CN109616533B - 一种晶硅异质结太阳电池及其制备方法 - Google Patents

一种晶硅异质结太阳电池及其制备方法 Download PDF

Info

Publication number
CN109616533B
CN109616533B CN201811278441.2A CN201811278441A CN109616533B CN 109616533 B CN109616533 B CN 109616533B CN 201811278441 A CN201811278441 A CN 201811278441A CN 109616533 B CN109616533 B CN 109616533B
Authority
CN
China
Prior art keywords
layer
moo
molybdenum
sulfur
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811278441.2A
Other languages
English (en)
Other versions
CN109616533A (zh
Inventor
于威
刘海旭
路万兵
焦玉骁
辛利桃
许贺菊
傅广生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heibei University
Original Assignee
Heibei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heibei University filed Critical Heibei University
Priority to CN201811278441.2A priority Critical patent/CN109616533B/zh
Publication of CN109616533A publication Critical patent/CN109616533A/zh
Application granted granted Critical
Publication of CN109616533B publication Critical patent/CN109616533B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic System, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种晶硅异质结太阳电池及其制备方法。所述晶硅异质结太阳电池的结构为:金属栅线/透明导电电极/含钼氧硫的空穴引出层/第一隧穿层/硅片/第二隧穿层/电子引出层/金属背电极。所述含钼氧硫的空穴引出层可以为MoO3‑xSx单层薄膜结构,也可以为MoO3‑xSx/MoO3双层薄膜结构,对于后者,MoO3层应与第一隧穿层接触。本发明所制备出来的基于含钼氧硫的空穴引出层的晶硅异质结太阳电池,能有效降低材料的缺陷态密度和载流子表面复合速率,提高电池短路电流和内建电场。含钼氧硫的空穴引出层对空穴的选择性可调,且制作工艺简单,具有较高的产业化推广应用价值。

Description

一种晶硅异质结太阳电池及其制备方法
技术领域
本发明涉及太阳能电池技术领域,具体地说是一种晶硅异质结太阳电池及其制备方法。
背景技术
近年来,光伏产业一直致力于寻找具有低成本制造优势的晶体硅(c-Si)太阳电池技术。降低成本的策略包括使用超薄晶圆或质量较低的衬底,但无论如何都需要较低的材料消耗以及简化的制造工艺。
过渡金属氧化物(TMO)作为电子或空穴的选择性接触层在高效晶硅电池研究中受到人们的广泛关注。TMO是具有功函数范围宽(ΦTMO=3~7 eV)和电导率可调(从绝缘性到金属导电性)等特性的宽带隙(Eg> 3 eV)半导体材料,当用作电子或空穴选择性接触材料时可提供极大的灵活性。高功函数的V2O5、WO3、MoO3可作为空穴引出层材料,低功函数的TiO2、SnO2可作为电子引出层。同时,TMO较低的沉积温度(T <200℃)可使制备工艺简化并大幅降低生产成本。
非化学计量比的氧化钼(MoOx)通常通过热蒸发法应用于制备晶体硅太阳电池的空穴引出层。该方法需要高真空设备而且对氧化物化学计量比的调控非常有限,这在一定程度上限制了薄膜传输空穴的性能。
发明内容
本发明的目的就是提供一种晶硅异质结太阳电池及其制备方法,该电池以宽带隙过渡金属氧化物MoO3-xSx作为空穴引出层,可有效提高材料的载流子传输能力,提升太阳电池的光伏性能。
本发明的目的是这样实现的:一种晶硅异质结太阳电池,其结构为:金属栅线/透明导电电极/含钼氧硫(MoO3-xSx)的空穴引出层/第一隧穿层/硅片/第二隧穿层/电子引出层/金属背电极。含钼氧硫的空穴引出层具有宽带隙、高透过率和高载流子传输能力。
所述含钼氧硫的空穴引出层可以为MoO3-xSx单层薄膜结构,也可以为MoO3-xSx/MoO3双层薄膜结构,对于后者,MoO3层应与第一隧穿层接触。MoO3-xSx单层薄膜的厚度为3nm-8nm。MoO3-xSx/MoO3双层薄膜结构中,MoO3层的厚度为0.5nm-5nm,MoO3-xSx层的厚度为3nm-8nm。
MoO3-xSx薄膜中钼的组分比为29%-45%,硫的组分比为1.5%-15%,氧的组分比为53%-67%。
含MoO3-xSx的空穴引出层的带隙为2.8eV~3.9eV,接触电阻(ρc)为10~50mΩ⋅cm2,薄膜材料厚度为3nm~8nm。
MoO3-xSx薄膜作为窗口层, 其可通过蒸发设备来制备,蒸发源可以为氧化钼和硫化钼等。
所述透明导电电极为透明导电氧化物,例如可以为ITO或AZO材料。
所述第一隧穿层可以为二氧化硅、氢化非晶硅或氧化铝等;所述第二隧穿层可以为二氧化硅、氢化非晶硅或氧化铝等。当隧穿层(包括第一隧穿层和第二隧穿层)为二氧化硅时,其厚度为0.5nm~2nm;当隧穿层为氢化非晶硅时,其厚度为5nm~10nm;当隧穿层为氧化铝时,其厚度为0.5nm~2nm。第一隧穿层和第二隧穿层用于提供化学钝化。
所述电子引出层可以采用氧化钛(TiO2)或氧化锡(SnO2)等过渡金属氧化物材料,也可以采用磷掺杂的nc-SiOx:H薄膜材料。该层暗电导为1×10-2 S/cm ~5×10-2 S/cm,晶化率为30%~40%,晶粒尺寸为1 nm ~3nm,退火后带隙为1.8eV~2.0eV,厚度为10 nm ~30nm。
本发明中基于含钼氧硫的空穴引出层的晶硅异质结太阳电池,通过调整MoO3-xSx中S含量,可形成S-Mo-S键并有效减小材料的表面缺陷,使空穴迁移率获得提升。硫键的引入有助于提高窗口层的带隙、透过率和材料中Mo4+价态比例,提高材料的载流子传输能力和电池的短路电流,增强内建电场。在合适的S掺入条件下,MoO3-xSx/Si异质结太阳电池表现出较高的载流子传输特性和优良的光伏性能。
上述晶硅异质结太阳电池的制备方法包括如下步骤:
(1)通过标准RCA清洁工艺清洗Si基底,随后将硅片浸入稀释的氢氟酸以除去表面自然氧化层。将清洗后的硅片放入硝酸中以制备二氧化硅隧穿层。
(2)制备电子引出层。可以用等离子体增强化学气相沉积(PECVD)设备在硅片的一侧沉积磷掺杂的nc-SiOx:H薄膜,或是用蒸发设备蒸镀氧化钛或氧化锡等过渡金属氧化物作为电子引出层等。
(3)将所制备的结构转移至蒸发设备中,进行硫化钼和氧化钼双源共蒸发或双源交替蒸发。对于双源交替蒸发的结构,后续应进行退火处理。
(4)将所制备的结构转移至磁控溅射设备中,制备透明导电电极、金属背电极和金属栅线。
本发明提供的含氧化物MoO3-xSx的空穴引出层具有较宽的带隙及较高的光透过率,在蒸发过程中通过调节硫化钼的蒸发速率可以改变薄膜中的硫掺入量,改善了材料微观结构和钼的价态,进一步调控了薄膜中的Mo+4/ Mo+5 / Mo+6组成比、费米能级、电子亲和能以及价带电离能,可以有效提升薄膜载流子传输能力并提高电池短路电流。
本发明所制备出来的基于含钼氧硫的空穴引出层和SiO2隧穿层的晶硅异质结电池,能有效降低材料的缺陷态密度和载流子表面复合速率,提高电池短路电流和内建电场。含钼氧硫的空穴引出层对空穴的选择性可调,且制作工艺简单,具有较高的产业化推广应用价值。
附图说明
图1是本发明所提供的晶硅异质结太阳电池的结构示意图。
图中:11、金属栅线;12、透明导电电极;13、MoO3-xSx空穴引出层;14、第一隧穿层;15、n型硅片;16、第二隧穿层;17、电子引出层;18、金属背电极。
具体实施方式
实施例1
如图1所示,本实施例基于钼氧硫空穴引出层的晶硅异质结太阳电池,其结构是:在n型硅片15的正面依次制备有第一隧穿层14、MoO3-xSx空穴引出层13、透明导电电极12和金属栅线11,在n型硅片15的背面依次制备有第二隧穿层16、电子引出层17和金属背电极18。
本实施例具体给出了晶硅异质结太阳电池的制备方法,如下:
(1)n型CZ 180微米 (1~10 Ω·cm)硅片经过RCA清洗,随后将硅片浸入稀释的氢氟酸(5%,3分钟)以除去表面自然氧化层。将清洗后的硅片放入70wt%硝酸中15分钟(室温条件下)以形成厚度约为1.5nm的隧穿氧化层。
(2)首先在PECVD设备的n掺杂沉积腔室内充硅烷SiH4、二氧化碳CO2、氢气H2和磷烷PH3混合气体,气体流量比为6:(0~4):90:(3~8);沉积时间为10~20分钟;使用PECVD设备在硅片的一侧沉积磷掺杂的nc-SiOx:H薄膜。沉积腔室中的气体压力控制在300~2000 mTorr,沉积温度在150°C~300°C,施加在电极板上的等离子体能量密度为5mW/cm2~300mW/cm2
(3)其次将该结构转移至退火炉中退火,退火温度为600°C~950°C,退火时间为1分钟~30分钟, 退火后,用5%HF处理1分钟~3分钟。
(4)立刻转移到电子束蒸发设备中制备钼氧硫空穴引出层,其制备方法为:硫化钼、氧化钼双源共蒸发,固定氧化钼的蒸发速率为0.01~0.05nm/s,硫化钼的蒸发速率为0.01~0.1nm/s。制备的MoO3-xSx空穴引出层能带隙为2.8eV~3.9eV,接触电阻(ρc)10~50mΩ⋅cm2,薄膜材料厚度为3-8nm。沉积过程中维持衬底温度为150°C。
(5) 使用射频磁控溅射在制备好的钼氧硫空穴引出层上沉积80nm厚的氧化铟锡(ITO)透明导电电极。然后分别在硅片两面沉积银栅线和银背电极。
实施例2
本实施例与实施例1所不同的是,实施例1步骤(4)中所制备的是钼氧硫单层薄膜结构,本实施例在步骤(4)中制备钼氧硫/氧化钼双层结构,该双层结构共同作为空穴引出层。
钼氧硫/氧化钼双层结构的制备工艺为:先蒸镀0.5nm~5nm氧化钼,再依据实施例1的方法采用硫化钼和氧化钼双源共蒸发法沉积钼氧硫薄膜。
实施例3
与实施例1相同,本实施例在步骤(4)中所制备的也是钼氧硫单层薄膜结构,但是本实施例中钼氧硫单层薄膜结构的制备方法如下:硫化钼和氧化钼交替沉积,氧化钼的蒸发速率为0.01~0.05nm/s,硫化钼的蒸发速率为0.01~0.1nm/s,最后退火,退火温度为100~300℃。
对比例:
与实施例1相比,本对比例在步骤(4)中直接蒸镀氧化钼,蒸发速率为0.01~0.05nm/s,即:在步骤(4)中制备了氧化钼作为空穴引出层。
对实施例1-3以及对比例中晶硅异质结太阳电池效率进行测试,结果发现,实施例1、2和3结构的电池性能明显高于对比例中直接以氧化钼作为空穴引出层的晶硅异质结太阳电池。实施例1的电池效率超过20%。实施例2和3的电池效率超过22%。对比例的电池效率为17%。
本发明通过调节沉积参数可以实现MoO3-xSx薄膜材料带隙与光电特性的调制。氧化钼中掺入硫的量在1%以下时,Mo4+的组分比例为20%~30%范围,太阳电池效率为14%~15%;当掺入硫的量超过10%时,Mo4+的组分比例为30%~40%范围,太阳电池效率为17%~18%;当掺入硫在1%~3%范围,Mo4+的组分比例最高超过41%,电池效率为20%~22%。因此适量的硫含量有助于提高钼氧硫薄膜材料中的Mo4+的组分比例,增加了薄膜的载流子输运能力,从而提高了太阳电池的转换效率。
本发明采用含MoO3-xSx的薄膜作为空穴引出层,采用蒸发法在较低温度下制备MoO3-xSx,MoO3-xSx是一种掺硫的过渡金属氧化物材料,具有高效的载流子传输能力以及宽带隙、高透过率和高内建电场,能有效提高晶硅异质结太阳电池的短路电流和光电转换效率。由MoO3-xSx材料取代晶硅异质结太阳电池中的硼掺杂微晶硅空穴引出层,可以减少该层对入射光的寄生吸收,增强电池对光的吸收率,另外由于硫掺入的作用,可以降低电池的串联电阻,从而有效提升了晶硅异质结太阳电池的光伏性能。本发明兼顾了空穴引出层的高透光性和载流子传输特性,为制备高效的晶硅异质结太阳电池及其应用提供了可行的方法。

Claims (9)

1.一种晶硅异质结太阳电池,其特征是,其结构为:金属栅线/透明导电电极/含钼氧硫的空穴引出层/第一隧穿层/硅片/第二隧穿层/电子引出层/金属背电极,所述含钼氧硫的空穴引出层具体是采用含MoO3-xSx的薄膜作为空穴引出层,MoO3-xSx是一种掺硫的过渡金属氧化物材料。
2.根据权利要求1所述的晶硅异质结太阳电池,其特征是,所述含钼氧硫的空穴引出层为MoO3-xSx单层薄膜结构;所述MoO3-xSx单层薄膜的厚度为3nm-8nm。
3.根据权利要求2所述的晶硅异质结太阳电池,其特征是,所述MoO3-xSx单层薄膜中钼的组分比为29%-45%,硫的组分比为1.5%-15%,氧的组分比为53%-67%。
4.根据权利要求1所述的晶硅异质结太阳电池,其特征是,所述含钼氧硫的空穴引出层为MoO3-xSx/ MoO3双层结构,且MoO3层与所述第一隧穿层接触;所述MoO3层的厚度为0.5nm-5nm,MoO3-xSx层的厚度为3nm-8nm。
5.根据权利要求4所述的晶硅异质结太阳电池,其特征是,所述MoO3-xSx层中钼的组分比为29%-45%,硫的组分比为1.5%-15%,氧的组分比为53%-67%。
6.根据权利要求1所述的晶硅异质结太阳电池,其特征是,所述第一隧穿层为二氧化硅层、氢化非晶硅层或氧化铝层;所述第二隧穿层为二氧化硅层、氢化非晶硅层或氧化铝层。
7.一种晶硅异质结太阳电池的制备方法,其特征是,包括如下步骤:
a、清洗硅片,之后将硅片浸入稀释的氢氟酸中以除去表面自然氧化层;
b、将经步骤a处理后的硅片放入硝酸中,在硅片的正反面分别形成第一和第二二氧化硅隧穿层;
c、在硅片反面的二氧化硅隧穿层上制备电子引出层;
d、在硅片正面的二氧化硅隧穿层上制备含钼氧硫的空穴引出层;所述含钼氧硫的空穴引出层具体是采用含MoO3-xSx的薄膜作为空穴引出层,MoO3-xSx是一种掺硫的过渡金属氧化物材料;
e、在电子引出层上制备金属背电极;
f、在含钼氧硫的空穴引出层上制备透明导电电极,并在透明导电电极上制备金属栅线。
8.根据权利要求7所述的晶硅异质结太阳电池的制备方法,其特征是,步骤d中制备含钼氧硫的空穴引出层时采用蒸发设备,采用两个蒸发源分别为硫化钼和氧化钼,硫化钼和氧化钼共同蒸发或交替蒸发。
9.根据权利要求7所述的晶硅异质结太阳电池的制备方法,其特征是,步骤c中电子引出层为采用等离子体增强化学气相沉积设备在硅片反面二氧化硅隧穿层上沉积磷掺杂的nc-SiOx:H薄膜而形成,或是用蒸发设备蒸镀氧化钛或氧化锡而形成。
CN201811278441.2A 2018-10-30 2018-10-30 一种晶硅异质结太阳电池及其制备方法 Active CN109616533B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811278441.2A CN109616533B (zh) 2018-10-30 2018-10-30 一种晶硅异质结太阳电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811278441.2A CN109616533B (zh) 2018-10-30 2018-10-30 一种晶硅异质结太阳电池及其制备方法

Publications (2)

Publication Number Publication Date
CN109616533A CN109616533A (zh) 2019-04-12
CN109616533B true CN109616533B (zh) 2020-07-24

Family

ID=66002923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811278441.2A Active CN109616533B (zh) 2018-10-30 2018-10-30 一种晶硅异质结太阳电池及其制备方法

Country Status (1)

Country Link
CN (1) CN109616533B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151625B (zh) * 2020-09-04 2022-10-14 泰州隆基乐叶光伏科技有限公司 太阳电池及生产方法、电池组件
CN116002755B (zh) * 2022-12-26 2023-10-24 中国科学院山西煤炭化学研究所 一种制备金属元素改性钼基氧硫复合物的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2012368A1 (en) * 2006-04-25 2009-01-07 Murata Manufacturing Co. Ltd. Ultraviolet sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4126019B2 (ja) * 2002-03-07 2008-07-30 新日本石油株式会社 光電変換素子
JP2004172167A (ja) * 2002-11-15 2004-06-17 Zenji Hiroi 遷移金属酸化物太陽電池
WO2015130189A1 (en) * 2014-02-28 2015-09-03 Nokia Technologies Oy Method and apparatus for oxidation of two-dimensional materials
CN108389929A (zh) * 2018-04-11 2018-08-10 浙江师范大学 一种选择性接触晶体硅异质结太阳能电池及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2012368A1 (en) * 2006-04-25 2009-01-07 Murata Manufacturing Co. Ltd. Ultraviolet sensor

Also Published As

Publication number Publication date
CN109616533A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
US20110240123A1 (en) Photovoltaic Cells With Improved Electrical Contact
CN108878570B (zh) 空穴选择型MoOx/SiOx(Mo)/n-Si异质结、太阳电池器件及其制备方法
TWI684288B (zh) 包括經由原子層沉積形成的多重緩衝層的太陽能電池及其製造方法
KR101583026B1 (ko) Czts계 태양전지용 박막의 제조방법
CN109616533B (zh) 一种晶硅异质结太阳电池及其制备方法
KR20180034274A (ko) 은이 첨가된 czts계 박막 태양전지 및 이의 제조방법
KR101542343B1 (ko) 박막 태양전지 및 이의 제조방법
CN113745359A (zh) 一种碲化镉梯度吸收层的制备方法及太阳电池
WO2011123117A1 (en) Photovoltaic cells with improved electrical contact
CN110828587A (zh) 制造光伏器件的方法
WO2020000599A1 (zh) Cigs太阳能电池及其制备方法
JP5881717B2 (ja) 太陽電池及びその製造方法
TWI447919B (zh) 具有異質接面之矽基太陽能電池及其製程方法
KR20140122326A (ko) 산화인듐을 이용한 cigs 광흡수층 제조방법
US20120309125A1 (en) Buffer layer deposition methods for group ibiiiavia thin film solar cells
US20160240708A1 (en) Solar cell with a hetero-junction structure and method for manufacturing the same
KR102212042B1 (ko) 원자층 증착법으로 형성된 버퍼층을 포함하는 태양전지 및 이의 제조방법
CN111509065A (zh) 含有碱金属掺杂铜铟镓硒吸收层的太阳能电池
KR102212040B1 (ko) 원자층 증착법으로 형성된 버퍼층을 포함하는 태양전지의 제조방법
CN108987501A (zh) 一种新型无掺杂的单晶硅异质结太阳能电池及其制备方法
CN103219402A (zh) 一种高效异质结太阳能电池及其制备方法
TW201244143A (en) Method of manufacturing photoelectric conversion device
KR20150135692A (ko) 원자층 증착법으로 형성된 버퍼층을 포함하는 태양전지 및 이의 제조방법
CN103094372A (zh) 太阳能电池及其制造方法
KR101924538B1 (ko) 투명 전도성 산화물 후면전극을 가지는 칼코게나이드계 태양전지 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant