CN115000208B - 碲化锡薄膜/锗异质结宽谱光电探测器及其制备方法 - Google Patents

碲化锡薄膜/锗异质结宽谱光电探测器及其制备方法 Download PDF

Info

Publication number
CN115000208B
CN115000208B CN202210447367.2A CN202210447367A CN115000208B CN 115000208 B CN115000208 B CN 115000208B CN 202210447367 A CN202210447367 A CN 202210447367A CN 115000208 B CN115000208 B CN 115000208B
Authority
CN
China
Prior art keywords
tin telluride
germanium
electrode
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210447367.2A
Other languages
English (en)
Other versions
CN115000208A (zh
Inventor
唐利斌
宋立媛
郝群
周艳
王微
杨春丽
冯江敏
袁绶章
邓功荣
王善力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming Institute of Physics
Original Assignee
Kunming Institute of Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming Institute of Physics filed Critical Kunming Institute of Physics
Priority to CN202210447367.2A priority Critical patent/CN115000208B/zh
Publication of CN115000208A publication Critical patent/CN115000208A/zh
Application granted granted Critical
Publication of CN115000208B publication Critical patent/CN115000208B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

基于碲化锡薄膜/锗异质结宽谱光电探测器及其制备方法,涉及可见至近红外波段的宽光谱光电探测领域,尤其涉及一种基于新型二维半导体材料的高探测率、高响应率的光电探测器及其制备方法。本发明方法采用二维半导体材料碲化锡薄膜为构建异质结的p‑型材料,基底采用锗衬底。采用“一步式”直流溅射法在清洗、预掩膜后的锗基底上,直接溅射碲化锡薄膜以制备碲化锡薄膜/锗异质结。去除掩膜后,热蒸镀金属Al电极以制备光伏探测器原型器件。与现有制备技术相比,本发明制备方法简单高效、低成本,低功耗,实现了可见至近红外波段(400‑1050 nm)的室温工作的碲化锡薄膜/锗异质结宽谱光电探测器的制备。制备工艺高效、简单,室温下器件响应率、探测率高。

Description

碲化锡薄膜/锗异质结宽谱光电探测器及其制备方法
技术领域
本发明涉及光电探测技术领域,尤其涉及一种基于新型二维半导体材料碲化锡/锗异质结的可见光-近红外的宽谱光电探测器及其制备方法。
背景技术
基于异质结的光电探测器由于具有内建电场,使光生载流子的分离和传输效率提升,从而会使光电探测性能提升,因此在光电探测领域的研究中具有重要意义。新型二维材料凭借其各自的优点近年来开始在光电探测领域备受关注。碲化锡做为一种新型二维材料,也是第一个被理论预测并被实验验证的拓扑晶体绝缘体。由于其具有无带隙的拓扑表面态和窄带隙体态以及室温下高的迁移率等优异性能,从而使碲化锡在制备宽谱、高性能和低功耗的新型光电探测器有重要潜力。
然而,有关碲化锡(SnTe)材料的研究近些年主要集中在其热电性能和新颖的物理特性方面的研究上,而在光电探测领域方面的研究仍然很少。目前,已有少量SnTe基光导型探测器制备成功,证明了该材料在可见光到红外波段可以取得稳定的光电响应。但是,仍然存在一些问题,比如SnTe/Bi2Te3/SrTiO3光导型探测器采用分子束外延法(MBE)制备,其制备方法昂贵、复杂,对衬底要求高,需要制备Bi2Te3缓冲层以减少钛酸锶(SrTiO3)衬底与SnTe薄膜之间的晶格失配。SnTe纳米片/云母光导型探测器采用化学气相沉积法(CVD)制备,但制备得的SnTe纳米片面积小,不便于光电探测器的制备。SnTe量子点/Si光导型探测器采用旋涂法制备,其器件性能仍然有待提高。因此构造SnTe基光伏型器件结构,被认为是有效提高SnTe基器件的性能的一种途径。然而目前,只有硅和Bi2Se3被选择做为n型异质材料用于SnTe基光伏探测器的制备尝试。采用CVD方法制备的SnTe/Si异质结虽然对近红外光的强响应,在808nm(100mW/cm-2)激光光照下显示出很好的器件性能,其响应率(R)为128mA/W,探测率(D*)为8.4×1012cmHz1/2W-1;但并未给出更长波段(1064nm或1550nm)下的探测率和响应率数值。而采用PVD方法制备的SnTe/Bi2Se3异质结,其在1550nm光照下响应率为145.74mA/W,探测率为1.15×1010cmHz1/2W-1,其器件性能还有很大的上升空间。因此,迫切需要探索一种高效、低成本的异质结制备方法,并选择合适的替代性异质材料以提高SnTe基探测器性的性能。
发明内容
本发明的目的在于提供一种高效、低成本的室温工作的碲化锡薄膜/锗异质结宽谱光电探测器及其制备方法。通过采用“一步”磁控溅射方法制备碲化锡薄膜/锗垂直异质结,以期提高碲化锡基光电探测器的响应率和探测率等性能,并有效降低其制备成本、简化制备工艺。
碲化锡薄膜/锗异质结光电探测器,其特征在于所述探测器锗为衬底,功能层为碲化锡薄膜,以碲化锡为靶材,采用射频磁控溅射法溅射于衬底上。
碲化锡薄膜/锗异质结光电探测器,该探测器从下至上分别为锗衬底、碲化锡薄膜层和铝电极层;
所述碲化锡薄膜上采用“回”字型Al电极形状,“回”字型Al电极中心为入射光入射区域,区域面积小于等于4mm2,锗衬底上采用方形Al电极。
碲化锡薄膜/锗异质结光电探测器,制备步骤如下:
S1,锗衬底清洁;
S2,采用铝箔掩膜衬底四周;
S3,使用磁控溅射设备,采用射频模式,真空度≤8.5×10-5Pa,,Ar2流量保持在80sccm,碲化锡靶材溅射功率设置为40-80W,在已经预掩模过的锗衬底上溅射5-10s,得到碲化锡薄膜;
S4,金属Al电极的制备:制备好的碲化锡薄膜去除掩膜后,裁剪出“回”字型Al电极铝箔进行二次掩膜在碲化锡薄膜上,“回”字型Al电极中心暴露出来的区域作为有效光敏面暴露在Al电极上,在锗衬底上则采用方块形Al电极。
本发明的工艺经过制备工艺参数的不断优化,最终选取了适宜的靶材功率,从而在不加衬底温度、不退火的条件下即制备出已经晶化的原生片碲化锡薄膜。与现有制备技术相比,本发明制备方法高效、低成本,低功耗,实现了可见至近红外波段(400-1050nm)室温工作的碲化锡薄膜/锗异质结宽谱光电探测器的制备。制备工艺高效、简单,室温下器件响应率、探测率高。
本发明异质结构的制备为碲化锡基光伏探测器的可替代n型异质材料提供了另一种可能性,并且展现出其在宽谱、高性能和低功耗光电探测器方面的重要应用价值。
附图说明
图1为实施例1探测器结构示意图。
图2为实施例1探测器碲化锡薄膜高分辨率的透射电镜(HRTEM)图。
图3为实施例1探测器碲化锡薄膜面间距测量图。
图4为实施例1碲化锡薄膜/锗异质结光电探测器分别在无光照和波长为1050nm、850nm、660nm和400nm光照下的J-V特性曲线。
图5为实施例1碲化锡薄膜/锗异质结光电探测器在无光照和波长为850nm光照下的Log J-V特性曲线。
其中,1为锗基底,2为碲化锡薄膜,3为铝电极,4为入射光,5为金线。
具体实施方式
下面结合实施例对本发明作进一步说明。
实施例1:碲化锡薄膜/锗异质结光电探测器,该探测器从下至上分别为锗衬底1、碲化锡薄膜层2和铝电极层3;
所述碲化锡薄膜上采用“回”字型Al电极形状,“回”字型Al电极中心为入射光4入射区域,区域面积小于等于4mm2,锗衬底上采用方形Al电极。
所述导线为金线5。
所述碲化锡薄膜,以碲化锡为靶材,采用射频磁控溅射法溅射。
碲化锡薄膜/锗异质结光电探测器,制备步骤如下:
S1,锗衬底的清洁:采用电阻率为1-5ohm·cm的Ge(100)为衬底,锗衬底依次在乙醇、丙酮溶液中进行超声清洗15min,然后用高纯氮气吹干。
S2,锗衬底的预掩膜:采用铝箔掩膜衬底四周。
S3,碲化锡薄膜溅射:使用磁控溅射设备,采用射频模式,当真空度≤8.5×10-5Pa后,设定Ar2流量保持在80sccm,碲化锡靶材溅射功率设置为80W,在已经预掩模过的锗衬底上溅射10s,得到碲化锡薄膜。
S4,金属Al电极的制备:制备好的碲化锡薄膜去除掩膜后,裁剪出“回”字型Al电极铝箔进行二次掩膜在碲化锡薄膜上,“回”字型Al电极中心暴露出来的区域面积为4mm2,通过热蒸发法在锗衬底上形成方块Al电极;将方形窗口作为有效光敏面暴露在Al电极上,有利于提高电荷的收集效率;
去除掩膜的部分为没碲化锡薄膜的空白区域。
S5,Al电极制备完成,分别在两个不同形状的Al电极上点银浆,引出金线,并置于真空干燥箱中,在80℃的温度下,烘烤2小时,干燥固化银浆。
器件制备完成后,引出导线,对器件进行光电性能测试。如图2所示,为探测器碲化锡薄膜高分辨率的透射电镜(HRTEM)图,其晶体结构归属于盐岩矿面心立方结构,在图中出现清晰的晶格条纹,为(200)晶面。
如图3所示,为碲化锡薄膜面间距测量图,面间距为对应碲化锡面心立方结构(200)晶面。
如图4所示,为碲化锡薄膜/锗异质结光电探测器分别在无光照和波长为1050nm、850nm、660nm和400nm光照下的J-V特性曲线,器件在400-1050nm光照下表现出明显的光电响应,从而展现出其在可见至近红外波段具有宽谱响应特性。
如图5所示,为碲化锡薄膜/锗异质结光电探测器在无光照和波长为850nm光照下的Log J-V特性曲线,在无光照的条件下,所制备的异质结结在-0.5-0.5v较小的偏压下,具有很好的结特性;在光功率密度为10.77mW/cm2的850nm光照下,具有明显的光电响应,其开路电压为0.05v;并且其具有高的响应率为687.69mA/W(在-0.5v下)和探测率2.34×1011cmHz1/2w-1(在0偏压下)。

Claims (3)

1.碲化锡薄膜/锗异质结光电探测器,其特征在于所述探测器锗为衬底,功能层为碲化锡薄膜,以碲化锡为靶材,采用射频磁控溅射法溅射于衬底。
2.如权利要求1所述的碲化锡薄膜/锗异质结光电探测器,其特征在于其特征在于该探测器从下至上分别为锗衬底、碲化锡薄膜层和铝电极层;
所述碲化锡薄膜上采用“回”字型Al电极形状,“回”字型Al电极中心为入射光入射区域,区域面积小于等于4mm2,锗衬底上采用方形Al电极。
3.碲化锡薄膜/锗异质结光电探测器,其特征在于制备步骤如下:
S1,锗衬底清洁;
S2,采用铝箔掩膜衬底四周;
S3,使用磁控溅射设备,采用射频模式,真空度≤8.5×10-5Pa,Ar2流量保持在80sccm,碲化锡靶材溅射功率设置为40-80W,在已经预掩模过的锗衬底上溅射5-10s,得到碲化锡薄膜;
S4,金属Al电极的制备:制备好的碲化锡薄膜去除掩膜后,裁剪出“回”字型Al电极铝箔进行二次掩膜在碲化锡薄膜上,“回”字型Al电极中心暴露出来的区域作为有效光敏面暴露在Al电极上,在锗衬底上则采用方块形Al电极。
CN202210447367.2A 2022-04-26 2022-04-26 碲化锡薄膜/锗异质结宽谱光电探测器及其制备方法 Active CN115000208B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210447367.2A CN115000208B (zh) 2022-04-26 2022-04-26 碲化锡薄膜/锗异质结宽谱光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210447367.2A CN115000208B (zh) 2022-04-26 2022-04-26 碲化锡薄膜/锗异质结宽谱光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN115000208A CN115000208A (zh) 2022-09-02
CN115000208B true CN115000208B (zh) 2023-10-20

Family

ID=83026251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210447367.2A Active CN115000208B (zh) 2022-04-26 2022-04-26 碲化锡薄膜/锗异质结宽谱光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN115000208B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021833A (en) * 1976-05-17 1977-05-03 Honeywell Inc. Infrared photodiode
CN106784122A (zh) * 2016-12-01 2017-05-31 浙江大学 基于石墨烯/掺硼硅量子点/硅的光电探测器及制备方法
CN107275416A (zh) * 2017-05-09 2017-10-20 浙江大学 一种光探测器及其制备方法
CN107946393A (zh) * 2017-11-07 2018-04-20 浙江大学 基于SnTe作为背电极缓冲层的CdTe薄膜太阳能电池及其制备方法
CN109461789A (zh) * 2018-11-12 2019-03-12 郑州大学 基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器及其制备方法
CN109873047A (zh) * 2019-02-02 2019-06-11 浙江大学 一种新型异质结光子型红外探测器及制备方法及应用
CN110729365A (zh) * 2019-10-23 2020-01-24 昆明物理研究所 基于碲化锑材料的宽响应光谱探测器及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110079273A1 (en) * 2008-01-10 2011-04-07 Massachusetts Institute Of Technology Photovoltaic devices
US20110146766A1 (en) * 2008-02-26 2011-06-23 Solar Cells Based On Quantum Dot Or Colloidal Nanocrystal Films Solar cells based on quantum dot or colloidal nanocrystal films
DK2483926T3 (en) * 2009-09-29 2019-03-25 Res Triangle Inst Optoelectronic devices with quantum dot-fullerene transition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021833A (en) * 1976-05-17 1977-05-03 Honeywell Inc. Infrared photodiode
CN106784122A (zh) * 2016-12-01 2017-05-31 浙江大学 基于石墨烯/掺硼硅量子点/硅的光电探测器及制备方法
CN107275416A (zh) * 2017-05-09 2017-10-20 浙江大学 一种光探测器及其制备方法
CN107946393A (zh) * 2017-11-07 2018-04-20 浙江大学 基于SnTe作为背电极缓冲层的CdTe薄膜太阳能电池及其制备方法
CN109461789A (zh) * 2018-11-12 2019-03-12 郑州大学 基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器及其制备方法
CN109873047A (zh) * 2019-02-02 2019-06-11 浙江大学 一种新型异质结光子型红外探测器及制备方法及应用
CN110729365A (zh) * 2019-10-23 2020-01-24 昆明物理研究所 基于碲化锑材料的宽响应光谱探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Liyuan Song等.Large-area SnTe nanofilm: preparation and its broadband photodetector with ultra-low dark current.《Optics Express》.2022,第30卷(第9期),14828-14838页. *

Also Published As

Publication number Publication date
CN115000208A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
US20120006390A1 (en) Nano-wire solar cell or detector
Sun et al. Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb 2 Te 3/STO heterostructures
JP2009524916A (ja) 太陽電池
JP2010512664A (ja) 酸化亜鉛多接合光電池及び光電子装置
Hazra et al. A p-silicon nanowire/n-ZnO thin film heterojunction diode prepared by thermal evaporation
CN112635614B (zh) 一种采用栅调制石墨烯/半导体肖特基结的光电探测器及制备方法
Li et al. Broadband InSb/Si heterojunction photodetector with graphene transparent electrode
CN112614910B (zh) 一种基于pin型氮化镓微米线的紫外光电探测器及其制备方法
US9812595B1 (en) All-wavelength (VIS-LWIR) transparent electrical contacts and interconnects and methods of making them
CN113809192B (zh) 一种梯形氮化镓微米线阵列光电探测器及其制备方法
Teplin et al. Pyramidal light trapping and hydrogen passivation for high-efficiency heteroepitaxial (100) crystal silicon solar cells
Zhu et al. Sputtering-grown undoped GeSn/Ge multiple quantum wells on n-Ge for low-cost visible/shortwave infrared dual-band photodetection
CN108615783B (zh) 一种肖特基紫外探测器及其制造方法
CN115000208B (zh) 碲化锡薄膜/锗异质结宽谱光电探测器及其制备方法
CN109148638B (zh) 红外探测器及其制备方法
CN210866245U (zh) 一种氮化镓微米线阵列光电探测器
KR102236186B1 (ko) 금속 나노 입자 및 전이금속 칼코겐화합물을 이용한 포토디텍터의 제조방법
Lu et al. Investigation of the influence of graded-gap layer formed by annealing on the electrical properties of the near-surface of LPE HgCdTe using MIS structure
CN111863981A (zh) 一种氧化镓日盲光电探测器及其制备方法
Santos-Cruz et al. Au–Cu/p–CdTe/n–CdO/glass-type solar cells
Cai et al. High‐Performance N‐MoSe2/P‐GeSn/N‐Ge van der Waals Heterojunction Phototransistor for Short‐Wave Infrared Photodetection
KR101625876B1 (ko) 태양 전지 및 이의 제조 방법
CN114420784B (zh) 一种基于二硒化铂和硅的异质结结构及光电探测器、及其制备方法
CN115867104A (zh) 一种垂直结构热电红外探测器及其制备方法
JPH0661516A (ja) 太陽電池の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant