CN111341861A - 基于p-GeTe/n-Si光伏型红外探测器及其制备方法 - Google Patents

基于p-GeTe/n-Si光伏型红外探测器及其制备方法 Download PDF

Info

Publication number
CN111341861A
CN111341861A CN202010097961.4A CN202010097961A CN111341861A CN 111341861 A CN111341861 A CN 111341861A CN 202010097961 A CN202010097961 A CN 202010097961A CN 111341861 A CN111341861 A CN 111341861A
Authority
CN
China
Prior art keywords
gete
substrate
electrode
infrared detector
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010097961.4A
Other languages
English (en)
Inventor
唐利斌
赵逸群
杨盛谊
彭廷海
舒恂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming Institute of Physics
Original Assignee
Kunming Institute of Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming Institute of Physics filed Critical Kunming Institute of Physics
Priority to CN202010097961.4A priority Critical patent/CN111341861A/zh
Publication of CN111341861A publication Critical patent/CN111341861A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

基于p‑GeTe/n‑Si光伏型红外探测器及其制备方法,属于红外探测领域,尤其是一种光伏型红外探测器。本发明由n型单晶Si基片、p型GeTe薄膜和两个电极构成;其中p型GeTe薄膜设置在单晶Si基片之上;两个电极其中一个设置在Si基片表面,另一个设置在GeTe薄膜表面。制备过程包括基片清洗、GeTe薄膜溅射、电极蒸镀、退火步骤。本发明具有工艺简单,易于集成,成本低,响应快,探测率高等优点,且可以在室温下工作,在红外探测领域具有重要的应用前景。

Description

基于p-GeTe/n-Si光伏型红外探测器及其制备方法
技术领域
本发明属于红外探测领域,尤其是一种光伏型红外光电探测器。
背景技术
红外探测在军事、电力、工业、夜视、生物、监测等领域有极为广泛的应用。光伏型红外探测器由于响应时间短,在对响应时间要求高的场合有着不可替代的作用。目前,商业化的红外探测器主要有碲镉汞探测器、碲化铟探测器、非晶硅探测器和氧化钒探测器等。其中,非晶硅探测器和氧化钒探测器在常温下工作,但探测效果不够理想。碲镉汞探测器、碲化铟探测器因探测率较高常用作军事领域,但使用过程中需要制冷,且由于探测器光敏材料与其后端读出电路晶格不匹配,难以有效集成。导致探测器集成度低,生产成本过高,难以展开大面积的应用。
发明内容
本发明的目的在于提供一种便于集成,低成本,可室温下使用的高探测率的光伏型红外探测器。
本发明基于p-GeTe/n-Si光伏型红外探测器,其特征在于所述探测器由n型单晶Si基片、p型GeTe薄膜和两个电极构成;其中:
p型GeTe薄膜设置在单晶Si基片之上;
两个电极其中一个设置在Si基片表面,另一个设置在GeTe薄膜表面。
所述的p型GeTe薄膜厚度为20-60nm。
所述的电极为Al、Au或ITO,厚度为50-150nm。
所述的基于p-GeTe/n-Si光伏型红外探测器,其制备步骤如下:
S1,基片清洗:先将n型单晶Si基片浸泡于由离子水、双氧水、氨水按照2~3:1:1的体积比混合的溶液中,在70~85℃下,清洗30~90min,然后将基片冲洗干净,吹干;
S2,GeTe薄膜溅射:将基片放在磁控溅射仪中,10-5Pa真空环境下,充Ar气,使腔体气压保持在3~5Pa,使用GeTe靶材溅射60-200s,使得厚度达到20-60nm;
S3,电极蒸镀或退火;
电极蒸镀是将经S2处理的器件放入真空蒸镀室中,真空度小于10-5Pa后,在GeTe和Si表面分别蒸镀电极30-90s,使得电极厚度达到50-150nm;
退火是将经S3处理的器件取出,在260-400℃范围退火10-20min。
S4,根据S3步骤选择是退火或电极蒸镀,不与步骤S3相同。
本发明具有工艺简单,成本低,探测率高,与目前常规探测器的探测率对比如表1所示等优点,且可以在室温下工作,在红外探测领域具有一定的应用前景。同时,GeTe作为相变材料,已成为下一代存储和计算的关键材料。本发明所述探测器的优势在于利用GeTe/Si的异质结作为光敏层,利于将来探测器材料与读出电路的整合,便于探测器的小型化和集成化,降低探测器的成本。
表.1常见商用探测器的探测率对比
探测所用材料 使用环境 探测率(D*) 备注
p-GeTe/n-Si 室温 10<sup>11</sup>Jones 本专利
碲镉汞 77K 10<sup>10</sup>~10<sup>13</sup>Jones 根据使用波段有所不同
碲化铟 77K 10<sup>12</sup>Jones
非晶硅 室温 10<sup>10</sup>Jones
氧化钒 室温 10<sup>8</sup>Jones
附图说明
图1为本发明实施例1所述探测器结构示意图。
图2为本发明实施例2和实施例3所述探测器结构示意图。
图3为GeTe薄膜为实施例2退火前后XRD图;
图中可以明显看出退火后GeTe薄膜有明显的衍射峰从非晶态变为晶态。
图4为GeTe薄膜为实施例1退火前后的紫外-可见-红外吸收光谱图;
图中可以明显看出退火后薄膜对红外光谱的吸收增强,有利于器件吸收红外信号。
图5为实施例1所述探测器无光照和红外光照射条件下的I-V曲线图;
图中可以明显看出器件在红外光照射下有0.1V的光生电压。
图6为实施例1探测器的探测率图;
明显看出器件探测率大约为1011Jones。
其中,Si基片1,GeTe薄膜2,电极3。
具体实施方式
实施例1:基于p-GeTe/n-Si光伏型红外探测器,从下往上分别是Si基片1、GeTe薄膜2和电极3。
所述电极3为两个,其中一个在Si基片1表面上,另一个在GeTe薄膜2上表面。如图1所示。
其中,α相GeTe薄膜2光敏层厚度为40nm;电极3为Al电极,厚度50nm。
所述的探测器,具体制备步骤如下:
S1,基片清洗:先将n型单晶Si基片浸泡于由离子水、双氧水、氨水按照2:1:1的体积配比混合的溶液中,在80℃下,清洗30min;随后,用去离子水冲洗干净,再用压缩空气吹干,以彻底清除基片表面吸附的杂质。
S2,GeTe薄膜溅射:将基片放在磁控溅射仪中,先抽真空到10-5Pa,随后充Ar气,使腔体气压保持在5Pa范围后,使用GeTe靶材溅射140s,厚度达到40nm。
S3,电极蒸镀:将溅射好GeTe的器件放入真空蒸镀室中,真空度小于10-5Pa后,在GeTe和Si表面同时蒸镀Al电极30s,厚度达50nm。
S4,退火:将蒸镀了Al电极的器件取出,并在300℃范围退火15min。
实施例2:基于p-GeTe/n-Si光伏型红外探测器,从下往上分别是ITO电极3、Si基片1、GeTe薄膜2和Al电极3。如图2所示。
所述的n型Si为基片1一面带有ITO薄膜,即Si基片1与ITO电极3为一体。
所述的GeTe薄膜2厚度20nm;电极3为Al电极,厚度100nm。
所述的探测器,具体制备步骤如下:
S1,基片清洗:先将带有ITO薄膜的n型Si基片浸泡于由离子水、双氧水、氨水按照2:1:1的体积配比混合的溶液中,在70℃下,清洗50min;随后,用去离子水冲洗干净,再用压缩空气吹干,以彻底清除基片表面吸附的杂质。
S2,GeTe薄膜溅射:将带有ITO薄膜的n型Si基片放在磁控溅射仪中,Si面朝上,ITO面向下,先抽真空到10-5Pa,随后充Ar气,使腔体气压保持在5Pa范围后,使用GeTe靶材溅射90s,使厚度达到20nm。
S3,退火:将溅射好GeTe薄膜的基片取出,并在360℃范围退火10min。
S4,电极蒸镀:将退火后的器件放入真空蒸镀室中,当真空度小于10-5Pa后,在GeTe薄膜表面蒸镀Al电极60s,使厚度达到100nm。
实施例3:基于p-GeTe/n-Si光伏型红外探测器,从下往上分别是Au电极3,n型单晶Si基片1、GeTe薄膜2和Al电极3。如图2所示。
所述的Au电极3厚度100nm;GeTe薄膜2厚度为50nm;Al电极3厚度150nm。
所述的探测器,具体制备步骤如下:
S1,基片清洗:先将n型单晶Si基片浸泡于由离子水、双氧水、氨水按照2:1:1的体积配比混合的溶液中,在85℃下,清洗40min。随后,用去离子水冲洗干净,再用压缩空气吹干,以彻底清除基片表面吸附的杂质。
S2,GeTe薄膜溅射:将n型单晶Si基片放在磁控溅射仪中,先抽真空到10-5Pa,随后充Ar气,使腔体气压保持在4Pa范围后,使用GeTe靶材溅射200s,使厚度达60nm。
S3,退火:将溅射好GeTe薄膜的基片取出,并在260℃范围退火20min。
S4,电极蒸镀:将退火后的器件放入真空蒸镀室中,当真空度小于10-5Pa后,在GeTe表面蒸镀Al电极90s,使厚度达150nm;对器件翻面后,在Si表面蒸镀Au电极40s,使厚度达50nm。

Claims (4)

1.基于p-GeTe/n-Si光伏型红外探测器,其特征在于所述探测器由n型单晶Si基片、p型GeTe薄膜和两个电极构成;其中:
p型GeTe薄膜设置在单晶Si基片之上;
两个电极其中一个设置在Si基片表面,另一个设置在GeTe薄膜表面。
2.如权利要求1所述的基于p-GeTe/n-Si光伏型红外探测器,其特征在于所述的电极为Al、Au或ITO。
3.如权利要求1所述的基于p-GeTe/n-Si光伏型红外探测器,其特征在于所述的p型GeTe薄膜厚度为20-60nm;电极厚度为50-150nm。
4.如权利要求1所述的基于p-GeTe/n-Si光伏型红外探测器,其特征在于所述的红外探测器,其制备步骤如下:
S1,基片清洗:先将n型单晶Si基片浸泡于由离子水、双氧水、氨水按照2~3:1:1的体积比混合的溶液中,在70~85℃下,清洗30~90min,然后将基片冲洗干净,吹干;
S2,GeTe薄膜溅射:将基片放在磁控溅射仪中,10-5Pa真空环境下,充Ar气,使腔体气压保持在3~5Pa,使用GeTe靶材溅射60-200s,使得厚度达到20-60nm;
S3,电极蒸镀或退火;
电极蒸镀是将经S2处理的器件放入真空蒸镀室中,真空度小于10-5Pa后,在GeTe和Si表面分别蒸镀电极30-90s,使得电极厚度达到50-150nm;
退火是将经S3处理的器件取出,在260-400℃范围退火10-20min。
S4,根据S3步骤选择是退火或电极蒸镀,不与步骤S3相同。
CN202010097961.4A 2020-02-17 2020-02-17 基于p-GeTe/n-Si光伏型红外探测器及其制备方法 Pending CN111341861A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010097961.4A CN111341861A (zh) 2020-02-17 2020-02-17 基于p-GeTe/n-Si光伏型红外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010097961.4A CN111341861A (zh) 2020-02-17 2020-02-17 基于p-GeTe/n-Si光伏型红外探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN111341861A true CN111341861A (zh) 2020-06-26

Family

ID=71185296

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010097961.4A Pending CN111341861A (zh) 2020-02-17 2020-02-17 基于p-GeTe/n-Si光伏型红外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN111341861A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112701188A (zh) * 2020-12-29 2021-04-23 杭州电子科技大学 一种近红外光电探测器及其制备方法
CN114167477A (zh) * 2021-12-08 2022-03-11 电子科技大学 一种基于薄膜探测器的频闪检测系统及设计制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9954133B1 (en) * 2016-01-15 2018-04-24 Hrl Laboratories, Llc P-type chalcogenide and N-type silicon heterojunction infrared photodiodes and method of manufacturing thereof
CN110729365A (zh) * 2019-10-23 2020-01-24 昆明物理研究所 基于碲化锑材料的宽响应光谱探测器及其制备方法
CN110739359A (zh) * 2019-10-23 2020-01-31 昆明物理研究所 α相GeTe宽光谱红外探测器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9954133B1 (en) * 2016-01-15 2018-04-24 Hrl Laboratories, Llc P-type chalcogenide and N-type silicon heterojunction infrared photodiodes and method of manufacturing thereof
CN110729365A (zh) * 2019-10-23 2020-01-24 昆明物理研究所 基于碲化锑材料的宽响应光谱探测器及其制备方法
CN110739359A (zh) * 2019-10-23 2020-01-31 昆明物理研究所 α相GeTe宽光谱红外探测器及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112701188A (zh) * 2020-12-29 2021-04-23 杭州电子科技大学 一种近红外光电探测器及其制备方法
CN114167477A (zh) * 2021-12-08 2022-03-11 电子科技大学 一种基于薄膜探测器的频闪检测系统及设计制作方法

Similar Documents

Publication Publication Date Title
WO2018214870A1 (zh) 一种异质结太阳能电池的制备方法及异质结太阳能电池
WO2003032406A3 (en) A process for large-scale production of cdte/cds thin film solar cells
CN102888584B (zh) 一种基于金刚石薄膜上沉积CdTe薄膜的方法
CN110729376B (zh) 基于氧化镍/β-三氧化二镓异质结的紫外探测器及其制备方法
CN111341861A (zh) 基于p-GeTe/n-Si光伏型红外探测器及其制备方法
CN104617165A (zh) 一种二硫化钼/缓冲层/硅n-i-p太阳能电池器件及其制备方法
CN105714262A (zh) 一种择优生长ito透明导电薄膜的制备方法
CN103779448B (zh) 一种硅纳米线径向异质结太阳电池的制备方法
CN104037244B (zh) 一种晶硅太阳能电池钝化材料Al2O3浓度梯度掺杂ZnO薄膜及制备方法
CN111403562A (zh) 一种硅异质结太阳电池用tco薄膜的制作方法和设备
Li et al. Influence of room temperature sputtered Al-doped zinc oxide on passivation quality in silicon heterojunction solar cells
JP6564447B2 (ja) ヘテロ接合型太陽電池の製造方法
CN110739359A (zh) α相GeTe宽光谱红外探测器及其制备方法
Shu-Wen A Study of annealing time effects on the properties of Al: ZnO
CN109616533B (zh) 一种晶硅异质结太阳电池及其制备方法
CN105957924A (zh) 一种利用ZnO缓冲层制备择优取向ITO光电薄膜的方法
CN102891217A (zh) 一种金刚石/ CdTe薄膜太阳能电池的制备方法
CN103014705B (zh) Cu/ZnO/Al光电透明导电薄膜的沉积方法
CN111254404A (zh) 一种择优生长的ito透明导电薄膜的制备方法
KR20100136554A (ko) 실리콘-계 박막 광기전성 셀의 제조방법
CN111509065A (zh) 含有碱金属掺杂铜铟镓硒吸收层的太阳能电池
WO2019085458A1 (zh) 太阳能电池及其制备方法
CN110718595A (zh) 基于溶液法制备的氧化物-金属复合电子传输层及包括其的晶硅太阳电池
CN113675344B (zh) 有机光电探测器用金属电极材料及制备方法
CN111816715B (zh) 一种氧化锌纳米线阵列紫外探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200626