CN110729365A - 基于碲化锑材料的宽响应光谱探测器及其制备方法 - Google Patents

基于碲化锑材料的宽响应光谱探测器及其制备方法 Download PDF

Info

Publication number
CN110729365A
CN110729365A CN201911011670.2A CN201911011670A CN110729365A CN 110729365 A CN110729365 A CN 110729365A CN 201911011670 A CN201911011670 A CN 201911011670A CN 110729365 A CN110729365 A CN 110729365A
Authority
CN
China
Prior art keywords
response
substrate
wide
preparation
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911011670.2A
Other languages
English (en)
Inventor
唐利斌
张玉平
邢一山
赵鹏
舒恂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming Institute of Physics
Original Assignee
Kunming Institute of Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming Institute of Physics filed Critical Kunming Institute of Physics
Priority to CN201911011670.2A priority Critical patent/CN110729365A/zh
Publication of CN110729365A publication Critical patent/CN110729365A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

基于碲化锑材料的宽响应光谱探测器及其制备方法,涉及光电技术领域,尤其涉及一种基于拓扑绝缘体材料Sb2Te3和n‑Si的高探测率、高响应率、宽响应光谱的光电探测器及其制备方法。基于碲化锑材料的宽响应光谱探测器,其光谱响应层为拓扑绝缘体材料Sb2Te3薄膜,衬底是n‑Si的异质结衬底。制备过程包括衬底的清洁、Sb2Te3薄膜溅射、退火,以及镀Al电极。与现有制备技术相比,本发明实现了响应范围在250nm‑2400nm的高性能宽光谱原型光电探测器的制备,紫外波段响应到了250nm,在红外波段响应到了2400nm。制备周期短,器件性能好。

Description

基于碲化锑材料的宽响应光谱探测器及其制备方法
技术领域
本发明涉及光电技术领域,尤其涉及一种基于拓扑绝缘体材料Sb2Te3和n-Si的高探测率、高响应率、宽响应光谱的光电探测器制备方法。
背景技术
拓扑绝缘体是近几年材料领域新的研究热点,作为一种新的量子物质态,具有许多新奇的物理特性。拓扑绝缘体完全不同于传统意义上的金属和绝缘体,拓扑绝缘体内部是有能隙的绝缘体,而表面则是具有受时间反演对称性保护的无能隙的金属表面态。这种独特的能带结构使其非常适合用于发展宽光谱探测器。在光电探测领域,现阶段的研究主要集中在Bi2Se3家族的拓扑绝缘体材料的研究上,如Bi2Se3和Bi2Te3等,其主要的特点就是响应波谱很宽。
Sb2Te3和Bi2Te3等材料已被理论和试验证实为拓扑绝缘体材料。Sb2Te3作为拓扑绝缘体家族中的一员,在光电探测领域,相比于Bi2Te3材料来说,报道的较少。然而,Sb2Te3材料并不是一种新的材料,只是长期以来,对其的研究主要是关注其热电性质,其应用也主要是在热电器件、相变存储器和接触电极等方面,其在光电探测领域的研究比较少。近几年,随着拓扑绝缘体概念的提出,光电性能也逐渐被关注。在光电探测器领域,制备拓扑绝缘体薄膜常用的方法有分子束外延法(MBE)、化学气相沉积法(CVD)、金属有机物化学气相沉积法(MOCVD)、激光脉冲沉积法等,用磁控溅射法制备用于光电探测器的拓扑绝缘体薄膜鲜有报道。磁控溅射法制备薄膜具有工艺流程简单、制备成本低、基片温度低和膜基结合力好等优点。低成本的高性能宽频光电探测器是急缺的,而现在已经报道的基于热沉积法制备的Sb2Te3/Si异质结的光电探测器的探测光谱范围为520-980nm(Nanoscale,10,15003,2018)。此外,专利US10096736B1虽然提到了基于Sb2Te3/Si的异质结型光电探测器,但并没有给出其光电性响应性能以及探测光谱的范围。
发明内容
本发明的目的在于提供一种高性能宽频光电探测器制备方法,通过使用磁控溅射法和快速退火处理,有效的控制制备成本及周期。
基于碲化锑材料的宽响应光谱探测器,其特征在于光谱响应层为拓扑绝缘体材料Sb2Te3薄膜,衬底是n-Si的异质结衬底。
所述基于碲化锑材料的宽响应光谱探测器,其具体制备步骤如下:
S1,衬底的清洁:清洗、干燥衬底,使其表面无杂物;
S2,Sb2Te3薄膜溅射:采用磁控溅射设备,真空度7.5×10-4Pa以下,溅射功率120W-200W的条件下溅射150s-200s,得到Sb2Te3薄膜;
S3,退火:Sb2Te3薄膜在退火炉中,在280℃-300℃的温度下保温10-20min,其升温速率为3℃/s,通过该退火过程使薄膜由非晶态转变为多晶态;
S4,镀Al电极:退火完成后,在Sb2Te3薄膜的中心区域以及交界处盖上模具,使其中心区域的面积约为0.09-0.25cm2,通过物理气相沉积法,镀上Al电极。
与现有制备技术相比,本发明虽然采用的是低成本的磁控溅射法制备基于Sb2Te3材料的光电探测器,很好的降低了制备成本。此外,在薄膜的退火过程中使用了快速退火处理,极大的缩短了退火时间,提高了制备效率。该方法在简单的设备和简洁的工艺条件下,实现了响应范围在250nm-2400nm的高性能宽光谱原型光电探测器的制备,紫外波段响应到了250nm,在红外波段响应到了2400nm。制备周期短,器件性能好。
附图说明
图1为实施例1探测器结构示意图。
图2为实施例1探测器Sb2Te3薄膜的紫外-可见光吸收光谱图。
图3为实施例1探测器Sb2Te3-Si的异质结型光电探测器I-V图。
图4为实施例1探测器响应率和探测率图。
图5为实施例1探测器宽光谱响应测试图。
其中,n-Si衬底1,Sb2Te3薄膜层2,Al电极层3,光4,导线5。
具体实施方式
下面结合实施例对本发明作进一步说明。
实施例1:碲化锑基宽响应光谱探测器,其光谱响应层为拓扑绝缘体材料Sb2Te3薄膜,衬底是n-Si的异质结衬底。
探测器从下到上,分别为n-Si衬底1、Sb2Te3薄膜层2,Al电极层3。
该探测器的制备步骤具体如下:
S1,清洁衬底:裁剪一块2.5cm×5cm的n-Si衬底1,将其放入氨水:双氧水:去离子水之比为1:1:3的溶液中,在80℃的条件下,加热30min,以清洁n-Si衬底。
S2,Sb2Te3薄膜层溅射:把清洁好的n-Si衬底放入磁控溅射设备中的样品台上,并用清洁的模具遮住半个区域,然后打开磁控溅射设备,进行抽真空,待真空度抽至7.5×10- 4Pa以下后,先进行预溅射,预溅射完成后设置溅射功率为120W,工作压力设为7.0Pa,溅射时间为200s,设置完参数后即可开始溅射。
S3,退火:薄膜制备完成后,取出置于快速退火炉中。设置升温速率为3℃/s,退火温度为280℃,退火时间为10min,设置完成后,打开机械泵,待5分钟后,开始退火。
S4,镀Al电极层:退火完成后,取出薄膜,然后在Sb2Te3薄膜的中心区域以及交界处盖上模具,使其中心区域的面积约为0.09cm2,然后通过物理气相沉积法,镀上Al电极。
Al电极镀完后,取出并引出导线5,对其进行光电性能的测试。
如图2所示,为Sb2Te3薄膜的紫外-可见光吸收光谱图,制备的Sb2Te3薄膜具有很宽的吸收范围。
如图3所示,为制备的低成本高性能宽光谱Sb2Te3-Si异质结光电探测器的I-V特征曲线图,在波长为2400nm,功率密度为1.0868μW/cm2的光照下,器件表现出明显的光电响应。
如图4所示,该器件在2400nm的光照下电流响应率(R)达到了270A/W,探测率达到了1.28×1013Jones,展现出其在发展高性能的宽光谱探测器方面具有极其重要的应用价值。
如图5所示,为了研究该器件的响应光谱范围,还测试了其在250-2400nm光照条件的I-V特性曲线,结构表明该法制备的光电原型器件在紫外-可见-红外范围内均有光电响应,可以很好的应用于宽光谱探测器。
本发明提到的一个或多个步骤并不排斥所述组合步骤还存在其他方法及操作过程;还应注意,该实例仅用于说明本发明的可行性,而不是限制本发明的范围。除此之外,在无实质性改变制备技术内容的情况下,亦当视为本发明的可实施范畴。

Claims (2)

1.基于碲化锑材料的宽响应光谱探测器,其特征在于光谱响应层为拓扑绝缘体材料Sb2Te3薄膜,衬底是n-Si的异质结衬底。
2.如权利要求1所述基于碲化锑材料的宽响应光谱探测器,其特征在于该探测器具体制备步骤如下:
S1,衬底的清洁:清洗、干燥衬底,使其表面无杂物;
S2,Sb2Te3薄膜溅射:采用磁控溅射设备,真空度7.5×10-4Pa以下,溅射功率120W-200W的条件下溅射150s-200s,得到Sb2Te3薄膜;
S3,退火:Sb2Te3薄膜在退火炉中,在280℃-300℃的温度下保温10-20min,其升温速率为3℃/s,通过该退火过程使薄膜由非晶态转变为多晶态;
S4,镀Al电极:退火完成后,在Sb2Te3薄膜的中心区域以及交界处盖上模具,使其中心区域的面积约为0.09-0.25cm2,通过物理气相沉积法,镀上Al电极。
CN201911011670.2A 2019-10-23 2019-10-23 基于碲化锑材料的宽响应光谱探测器及其制备方法 Pending CN110729365A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911011670.2A CN110729365A (zh) 2019-10-23 2019-10-23 基于碲化锑材料的宽响应光谱探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911011670.2A CN110729365A (zh) 2019-10-23 2019-10-23 基于碲化锑材料的宽响应光谱探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN110729365A true CN110729365A (zh) 2020-01-24

Family

ID=69221766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911011670.2A Pending CN110729365A (zh) 2019-10-23 2019-10-23 基于碲化锑材料的宽响应光谱探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110729365A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111341861A (zh) * 2020-02-17 2020-06-26 昆明物理研究所 基于p-GeTe/n-Si光伏型红外探测器及其制备方法
CN112420876A (zh) * 2020-12-03 2021-02-26 哈尔滨工业大学 一种从日盲紫外到近红外的宽波段探测器的制备方法
CN112687809A (zh) * 2020-12-29 2021-04-20 电子科技大学 一种碲化锑光电探测器件及其制备方法
CN113299778A (zh) * 2021-05-26 2021-08-24 哈尔滨工业大学 硒化铋/碲化铋超晶格红外双波段探测器及其制备方法
CN114927586A (zh) * 2022-03-15 2022-08-19 中国民用航空飞行学院 一种基于新型三元材料的异质结光电探测器及制备方法
CN114927587A (zh) * 2022-03-15 2022-08-19 中国民用航空飞行学院 一种基于三元材料平面隧穿效应的光电探测器及制备方法
CN115000208A (zh) * 2022-04-26 2022-09-02 昆明物理研究所 碲化锡薄膜/锗异质结宽谱光电探测器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206249A (zh) * 2015-06-01 2016-12-07 中国科学院金属研究所 一种具有光伏特性的拓扑绝缘体薄膜及其制备方法
US10096736B1 (en) * 2016-01-15 2018-10-09 Hrl Laboratories, Llc P-Type chalcogenide and n-type silicon heterojunction infared photodiodes and method of manufacturing thereof
CN110098271A (zh) * 2019-05-24 2019-08-06 电子科技大学 一种自滤光硅肖特基单色探测器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206249A (zh) * 2015-06-01 2016-12-07 中国科学院金属研究所 一种具有光伏特性的拓扑绝缘体薄膜及其制备方法
US10096736B1 (en) * 2016-01-15 2018-10-09 Hrl Laboratories, Llc P-Type chalcogenide and n-type silicon heterojunction infared photodiodes and method of manufacturing thereof
CN110098271A (zh) * 2019-05-24 2019-08-06 电子科技大学 一种自滤光硅肖特基单色探测器

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111341861A (zh) * 2020-02-17 2020-06-26 昆明物理研究所 基于p-GeTe/n-Si光伏型红外探测器及其制备方法
CN112420876A (zh) * 2020-12-03 2021-02-26 哈尔滨工业大学 一种从日盲紫外到近红外的宽波段探测器的制备方法
CN112687809A (zh) * 2020-12-29 2021-04-20 电子科技大学 一种碲化锑光电探测器件及其制备方法
CN112687809B (zh) * 2020-12-29 2022-04-15 电子科技大学 一种碲化锑光电探测器件及其制备方法
CN113299778A (zh) * 2021-05-26 2021-08-24 哈尔滨工业大学 硒化铋/碲化铋超晶格红外双波段探测器及其制备方法
CN114927586A (zh) * 2022-03-15 2022-08-19 中国民用航空飞行学院 一种基于新型三元材料的异质结光电探测器及制备方法
CN114927587A (zh) * 2022-03-15 2022-08-19 中国民用航空飞行学院 一种基于三元材料平面隧穿效应的光电探测器及制备方法
CN114927586B (zh) * 2022-03-15 2024-03-22 中国民用航空飞行学院 一种基于新型三元材料的异质结光电探测器及制备方法
CN114927587B (zh) * 2022-03-15 2024-03-22 中国民用航空飞行学院 一种基于三元材料平面隧穿效应的光电探测器及制备方法
CN115000208A (zh) * 2022-04-26 2022-09-02 昆明物理研究所 碲化锡薄膜/锗异质结宽谱光电探测器及其制备方法
CN115000208B (zh) * 2022-04-26 2023-10-20 昆明物理研究所 碲化锡薄膜/锗异质结宽谱光电探测器及其制备方法

Similar Documents

Publication Publication Date Title
CN110729365A (zh) 基于碲化锑材料的宽响应光谱探测器及其制备方法
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
CN107706265B (zh) 一种外尔半金属异质结红外探测器及其制备方法
US9276143B2 (en) Silicon-based visible and near-infrared optoelectric devices
CN107369763B (zh) 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法
Zhang et al. Significant Improvement in the Performance of PbSe Quantum Dot Solar Cell by Introducing a CsPbBr 3 Perovskite Colloidal Nanocrystal Back Layer.
Chen et al. One-dimensional Sb2Se3 enabling a highly flexible photodiode for light-source-free heart rate detection
Wang et al. A high-performance near-infrared light photovoltaic detector based on a multilayered PtSe 2/Ge heterojunction
Chatzigiannakis et al. Laser-microstructured ZnO/p-Si photodetector with enhanced and broadband responsivity across the ultraviolet–visible–near-infrared range
US4990988A (en) Laterally stacked Schottky diodes for infrared sensor applications
Webb et al. Electrical and surface properties of InAs/InSb nanowires cleaned by atomic hydrogen
Fleck et al. How oxygen exposure improves the back contact and performance of antimony selenide solar cells
CN109461789B (zh) 基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器及其制备方法
Akgul et al. Fabrication and characterization of copper oxide-silicon nanowire heterojunction photodiodes
Nguyen et al. Practical demonstration of deep-ultraviolet detection with wearable and self-powered halide perovskite-based photodetector
CN109244246B (zh) 一种基于拓扑绝缘体硒化铋电极的宽波段光电探测器
CN104037244B (zh) 一种晶硅太阳能电池钝化材料Al2O3浓度梯度掺杂ZnO薄膜及制备方法
Liang et al. High-efficiency flexible Sb2Se3 solar cells by back interface and absorber bulk deep-level trap engineering
CN103227230A (zh) 一种侧向生长ZnMgO纳米线日盲区紫外探测器及其制备方法
Kim et al. Fabrication of p-pentacene/n-Si organic photodiodes and characterization of their photoelectric properties
CN110190150B (zh) 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法
Xiao et al. Quasi‐Single Crystalline Cuprous Oxide Wafers via Stress‐Assisted Thermal Oxidation for Optoelectronic Devices
CN100477295C (zh) 碲镉汞薄膜材料表面氧化膜层的处理工艺
Akgul et al. Improved diode properties in zinc telluride thin film-silicon nanowire heterojunctions
KR102236186B1 (ko) 금속 나노 입자 및 전이금속 칼코겐화합물을 이용한 포토디텍터의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200124