CN110739359A - α相GeTe宽光谱红外探测器及其制备方法 - Google Patents

α相GeTe宽光谱红外探测器及其制备方法 Download PDF

Info

Publication number
CN110739359A
CN110739359A CN201911011259.5A CN201911011259A CN110739359A CN 110739359 A CN110739359 A CN 110739359A CN 201911011259 A CN201911011259 A CN 201911011259A CN 110739359 A CN110739359 A CN 110739359A
Authority
CN
China
Prior art keywords
gete
phase
substrate
infrared detector
wide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911011259.5A
Other languages
English (en)
Inventor
唐利斌
赵逸群
杨盛谊
彭廷海
舒恂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming Institute of Physics
Original Assignee
Kunming Institute of Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming Institute of Physics filed Critical Kunming Institute of Physics
Priority to CN201911011259.5A priority Critical patent/CN110739359A/zh
Publication of CN110739359A publication Critical patent/CN110739359A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Light Receiving Elements (AREA)

Abstract

α相GeTe宽光谱红外探测器及其制备方法,属于光电子技术领域,尤其是一种薄膜宽光谱红外探测器。本发明α相GeTe宽光谱红外光电探测器,从下往上分别是基底、α相GeTe光敏层和金属电极层,制备过程包括基底清洗、α相GeTe薄膜溅射、GeTe退火、电极蒸镀过程。本发明具有工艺简单,成本低,响应度高,探测率高等优点,且可以在室温下工作,在红外探测领域具有重要的应用前景。同时,GeTe作为相变材料,已成为下一代存储和计算的关键材料。

Description

α相GeTe宽光谱红外探测器及其制备方法
技术领域
本发明属于光电子技术领域,尤其是一种薄膜宽光谱红外探测器。
背景技术
红外探测器在军事、电力、工业等领域有极为广泛的应用。目前,常用于制备红外探测器的光敏材料主要有碲镉汞、碲化铟、非晶硅、氧化钒等。但由于探测器光敏材料与其后端读出电路晶格不匹配,现有的红外探测器和后端的集成电路通常分别生产后,采用铟柱倒装互联的方式进行集成,这种生产和集成方式,生产成本过高,导致红外热像仪价格居高不下。
发明内容
本发明的目的在于提供一种低成本、高探测率的红外光电探测器。
本发明α相GeTe宽光谱红外探测器及其制备方法,其特征在于所述探测器从下往上分别是基底、α相GeTe光敏层和金属电极层。
其中,基底为不导电介质,如普通玻璃、石英玻璃或SiO2
所述α相GeTe薄膜层,厚度为20-60nm。
所述金属电极层为Al、Au或ITO,厚度为50-150nm。
所述的α相GeTe宽光谱红外探测器,其制备步骤如下:
S1,基底清洗吹干,以彻底清除基底表面吸附的杂质;
S2,α相GeTe薄膜层溅射:在磁控溅射机中,10-5Pa真空环境下,充Ar气,使腔体气压保持在3-5Pa,使用GeTe靶材溅射60-200s,使得厚度达到20-60nm;
S3,退火:将溅射好GeTe薄膜的基底取出,并在260-300℃范围退火10-20min;
S4,电极蒸镀:将退火后的器件放入真空蒸镀室中,真空度小于10-5Pa后,蒸镀电极30-90s,使得厚度达到50-150nm。
本发明具有工艺简单,成本低,响应度高,探测率高等优点,且可以在室温下工作,在红外探测领域具有重要的应用前景。同时,GeTe作为相变材料,已成为下一代存储和计算的关键材料。本发明利用GeTe作为光敏层,利于探测器材料和下一代读出电路的整合,便于器件的小型化和集成化。
附图说明
图1为本发明探测器结构示意图。
图2为GeTe薄膜退火前后XRD图;
图中可以明显看出退火后GeTe薄膜从非晶变为晶体。
图3为GeTe薄膜退火前后的紫外-可见-红外吸收光谱图;
图中可以明显看出退火前后薄膜对光谱的吸收不同。
图4为实施例2探测器无光照和红外光照射条件下的I-V曲线图;
图中可以明显看出器件对红外光照射有较大响应。
图5为实施例2探测器的探测率图;
明显看出器件探测率大约为1014J。
其中,基底1,α相GeTe光敏层2,金属电极层3。
具体实施方式
实施例1:α相GeTe宽光谱红外探测器,从下往上分别是基底1、α相GeTe光敏层2和金属电极层3。
其中,基底1为石英玻璃;α相GeTe光敏层2厚度为20nm;金属电极层3为Al电极,厚度50nm。
所述的探测器,具体制备步骤如下:
S1,基底清洗:先将基底浸泡于离子水、双氧水和氨水按照2:1:1配比混合的溶液中,在80℃下,清洗60min。随后,用去离子水冲洗干净,再用压缩空气吹干,以彻底清除基底表面吸附的杂质。
S2,α相GeTe薄膜层溅射:将基底放在磁控溅射机中,先抽真空到10-5Pa,随后充Ar气,使腔体气压保持在3Pa范围后,使用α相GeTe靶材溅射180s,厚度达到20nm。
S3,退火:将溅射好的GeTe薄膜的基底取出,并在300℃范围退火10min。
S4,Al电极蒸镀:将退火后的器件放入真空蒸镀室中,当真空度小于10-5Pa后,蒸镀Al电极30s,厚度达50nm。
实施例2:α相GeTe宽光谱红外探测器,从下往上分别是基底1、α相GeTe光敏层2和金属电极层3。
其中,基底1为普通玻璃;α相GeTe薄膜层2厚度30nm;金属电极层3为Al电极,厚度100nm。
所述的探测器,具体制备步骤如下:
S1,基底清洗:先将基底浸泡于离子水、双氧水和氨水按照2.5:1:1配比混合的溶液中,在80℃下,清洗50min。随后,用去离子水冲洗干净,再用压缩空气吹干,以彻底清除基底表面吸附的杂质。
S2,α相GeTe薄膜层溅射:将基底放在磁控溅射机中,先抽真空到10-5Pa,随后充Ar气,使腔体气压保持在5Pa范围后,使用GeTe靶材溅射120s,使厚度达到30nm。
S3,退火:将溅射好GeTe薄膜的基底取出,并在260℃范围退火10min。
S4.Al电极蒸镀:将退火后的器件放入真空蒸镀室中,当真空度小于10-5Pa后,蒸镀Al电极60s,使厚度达到100nm。
实施例3:α相GeTe宽光谱红外探测器,从下往上分别是基底1、α相GeTe光敏层2和金属电极层3。
其中,基底1为SiO2;α相GeTe光敏层2,厚度为60nm,金属电极层3为Al电极,厚度150nm。
所述的探测器,具体制备步骤如下:
S1,基底清洗:先将基底浸泡于离子水、双氧水和氨水按照3:1:1配比混合的溶液中,在100℃下,清洗30min。随后,用去离子水冲洗干净,再用压缩空气吹干,以彻底清除基底表面吸附的杂质。
S2,α相GeTe薄膜层溅射:将基底放在磁控溅射机中,先抽真空到10-5Pa,随后充Ar气,使腔体气压保持在4Pa范围后,使用GeTe靶材溅射200s,使厚度达60nm。
S3,退火:将溅射好GeTe薄膜的基底取出,并在260℃范围退火20min。
S4,Al电极蒸镀:将退火后的器件放入真空蒸镀室中,当真空度小于10-5Pa后,蒸镀Al电极90s,使厚度达150nm。

Claims (4)

1.α相GeTe宽光谱红外探测器,其特征在于α相GeTe宽光谱红外探测器,从下往上分别是基底、α相GeTe光敏层和金属电极层。
2.如权利要求1所述的α相GeTe宽光谱红外探测器,其特征在于所述基底为不导电介质,如:普通玻璃、石英玻璃、SiO2,所述金属电极层为Al、Au或ITO。
3.如权利要求1所述的α相GeTe宽光谱红外探测器,其特征在于所述α相GeTe薄膜层厚度为20-60nm,金属电极层的厚度50-150nm。
4.权利要求1所述α相GeTe宽光谱红外探测器,其特征在于该探测器的制备步骤如下:
S1,基底清洗吹干,以彻底清除基底表面吸附的杂质;
S2,α相GeTe薄膜层溅射:在磁控溅射机中,10-5Pa真空环境下,充Ar气,使腔体气压保持在3-5Pa,使用GeTe靶材溅射60-200s,使得厚度达到20-60nm;
S3,退火:将溅射好GeTe薄膜的基底取出,并在260-300℃范围退火10-20min;
S4,电极蒸镀:将退火后的器件放入真空蒸镀室中,真空度小于10-5Pa后,蒸镀电极30-90s,使得厚度达到50-150nm。
CN201911011259.5A 2019-10-23 2019-10-23 α相GeTe宽光谱红外探测器及其制备方法 Pending CN110739359A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911011259.5A CN110739359A (zh) 2019-10-23 2019-10-23 α相GeTe宽光谱红外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911011259.5A CN110739359A (zh) 2019-10-23 2019-10-23 α相GeTe宽光谱红外探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN110739359A true CN110739359A (zh) 2020-01-31

Family

ID=69270882

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911011259.5A Pending CN110739359A (zh) 2019-10-23 2019-10-23 α相GeTe宽光谱红外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110739359A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111341861A (zh) * 2020-02-17 2020-06-26 昆明物理研究所 基于p-GeTe/n-Si光伏型红外探测器及其制备方法
CN113388803A (zh) * 2021-06-15 2021-09-14 北京航空航天大学杭州创新研究院 一种高热电功率因子碲化锗薄膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820016A (zh) * 2010-04-16 2010-09-01 厦门大学 一种二氧化钛紫外光电探测器的制备方法
CN101976729A (zh) * 2010-09-30 2011-02-16 昆明物理研究所 平面构型有机红外或紫外光伏半导体探测器
CN103132018A (zh) * 2013-03-12 2013-06-05 电子科技大学 一种提高非晶硅薄膜电导率的方法
CN106601837A (zh) * 2016-11-23 2017-04-26 中山大学 一种超宽光谱光敏材料和应用该光敏材料的光电探测器
US10096736B1 (en) * 2016-01-15 2018-10-09 Hrl Laboratories, Llc P-Type chalcogenide and n-type silicon heterojunction infared photodiodes and method of manufacturing thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820016A (zh) * 2010-04-16 2010-09-01 厦门大学 一种二氧化钛紫外光电探测器的制备方法
CN101976729A (zh) * 2010-09-30 2011-02-16 昆明物理研究所 平面构型有机红外或紫外光伏半导体探测器
CN103132018A (zh) * 2013-03-12 2013-06-05 电子科技大学 一种提高非晶硅薄膜电导率的方法
US10096736B1 (en) * 2016-01-15 2018-10-09 Hrl Laboratories, Llc P-Type chalcogenide and n-type silicon heterojunction infared photodiodes and method of manufacturing thereof
CN106601837A (zh) * 2016-11-23 2017-04-26 中山大学 一种超宽光谱光敏材料和应用该光敏材料的光电探测器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111341861A (zh) * 2020-02-17 2020-06-26 昆明物理研究所 基于p-GeTe/n-Si光伏型红外探测器及其制备方法
CN113388803A (zh) * 2021-06-15 2021-09-14 北京航空航天大学杭州创新研究院 一种高热电功率因子碲化锗薄膜及其制备方法
CN113388803B (zh) * 2021-06-15 2023-09-12 北京航空航天大学杭州创新研究院 一种高热电功率因子碲化锗薄膜及其制备方法

Similar Documents

Publication Publication Date Title
EP1433207B8 (en) A process for large-scale production of cdte/cds thin film solar cells
WO2018214870A1 (zh) 一种异质结太阳能电池的制备方法及异质结太阳能电池
CN110739359A (zh) α相GeTe宽光谱红外探测器及其制备方法
CN101174671A (zh) 具有相变特性二氧化钒纳米薄膜的制备方法
Song et al. High-work-function transparent conductive oxides with multilayer films
CN103590000A (zh) 低温沉积柔性晶态氧化铟锡透明导电薄膜的制备方法
CN107742661A (zh) 用物理气相沉积法制备无机锡基钙钛矿太阳能电池的方法
Oh et al. Effect of Ag film thickness on the optical and the electrical properties in CuAlO2/Ag/CuAlO2 multilayer films grown on glass substrates
JP2013521642A (ja) 光電池セル
CN111341861A (zh) 基于p-GeTe/n-Si光伏型红外探测器及其制备方法
CN101709453A (zh) 室温条件下制备Al掺杂ZnO透明导电薄膜的方法
US9704610B2 (en) Manganese tin oxide based transparent conducting oxide and transparent conductive film and method for fabricating transparent conductive film using the same
CN108193179B (zh) 一种多层红外透明导电薄膜及其制备方法
CN111668340B (zh) 一种Cd3Cl2O2薄膜及其制备方法和薄膜太阳能电池
WO2024007601A1 (zh) 太阳电池的制备方法、太阳电池镀膜载板及其应用
CN111705306A (zh) 一种锌掺杂氧化锡透明导电薄膜及其制备方法和用途
US9984786B2 (en) Sputtered transparent conductive aluminum doped zinc oxide films
Chen et al. Influence of Al content and annealing atmosphere on optoelectronic characteristics of Al: ZnO thin films
CN102881563B (zh) 一种多晶硅薄膜组件的制备方法
CN114361344A (zh) 一种叠层太阳能电池及其制作方法
CN111254404A (zh) 一种择优生长的ito透明导电薄膜的制备方法
CN105609637A (zh) 沉积氧化物薄膜的方法、有机场效应晶体管及其制备方法
Schmidt et al. Highly transparent and conductive ZTO/Ag/ZTO multilayer top electrodes for large area organic solar cells
CN115000230B (zh) 一种垂直结构TiN增强型4H-SiC基宽谱光电探测器及制备方法
CN211929515U (zh) 一种硅异质结太阳电池用tco薄膜的制作设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200131