属电极3,在碲化镉晶体1上设置有与碲化镉晶体1呈欧姆接触的第二金属电极4,第二金属电极4与二维二硫化钼纳米薄膜2间隔设置(二者不接触);
碲化镉晶体1与二维二硫化钼纳米薄膜2之间形成异质结,并以第一金属电极3和第二金属电极4作为两输出级,构筑成为异质结型近红外光电探测器。
本实施例异质结型近红外光电探测器的制备方法,包括如下步骤:
1、通过两步热分解方法制备二维二硫化钼纳米薄膜:
(1)依次用丙酮、乙醇和去离子水对二氧化硅衬底进行超声清洗,然后烘干;再用氩等离子体处理二氧化硅衬底10分钟;
(2)将0.25g的(NH4)2MoS4加入20mL二甲基甲酰胺中,并磁力搅拌2小时,获得前驱体溶液;
(3)通过旋涂法将前驱体溶液旋涂在衬底上,先以500转/分钟的旋涂速度旋涂10秒,再以5000转/分钟的旋涂速度旋涂30秒,然后烘干,形成(NH4)2MoS4薄膜;
(4)将(NH4)2MoS4薄膜在通入氩氢混合气体(氩氢体积比为9:1)的气氛下,以500℃的温度、1.1torr的压力,退火60分钟;然后再将(NH4)2MoS4薄膜在通入氩气和硫蒸汽混合气体的气氛下,以800℃的温度、525torr的压力,退火40分钟,即形成二硫化钼纳米薄膜。图2为二硫化钼纳米薄膜的原子力显微镜图,所测得薄膜厚度为3.04纳米。
2、将二维二硫化钼纳米薄膜转移到碲化镉晶体上:
(1)将聚甲基丙烯酸甲酯溶在苯甲醚中,配成50mg/mL的溶液,然后在55℃加热,使聚甲基丙烯酸甲酯完全溶解;
(2)在生长有二维二硫化钼纳米薄膜的氧化硅片上旋涂一层聚甲基丙烯酸甲酯溶液;
(3)将涂有聚甲基丙烯酸甲酯溶液的样品放入1mol/L的KOH溶液中,10小时后,把剥离下来的薄膜转移至去离子水中清洗,然后再转移至碲化镉晶体上,烘干,再用丙酮、去离子水冲洗,最后晾干即可。
3、通过热蒸发在二维二硫化钼薄膜表面和碲化镉晶体表面制备50纳米厚的金电极作为第一金属电极和第二金属电极,即完成II型异质结近红外光电探测器的制备。
基于本实施例制备的II型异质结近红外光电探测器在黑暗中和不同波长光照下测得的电流与电压关系曲线如图3所示,从图中看出探测器对光有明显的响应。
基于本实施例制备II型异质结近红外光电探测器在780nm波长0V、-5V、-10V、-15V、-20V电压下对光开关转换随时间关系曲线如图4所示,从图中可以看出探测器具有很快的响应速度和稳定性。
基于本实施例制备的II型异质结近红外光电探测器在200纳米波长和1700纳米波长下的光响应-时间曲线如图5和图6所示,从图中可以看出探测器具有宽的光谱响应范围。

Claims (5)

1.基于二维二硫化钼纳米薄膜与碲化镉晶体的II型异质结近红外光电探测器,其特征在于:
所述的II型异质结近红外光电探测器是在碲化镉晶体(1)表面的部分区域平铺有二维二硫化钼纳米薄膜(2);在所述二维二硫化钼纳米薄膜(2)上设置有与所述二维二硫化钼纳米薄膜(2)呈欧姆接触的第一金属电极(3),在所述碲化镉晶体(1)上设置有与所述碲化镉晶体(1)呈欧姆接触的第二金属电极(4),所述第二金属电极(4)与所述二维二硫化钼纳米薄膜(2)间隔设置;
所述碲化镉晶体(1)与二维二硫化钼纳米薄膜(2)之间形成II型异质结,并以所述第一金属电极(3)和所述第二金属电极(4)作为两输出级,构筑成为II型异质结近红外光电探测器。
2.根据权利要求1所述的II型异质结近红外光电探测器,其特征在于:所述碲化镉晶体(1)的导电类型为p型、电阻率为1×103-1×107Ω·cm-1
3.根据权利要求1所述的II型异质结近红外光电探测器,其特征在于:所述二维二硫化钼纳米薄膜(2)的厚度在0.65~100纳米范围内。
4.根据权利要求1所述的II型异质结近红外光电探测器,其特征在于:所述第一金属电极(3)与所述第二金属电极(4)各自独立的选自是金、银、铂、铝、铜或钛。
5.一种权利要求1~4中任意一项所述的II型异质结近红外光电探测器的制备方法,其特征在于:
首先,通过两步热分解方法制备二维二硫化钼纳米薄膜;然后将所得二维二硫化钼纳米薄膜转移到碲化镉晶体表面;最后再通过热蒸发或电子束镀膜方法在二维二硫化钼纳米薄膜上制备第一金属电极、在碲化镉晶体上制备第二金属电极,即完成II型异质结近红外光电探测器的制备。
CN201811336892.7A 2018-11-12 2018-11-12 基于二维二硫化钼纳米薄膜与碲化镉晶体的ii型异质结近红外光电探测器及其制备方法 Pending CN109449243A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811336892.7A CN109449243A (zh) 2018-11-12 2018-11-12 基于二维二硫化钼纳米薄膜与碲化镉晶体的ii型异质结近红外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811336892.7A CN109449243A (zh) 2018-11-12 2018-11-12 基于二维二硫化钼纳米薄膜与碲化镉晶体的ii型异质结近红外光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN109449243A true CN109449243A (zh) 2019-03-08

Family

ID=65551140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811336892.7A Pending CN109449243A (zh) 2018-11-12 2018-11-12 基于二维二硫化钼纳米薄膜与碲化镉晶体的ii型异质结近红外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN109449243A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081808A (zh) * 2019-11-26 2020-04-28 西安电子科技大学 基于MoS2/Ga2O3异质结的光电探测器、制备方法及应用
CN113410317A (zh) * 2021-06-22 2021-09-17 电子科技大学 一种具有表面等离激元的二维材料异质结光电探测器及其制备方法
CN113871508A (zh) * 2021-08-19 2021-12-31 华中科技大学 一种碲半导体薄膜红外探测器件

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470320A (zh) * 2015-12-07 2016-04-06 浙江大学 一种二硫化钼/半导体异质结光电探测器及其制造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470320A (zh) * 2015-12-07 2016-04-06 浙江大学 一种二硫化钼/半导体异质结光电探测器及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU DI等: "Design of 2D Layered PtSe2 Heterojunction for the High-Performance, Room-Temperature, Broadband, Infrared Photodetector", 《ACS PHOTONICS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081808A (zh) * 2019-11-26 2020-04-28 西安电子科技大学 基于MoS2/Ga2O3异质结的光电探测器、制备方法及应用
CN111081808B (zh) * 2019-11-26 2021-07-27 西安电子科技大学 基于MoS2/Ga2O3异质结的光电探测器、制备方法及应用
CN113410317A (zh) * 2021-06-22 2021-09-17 电子科技大学 一种具有表面等离激元的二维材料异质结光电探测器及其制备方法
CN113410317B (zh) * 2021-06-22 2023-02-07 电子科技大学 一种具有表面等离激元的二维材料异质结光电探测器及其制备方法
CN113871508A (zh) * 2021-08-19 2021-12-31 华中科技大学 一种碲半导体薄膜红外探测器件

Similar Documents

Publication Publication Date Title
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
Li et al. Self-powered perovskite/CdS heterostructure photodetectors
Wang et al. A high-performance near-infrared light photovoltaic detector based on a multilayered PtSe 2/Ge heterojunction
CN107591484B (zh) 一种兼具窄带及宽带光探测能力的倍增型有机光电探测器
Xie et al. High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays
CN107195787B (zh) 基于石墨烯电极和钙钛矿吸光层的自驱动光电探测器及其制备方法
CN109461789A (zh) 基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器及其制备方法
CN105470320A (zh) 一种二硫化钼/半导体异质结光电探测器及其制造方法
CN109449242A (zh) 基于二维二硒化铂纳米薄膜与碲化镉晶体的异质结型近红外光电探测器及其制备方法
Ma et al. High-performance self-powered perovskite photodetector for visible light communication
Liu et al. Polycrystalline perovskite CH3NH3PbCl3/amorphous Ga2O3 hybrid structure for high-speed, low-dark current and self-powered UVA photodetector
CN109449243A (zh) 基于二维二硫化钼纳米薄膜与碲化镉晶体的ii型异质结近红外光电探测器及其制备方法
Lu et al. Construction of PtSe 2/Ge heterostructure-based short-wavelength infrared photodetector array for image sensing and optical communication applications
CN109698278A (zh) 一种有机无机复合结构自驱动日盲紫外探测器及制备方法
CN105720197A (zh) 一种自驱动宽光谱响应硅基杂化异质结光电传感器及其制备方法
İkram et al. The comparison of electrical characterizations and photovoltaic performance of Al/p-Si and Al/Azure C/p-Si junctions devices
Makhlouf et al. Effect of annealing temperature and X-ray irradiation on the performance of tetraphenylporphyrin/p-type silicon hybrid solar cell
Liang et al. A comprehensive investigation of organic active layer structures toward high performance near-infrared phototransistors
CN108630782B (zh) 一种宽探测波段双重等离子工作光电探测器的制备方法
Noroozi et al. High-sensitivity and broadband PEDOT: PSS–silicon heterojunction photodetector
CN109256471A (zh) 一种无铅全无机钙钛矿铯铋碘薄膜/n-型硅异质结光电探测器及其制备方法
Popoola et al. Fabrication of bifacial sandwiched heterojunction photoconductor–type and MAI passivated photodiode–type perovskite photodetectors
Saleem et al. Self-powered, all-solution processed, trilayer heterojunction perovskite-based photodetectors
Huang et al. Dual functional modes for nanostructured p-Cu2O/n-Si heterojunction photodiodes
Wang et al. High-sensitivity silicon: PbS quantum dot heterojunction near-infrared photodetector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190308

WD01 Invention patent application deemed withdrawn after publication