CN109461789A - 基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器及其制备方法 - Google Patents

基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器及其制备方法 Download PDF

Info

Publication number
CN109461789A
CN109461789A CN201811336879.1A CN201811336879A CN109461789A CN 109461789 A CN109461789 A CN 109461789A CN 201811336879 A CN201811336879 A CN 201811336879A CN 109461789 A CN109461789 A CN 109461789A
Authority
CN
China
Prior art keywords
dimentional
nano thin
selenizing
photoelectric detector
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811336879.1A
Other languages
English (en)
Other versions
CN109461789B (zh
Inventor
吴翟
王媛鸽
吴恩平
贾诚
史志锋
李新建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanwei Electronics Group Corp
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN201811336879.1A priority Critical patent/CN109461789B/zh
Publication of CN109461789A publication Critical patent/CN109461789A/zh
Application granted granted Critical
Publication of CN109461789B publication Critical patent/CN109461789B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器及其制备方法,是在锗基底表面平铺有二维二硒化钯纳米薄膜,在二维二硒化钯纳米薄膜和锗基底上分别设置有与其呈欧姆接触的金属电极,二硒化钯与锗形成异质结、两金属电极作为两输出级,即构筑成为自驱动异质结型红外光电探测器。本发明的自驱动异质结型红外光电探测器,制备工艺简单,在室温下实现了宽响应波段、高响应度、高探测率和快响应速度,为高性能宽波段红外探测器设计提供了一种途径。

Description

基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电 探测器及其制备方法
技术领域
本发明涉及一种由二维二硒化钯纳米薄膜与锗构筑的自驱动异质结型红外光电探测器及其制备方法,属于光电探测技术领域。
背景技术
光电探测器是将接收到的光信号转化为电信号的器件。光电探测器在军事和国民经济的各个领域有广泛用途,其在红外波段主要用于工业自动控制、导弹制导、红外热成像、红外遥感等方面。
红外光电探测器根据不同的分类标准可以分为很多类型,常见的分类有:(1)按照探测的物理机制不同可以分为两大类:基于各种光电效应的光子探测器和利用温度变化实现探测的热探测器;(2)按照探测器的空间分辨率不同,分为非成像型光电探测器和成像型光电探测器;(3)按照探测材料尺寸的不同,分为体材料探测器、薄膜探测器和纳米材料探测器;(4)按照器件结构的不同,分为真空光电器件、光电导探测器、PN结探测器、PIN结光电探测器、雪崩二极管探测器、肖特基结探测器以及金属-半导体-金属结构探测器等。
目前商业化的红外光电探测器主要以硅基、铟镓砷基以及碲镉汞基产品为主。但是这些光电探测器的应用受到其复杂的制备工艺、高成本和低温操作条件的限制。与传统的块状半导体材料相比,二维材料更适合于光电探测器的制备:首先,二维材料的宽光谱响应可以为设计在不同波长下工作的光电探测器提供更大的灵活性。其次,二维材料表面上的自由悬键使得它们可以与其他半导体结合,克服晶格的限制。第三,二维材料的强光物质相互作用提供了设计小型化红外光电探测器的可能,这在传统的基于块状半导体的红外光电探测器中很难实现。鉴于上述优点,二维材料为高性能红外光电探测器的制备提供了理想的设计平台。因此,通过构建二维二硒化钯纳米薄膜与锗基底异质结器件可以实现高性能红外光电探测器。
发明内容
本发明是为了避免上述现有技术所存在的不足之处,提供一种工艺简单、适合大规模生产、稳定可靠、探测响应速度较快的自驱动异质结型红外光电探测器及其制备方法。
本发明为实现发明目的,采用如下技术方案:
本发明首先公开了基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器,其特点在于:
所述的自驱动异质结型红外光电探测器是在锗基底的上表面平铺有二维二硒化钯纳米薄膜;在所述二维二硒化钯纳米薄膜上设置有与所述二维二硒化钯纳米薄膜呈欧姆接触的第一金属电极,在所述锗基底的下表面设置有与所述锗基底呈欧姆接触的第二金属电极;
所述锗基底与二维二硒化钯纳米薄膜之间形成异质结,并以所述第一金属电极和所述第二金属电极作为两输出级,构筑成为自驱动异质结型红外光电探测器。
进一步地,所述锗基底的导电类型为p型或n型、电阻率在1×104~1×108Ω·cm-1
进一步地,所述二维二硒化钯纳米薄膜的厚度在0.4~100纳米范围内。
进一步地,所述第一金属电极与所述第二金属电极各自独立的选自是金、银、钯、铝、铜或钛。
本发明还公开了上述异质结型红外光电探测器的制备方法,其特点在于:首先,利用磁控溅射技术及化学气相沉积方法制备二维二硒化钯纳米薄膜;然后,将所得二维二硒化钯纳米薄膜转移到锗基底的上表面;最后,再通过、电子束镀膜或磁控溅射镀膜在二维二硒化钯纳米薄膜上制备第一金属电极、在锗基底的下表面制备第二金属电极,即完成自驱动异质结型红外光电探测器的制备。
进一步地,利用磁控溅射技术及化学气相沉积方法制备二维二硒化钯纳米薄膜的方法为:
(1)利用磁控溅射镀膜设备在清洗干净的硅或氧化硅衬底上制备一层金属钯薄膜,厚度为1-50纳米;
(2)将镀有钯薄膜的衬底放入管式炉中,同时放入硒粉,并将管内抽成真空状态;
(3)向管内通入氩气,然后加热升温至450-500℃,保温1-3小时,即获得二维二硒化钯纳米薄膜。
进一步地,将二维二硒化钯纳米薄膜转移到锗基底上的方法为:
(1)将聚甲基丙烯酸甲酯溶在苯甲醚中,配成50mg/mL的溶液,然后在50~60℃加热,使聚甲基丙烯酸甲酯完全溶解;
(2)在生长有二维硒化钯纳米薄膜的衬底上旋涂一层聚甲基丙烯酸甲酯溶液;
(3)将涂有聚甲基丙烯酸甲酯溶液的样品放入1mol/L的KOH溶液中,1-24小时后,把剥离下来的薄膜转移至去离子水中清洗,然后再转移至锗基底上,烘干,再用丙酮、去离子水冲洗,最后晾干即可。
与已有技术相比,本发明有益效果体现在:
本发明通过一种工艺简单、成本低廉的方法制备了基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器,该探测器在200-3043nm的波长范围内都有显著的光响应。由于结区内在电场的加速作用,异质结型光电探测器的探测速度明显优于光电导型探测器。此外,二维二硒化钯纳米薄膜具有柔性、室温探测能力以及强的光物质相互作用等特点,使探测器具备了较好的接收被探测光的能力,因此具备了较高的响应度。因此,利用二维二硒化钯纳米薄膜和锗构筑成异质结型光电探测器具备了宽响应波段、高比探测率、高响应度以及快探测速度,有利于光电探测器在快速光电集成电路中的应用。
附图说明
图1为本发明基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器的结构示意图,图中标号:1为锗基底,2为二维二硒化钯纳米薄膜,3为第一金属电极,4为第二金属电极。
图2为二硒化钯纳米薄膜的原子力显微镜图,所测得薄膜厚度为17.8纳米。
图3为基于实施例1中所制备的自驱动异质结型红外光电探测器在黑暗下和在不同波长光照下的电流-电压曲线。
图4为基于实施例1中所制备的自驱动异质结型红外光电探测器0伏电压下,对不同波长照射光的光响应-时间曲线。
图5为基于实施例1中所制备的自驱动异质结型红外光电探测器在3043纳米波长下的光响应-时间曲线。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合实施例对本发明的具体实施方式做详细的说明。以下内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。
实施例1
参见图1,本实施例基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器,具有如下结构:在锗基底1的上表面平铺有二维二硒化钯纳米薄膜2;在二维二硒化钯纳米薄膜2上设置有与二维二硒化钯纳米薄膜2呈欧姆接触的第一金属电极3,在锗基底1的下表面设置有与锗基底1呈欧姆接触的第二金属电极4;
锗基底1与二维二硒化钯纳米薄膜2之间形成异质结,并以第一金属电极3和第二金属电极4作为两输出级,构筑成为自驱动异质结型红外光电探测器
本实施例异质结型红外光电探测器的制备方法,包括如下步骤:
1、利用磁控溅射技术及化学气相沉积方法制备二维二硒化钯纳米薄膜:
(1)利用磁控溅射镀膜设备在清洗干净的氧化硅衬底上制备一层金属钯薄膜,厚度为10纳米;
(2)将镀有钯薄膜的衬底放入管式炉中,同时放入硒粉,并将管内抽成真空状态;
(3)向管内通入氩气,然后加热升温至480℃,保温1.5小时,即获得二维二硒化钯纳米薄膜。
图2为二硒化钯纳米薄膜的原子力显微镜图,所测得薄膜厚度为17.8纳米。
2、将二维硒化钯纳米薄膜转移到锗基底上:
(1)将聚甲基丙烯酸甲酯溶在苯甲醚中,配成50mg/mL的溶液,然后在55℃加热,使聚甲基丙烯酸甲酯完全溶解;
(2)在生长有二维二硒化钯纳米薄膜的氧化硅片上旋涂一层聚甲基丙烯酸甲酯溶液;
(3)将涂有聚甲基丙烯酸甲酯溶液的样品放入1mol/L的KOH溶液中,12小时后,把剥离下来的薄膜转移至去离子水中清洗,然后再转移至锗基底上,烘干,再用丙酮、去离子水冲洗,最后晾干即可。
3、通过热蒸发在二维二硒化钯薄膜表面和锗基底表面制备100纳米厚的金电极作为第一金属电极和第二金属电极,即完成自驱动异质结型红外光电探测器的制备。
基于本实施例制备的自驱动异质结型红外光电探测器在黑暗中和不同波长光照下测得的电流与电压关系曲线如图3所示,从图中看出探测器对光有明显的响应。
基于本实施例制备的自驱动异质结型红外光电探测器在零偏压下对不同波长照射光的光响应如图4所示,从图中可以看出探测器具有自驱动工作的特点,且具有很快的响应速度和良好稳定性。
基于本实施例制备的自驱动异质结型红外光电探测器在3043纳米波长下的光响应-时间曲线如图5所示,从图中可以看出探测器具有宽的光谱响应范围。

Claims (6)

1.基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器,其特征在于:
所述的自驱动异质结型红外光电探测器是在锗基底(1)的上表面平铺有二维二硒化钯纳米薄膜(2);在所述二维二硒化钯纳米薄膜(2)上设置有与所述二维二硒化钯纳米薄膜(2)呈欧姆接触的第一金属电极(3),在所述锗基底(1)的下表面设置有与所述锗基底(1)呈欧姆接触的第二金属电极(4);
所述锗基底(1)与二维二硒化钯纳米薄膜(2)之间形成异质结,并以所述第一金属电极(3)和所述第二金属电极(4)作为两输出级,构筑成为自驱动异质结型红外光电探测器。
2.根据权利要求1所述的自驱动异质结型红外光电探测器,其特征在于:所述锗基底(1)的导电类型为n型或p型、电阻率在1×104~1×108Ω·cm-1
3.根据权利要求1所述的自驱动异质结型红外光电探测器,其特征在于:所述二维二硒化钯纳米薄膜(2)的厚度在0.4~100纳米范围内。
4.根据权利要求1所述的自驱动异质结型红外光电探测器,其特征在于:所述第一金属电极(3)与所述第二金属电极(4)各自独立的选自是金、银、钯、铝、铜或钛。
5.一种权利要求1~4中任意一项所述的自驱动异质结型红外光电探测器的制备方法,其特征在于:
首先,利用磁控溅射技术及化学气相沉积方法制备二维二硒化钯纳米薄膜;然后,将所得二维二硒化钯纳米薄膜转移到锗基底的上表面;最后,再通过热蒸发、电子束镀膜或磁控溅射镀膜的方法在二维二硒化钯纳米薄膜上制备第一金属电极、在锗基底的下表面制备第二金属电极,即完成自驱动异质结型红外光电探测器的制备。
6.根据权利要求5所述的制备方法,其特征在于,利用磁控溅射技术及化学气相沉积方法制备二维二硒化钯纳米薄膜的方法为:
(1)利用磁控溅射镀膜设备在清洗干净的硅或氧化硅衬底上制备一层金属钯薄膜,厚度为1-50纳米;
(2)将镀有钯薄膜的衬底放入管式炉中,同时放入硒粉,并将管内抽成真空状态;
(3)向管内通入氩气,然后加热升温至450-500℃,保温1-3小时,即获得二维二硒化钯纳米薄膜。
CN201811336879.1A 2018-11-12 2018-11-12 基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器及其制备方法 Active CN109461789B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811336879.1A CN109461789B (zh) 2018-11-12 2018-11-12 基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811336879.1A CN109461789B (zh) 2018-11-12 2018-11-12 基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN109461789A true CN109461789A (zh) 2019-03-12
CN109461789B CN109461789B (zh) 2020-09-11

Family

ID=65610016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811336879.1A Active CN109461789B (zh) 2018-11-12 2018-11-12 基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN109461789B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916516A (zh) * 2019-03-29 2019-06-21 郑州大学 一种二维二硒化钯纳米薄膜在宽波段偏振光信号检测中的应用
CN110190150A (zh) * 2019-05-29 2019-08-30 合肥工业大学 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法
CN113193070A (zh) * 2021-04-30 2021-07-30 国网河南省电力公司电力科学研究院 一种二维二硒化钯柔性自驱动宽光谱光电传感器及其制备方法
CN113257945A (zh) * 2021-06-30 2021-08-13 安徽大学 电场调节的Ge基双异质结深紫外-近红外双波段光电探测器及其制备方法
CN113437106A (zh) * 2021-06-30 2021-09-24 合肥工业大学 一种基于二硒化钯/薄锗肖特基结的颜色探测系统及其制备方法
CN115000208A (zh) * 2022-04-26 2022-09-02 昆明物理研究所 碲化锡薄膜/锗异质结宽谱光电探测器及其制备方法
CN115347066A (zh) * 2022-06-27 2022-11-15 华南师范大学 一种基于TaIrTe4/Ge异质结的光电探测器及其制备方法
CN115650182A (zh) * 2022-10-28 2023-01-31 合肥工业大学 一种正交型/单斜型PdSe2同质结及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932091A (zh) * 2016-07-13 2016-09-07 合肥工业大学 一种自驱动二维碲化钼同型异质结近红外光电探测器及其制备方法
CN106058036A (zh) * 2016-06-08 2016-10-26 中国科学院上海微系统与信息技术研究所 一种量子干涉器件结构及其制备方法
WO2018044237A1 (en) * 2016-09-02 2018-03-08 Nanyang Technological University Chalcogenide film, device including, and method of forming the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058036A (zh) * 2016-06-08 2016-10-26 中国科学院上海微系统与信息技术研究所 一种量子干涉器件结构及其制备方法
CN105932091A (zh) * 2016-07-13 2016-09-07 合肥工业大学 一种自驱动二维碲化钼同型异质结近红外光电探测器及其制备方法
WO2018044237A1 (en) * 2016-09-02 2018-03-08 Nanyang Technological University Chalcogenide film, device including, and method of forming the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916516A (zh) * 2019-03-29 2019-06-21 郑州大学 一种二维二硒化钯纳米薄膜在宽波段偏振光信号检测中的应用
CN110190150A (zh) * 2019-05-29 2019-08-30 合肥工业大学 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法
CN113193070A (zh) * 2021-04-30 2021-07-30 国网河南省电力公司电力科学研究院 一种二维二硒化钯柔性自驱动宽光谱光电传感器及其制备方法
CN113193070B (zh) * 2021-04-30 2022-07-01 国网河南省电力公司电力科学研究院 一种二维二硒化钯柔性自驱动宽光谱光电传感器及其制备方法
CN113257945A (zh) * 2021-06-30 2021-08-13 安徽大学 电场调节的Ge基双异质结深紫外-近红外双波段光电探测器及其制备方法
CN113437106A (zh) * 2021-06-30 2021-09-24 合肥工业大学 一种基于二硒化钯/薄锗肖特基结的颜色探测系统及其制备方法
CN113257945B (zh) * 2021-06-30 2022-06-07 安徽大学 电场调节的Ge基双异质结深紫外-近红外双波段光电探测器及其制备方法
CN115000208A (zh) * 2022-04-26 2022-09-02 昆明物理研究所 碲化锡薄膜/锗异质结宽谱光电探测器及其制备方法
CN115000208B (zh) * 2022-04-26 2023-10-20 昆明物理研究所 碲化锡薄膜/锗异质结宽谱光电探测器及其制备方法
CN115347066A (zh) * 2022-06-27 2022-11-15 华南师范大学 一种基于TaIrTe4/Ge异质结的光电探测器及其制备方法
CN115650182A (zh) * 2022-10-28 2023-01-31 合肥工业大学 一种正交型/单斜型PdSe2同质结及其制备方法与应用
CN115650182B (zh) * 2022-10-28 2024-01-30 合肥工业大学 一种正交型/单斜型PdSe2同质结及其制备方法与应用

Also Published As

Publication number Publication date
CN109461789B (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
CN109461789A (zh) 基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器及其制备方法
Demirezen et al. Synthesis, electrical and photo-sensing characteristics of the Al/(PCBM/NiO: ZnO)/p-Si nanocomposite structures
CN107591484B (zh) 一种兼具窄带及宽带光探测能力的倍增型有机光电探测器
Deng et al. Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability
Peng et al. Temperature dependence of pyro-phototronic effect on self-powered ZnO/perovskite heterostructured photodetectors
Wang et al. A high-performance near-infrared light photovoltaic detector based on a multilayered PtSe 2/Ge heterojunction
Kung et al. 20 μs photocurrent response from lithographically patterned nanocrystalline cadmium selenide nanowires
CN107706265B (zh) 一种外尔半金属异质结红外探测器及其制备方法
Lu et al. Construction of PtSe 2/Ge heterostructure-based short-wavelength infrared photodetector array for image sensing and optical communication applications
CN107195787B (zh) 基于石墨烯电极和钙钛矿吸光层的自驱动光电探测器及其制备方法
Yadav et al. Sol-gel-based highly sensitive Pd/n-ZnO thin film/n-Si Schottky ultraviolet photodiodes
CN109449242A (zh) 基于二维二硒化铂纳米薄膜与碲化镉晶体的异质结型近红外光电探测器及其制备方法
Faraz et al. Electrical characterization of Si/ZnO nanorod PN heterojunction diode
CN110473928A (zh) 多通道全硅基红外光热电探测器及其制作方法
CN105720197A (zh) 一种自驱动宽光谱响应硅基杂化异质结光电传感器及其制备方法
Yin et al. Enhanced performance of UV photodetector based on ZnO nanorod arrays via TiO2 as electrons trap layer
CN109244246A (zh) 一种基于拓扑绝缘体硒化铋电极的钙钛矿薄膜的宽波段光电探测器及其制备方法
CN109449243A (zh) 基于二维二硫化钼纳米薄膜与碲化镉晶体的ii型异质结近红外光电探测器及其制备方法
Liang et al. A comprehensive investigation of organic active layer structures toward high performance near-infrared phototransistors
Popoola et al. Fabrication of bifacial sandwiched heterojunction photoconductor–type and MAI passivated photodiode–type perovskite photodetectors
Yang et al. Visible and infrared photodiode based on γ-InSe/Ge van der Waals heterojunction for polarized detection and imaging
Ganesh et al. 2D position-sensitive hybrid-perovskite detectors
Wu et al. Near-infrared polarization-sensitive photodetection via interfacial symmetry engineering of an Si/MAPbI 3 heterostructural single crystal
Hassan et al. Self-powered and temperature-tunable infrared-visible photodetector based on a VO2/Si heterojunction
Chakraborty et al. Effect of single walled carbon nanotubes on series resistance of Rose Bengal and Methyl Red dye-based organic photovoltaic device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221024

Address after: 169 Cedar Road No. 450001, Zhengzhou hi tech Development Zone, Henan, China

Patentee after: HANWEI ELECTRONICS Group Corp.

Address before: 450001 No. 100 science Avenue, hi tech Zone, Henan, Zhengzhou

Patentee before: Zhengzhou University