CN111682088A - 一种基于范德华异质结的隧穿型光电探测器及其制备方法 - Google Patents

一种基于范德华异质结的隧穿型光电探测器及其制备方法 Download PDF

Info

Publication number
CN111682088A
CN111682088A CN202010615790.XA CN202010615790A CN111682088A CN 111682088 A CN111682088 A CN 111682088A CN 202010615790 A CN202010615790 A CN 202010615790A CN 111682088 A CN111682088 A CN 111682088A
Authority
CN
China
Prior art keywords
dimensional material
tunneling
type
dimensional
van der
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010615790.XA
Other languages
English (en)
Inventor
胡平安
高峰
张甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202010615790.XA priority Critical patent/CN111682088A/zh
Publication of CN111682088A publication Critical patent/CN111682088A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1133Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a conductor-insulator-semiconductor diode or a CCD device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于半导体光电探测技术领域,具体涉及一种基于范德华异质结的隧穿光电探测器及其制备方法,利用金属型二维材料作为载流子传输层,绝缘型二维材料作为阻挡层及隧穿层,半导体型二维材料作为光电转换材料。本器件结构从下到上依次包括:衬底(1)、金属型二维材料层(2)、绝缘型二维材料隧穿层(3)、半导体型二维材料吸光层(4)、金属电极(5)。器件工作时,绝缘型二维材料在黑暗中起到阻挡层作用,提高势垒阻止电子传输,有效降低器件暗电流;在光照射下,外加偏压使绝缘型二维材料层发生隧穿效应,成为光生载流子的传导阶梯,并发生载流子倍增效应,有效提高器件光电流。该器件具有高响应率、高探测率、高光开关比、快响应等特点。

Description

一种基于范德华异质结的隧穿型光电探测器及其制备方法
技术领域
本发明属于新型材料光探测器领域,主要涉及一种基于范德华异质结的隧穿型光电探测器及其制备方法。
背景技术
光电探测器是基于光电效应将光信号转换为电信号从而实现对光辐射进行测量的器件。光电探测器由于具有响应快、易集成、精度高、体积小、功耗低及非接触测量的优点,应用十分广泛,遍布国计民生的各个领域。作为光电探测技术核心技术之一的光电探测器,其对微弱信号的快速检测能力将影响到整个光电探测系统的应用范围。随着科学技术的发展,虽然光电探测器在各项性能都有着显著的提高,但是由于半导体外延制备工艺的限制,大量的缺陷密度使器件的暗噪声很难降低,因此,光电探测器对微弱信号的检测能力并没有得到显著提升。
光导型光电探测器通常具有较高的响应率,但较大的暗电流导致其探测率较低;而光伏型光电探测器则牺牲了响应率获得了较大的开关比。因此发展一种同时具有高响应率、高探测率和快响应速率的新型光电探测器具有十分重要的意义。而近些年发展的导体/绝缘体/半导体型隧穿光电探测器(IEEE Electron Device Letters,2000,21,307-309;The Journal of Physical Chemistry C,2010,114,7169-7172),在异质结中引入隧穿层,利用隧穿层降低了暗电流,提高了探测率,而光照下光生载流子发生Fowler-Nordheim隧穿(FN隧穿),保证了光电流的轻微衰减,保证了响应率几乎未降低。因此,这种隧穿光电探测器具有巨大的应用价值,是下一代光电探测器的研究热点。
相较于传统三维光电探测材料(比如硅和砷化镓),二维材料展现出了许多优异的性质。首先,因为垂直于二维平面的量子限域效应,产生了众多新奇的光电学性质,这些性质与它们的块体材料相比截然不同。其次,因为二维材料的表面通常有天然的钝化但是不含悬挂键的晶格,故很容易将它们与其他二维光学结构(比如波导和腔体)进行集成。并且,也可利用不同晶格常数的二维材料构建异质结,因为这些材料层之间只需要一个相对较弱的范德华力就可以连接,并不需要考虑传统块体材料结合时的晶格匹配问题。第三,虽然二维材料只有原子级别的厚度,但是大部分二维材料都能对光产生较强的吸收。例如单层的二硫化钼在615nm和660nm波段对入射光就有大约10%的吸收。(ACS nano,2013,7,5660-5665)最后,凭借多种多样的带隙结构,二维纳米材料的光学响应能拓展到电磁波谱上相当广的范围(Nature Photonics,2014,8,899-907.)。
因此,为解决现有技术中存在的问题,需研发一种具有超高响应值,高灵敏度,高响应速度的二维层状材料的隧穿型光电探测器,通过引入六方氮化硼隧穿层,降低暗电流,减少光生载流子复合,提高探测器的光电特性。
发明内容
本发明目的是提供一种基于范德华异质结的隧穿型光电探测器及该探测器的制备方法。
本发明的目的一是提供一种基于范德华异质结的隧穿型光电探测器如附图1所示,包括:衬底(1)、金属型二维材料层(2)、绝缘型二维材料隧穿层(3)、半导体型二维材料吸光层(4)、金属电极(5)。
本发明的目的二是提供一种基于范德华异质结的隧穿型光电探测器的制备方法。
本发明所述一种基于范德华异质结的隧穿型光电探测器的制备流程包含以下步骤:
步骤1:清洗衬底(1),用丙酮、异丙醇、乙醇和去离子水依次超声10~15min。最后用氮气吹干,待用;
步骤2:在洁净的衬底(1)表面制备金属型二维材料薄膜;
步骤3:在金属型二维材料薄膜表面制备绝缘型二维材料,使得绝缘型二维材料完全覆盖金属型二维材料的一端;
步骤4:在绝缘型二维材料表面表面制备半导体型二维材料,使得二维半导体材料一端处于金属型二维材料上端且没有直接接触,另一端位于绝缘二维材料表面;
步骤5:采用光刻技术,结合热蒸发及lift-off工艺制备源漏电极(5a,5b),形成设置在衬底(1)上的范德华异质结的隧穿型光电探测器,并使用光电探测器测试系统测试其光电性能。
区别于现有技术的情况,本发明的有益效果是:
1、本发明采用绝缘型二维材料作为隧穿层,具有平整的表面结构、连续可调的厚度和较大的光学带隙,能够有效地提高界面接触质量并阻碍暗电流传输;
2、本发明采用半导体型二维材料作为光敏感材料,通过选择使其具有与绝缘型二维材料相接近的价带,因此,绝缘层/半导体层异质结的空穴势垒较小,光生空穴可以轻易穿过隧穿层,保证了探测器的高响应;
3、本发明采用金属型二维材料作为底电极,具有极高的电导率及极小的厚度,降低了光电流的损耗,提高探测性能;
4、本发明所涉及器件在工作时,隧穿空穴加速撞击绝缘型二维材料晶格,产生额外的载流子提高光电流,具有载流子倍增效应,提高探测性能。
附图说明
图1为本发明一种基于范德华异质结的隧穿型光电探测器的结构示意图。
图2为隧穿结构光照下能带示意图。
图3为本发明所涉及器件的电流电压特性曲线。
图4为本发明所涉及器件的电流时间曲线。
图1中的附图标记,(1)为衬底;(2)为金属型二维材料层;(3)绝缘型二维材料隧穿层;(4)为半导体型二维材料吸光层;(5)为金属电极。
具体实施方式
下面结合附图和实施例对本发明作进一步详细描述,本实施例仅是本发明的一部分实施例,而不是全部实施例。本发明的保护范围不限于下述实施例。
如图1所示,本实例采用氧化硅片作为衬底(1),石墨烯层(2)六方氮化硼层(3)与二硫化锡层(4)形成范德华异质结覆盖于衬底上。金属电极(5)分别连接石墨烯层与二硫化锡层形成光电探测器。
采用食人鱼洗液在85℃下清洗氧化硅片30min,而后用去离子水清洗。然后用丙酮、异丙醇、乙醇和去离子水依次超声10-15min。最后用氮气吹干,待用。
石墨烯层(2)通过机械剥离的方法获得;首先在思高胶带上放置少许块体石墨,另取胶带反复粘贴6-10次,然后覆盖于聚二甲基硅氧烷PDMS表面。利用PDMS与石墨烯之间的黏附力大于石墨烯层间的黏附力,从而将石墨烯从单晶石墨上剥离出来。
石墨烯层(2)转移通过聚二甲基硅氧烷PDMS干法转移方式;将PDMS/石墨烯层平整的贴合在衬底氧化硅片(1)表面,40-60℃加热5min,释放PDMS与石墨烯之间的粘附力,将PDMS从衬底上轻轻揭去,即转移至所需的衬底层(1)上,挑选厚度在0.5-10nm的石墨烯备用。
通过机械剥离的方法,在PDMS上获得厚度在20-30nm的六方氮化硼。通过干法定点转移将机械剥离的六方氮化硼(3)堆叠在选好的石墨烯薄片上,以此形成石墨烯/六方氮化硼范德华异质结。即,将PDMS/六方氮化硼吸附于载玻片上,通过显微镜确定石墨烯及六方氮化硼的相对位置。而后缓慢降低PDMS/六方氮化硼的高度直至六方氮化硼完全贴于石墨烯及氧化硅片上,40-60℃加热5min,缓慢抬起PDMS。获得六方氮化硼/石墨烯/二氧化硅/硅层。
通过机械剥离的方法,在PDMS上获得厚度在10-20nm的二硫化锡。通过干法定点转移将机械剥离的二硫化锡(4)堆叠在石墨烯/六方氮化硼上,以此在衬底上形成石墨烯/六方氮化硼/二硫化锡范德华异质结。
采用光刻技术,结合热蒸发及lift-off工艺制备5nmCr/20nmAu源漏电极(5a,5b),形成设置在衬底(1)上的石墨烯/六方氮化硼/二硫化锡光电探测器,并使用光电探测器测试系统测试其光电性能。
图2为石墨烯/六方氮化硼/二硫化锡异质结光照下的能带示意图。可以看到正向偏压下,该器件具有较大的电子势垒,限制了器件的暗电流。而光照下,二硫化锡中的光生空穴具有较小的空穴势垒,可以保证光响应值。因此该器件表现出极高的探测率。
图3为石墨烯/六方氮化硼/二硫化锡的电流电压特性曲线。可以看出器件具有极低的暗电流(小于1pA),光照下电流明显增大,表现出明显的光响应。在0.6V偏压下,器件的响应度达到2A/W,探测度达到1013Jones,光开关比大于5.2×105。外量子效率最大值甚至达到1.25×105%。以上结果充分说明本发明一种基于范德华异质结的隧穿型光电探测器具有优异的探测性能。
以上所述仅为本发明较佳的实施例及实施方式,并非因此限制本发明的专利范围。相关人员可在本发明技术范围内进行多样的变化及修改,直接或间接运用在其他相关的技术领域,均同理涵盖在本发明的专利保护范围内。

Claims (10)

1.一种基于范德华异质结的隧穿型光电探测器,其特性在于:器件结构从下到上依次包括:衬底(1)、金属型二维材料层(2)、绝缘型二维材料隧穿层(3)、半导体型二维材料吸光层(4)、金属电极(5);
所述金属型二维材料层(2)、绝缘型二维材料隧穿层(3)、半导体型二维材料吸光层(4)之间在静电场的作用下形成载流子隧穿结构。
2.根据权利要求1所述一种基于范德华异质结的隧穿光电探测器,其特性在于:金属型二维材料可以选择石墨烯、1T-MoS2、Mo2C、VSe2、NbSe2等;绝缘型二维材料可以选择h-BN、GaN等;半导体型二维材料可以选择MoS2、WSe2、SnS2等。
3.根据权利要求1所述一种基于二维层状材料的隧穿光电探测器,其特性在于:金属型二维材料厚度0.5-10nm,绝缘型二维材料厚度为10-30nm,半导体型二维材料厚度为10-20nm,电极厚度为20-50nm。
4.根据权利要求1所述一种基于范德华异质结的隧穿光电探测器,其特性在于:所述的衬底可以根据需求选自氧化硅片、石英片、PET和聚酰亚胺。
5.跟据权利要求1所述一种基于范德华异质结的隧穿光电探测器,其特性在于:所述的两个金属电极可以独立地选自Au、Al、Ag、Cr和In电极。
6.根据权利要求1所述一种基于范德华异质结的隧穿光电探测器,其特性在于:六方氮化硼(3)在石墨烯(2)与二硫化锡(4)之间形成了隧穿势垒,降低了暗电流,限制了光生载流子复合。
7.根据权利要求1所述一种基于范德华异质结的隧穿光电探测器,其特性在于:调解六方氮化硼的厚度从薄到厚,暗电流逐渐减少,当厚度为30nm时,具有极佳的性能。
8.一种如权利要求1所述的基于二维层状材料的隧穿光电探测器的制备方法,其特性在于:本发明所述的基于范德华异质结的隧穿光电探测器的制备流程包含以下步骤:
步骤1:清洗衬底(1),用丙酮、异丙醇、乙醇和去离子水依次超声10-15min,最后用氮气吹干,待用;
步骤2:在洁净的衬底(1)表面制备金属型二维材料薄膜;
步骤3:在金属型二维材料薄膜表面制备绝缘型二维材料,使得绝缘型二维材料完全覆盖金属型二维材料的一端;
步骤4:在绝缘型二维材料表面表面制备半导体型二维材料,使得二维半导体材料一端处于金属型二维材料上端且没有直接接触,另一端位于绝缘二维材料表面;
步骤5:采用光刻技术,结合热蒸发及lift-off工艺制备源漏电极(5a,5b),形成设置在衬底(1)上的范德华异质结的隧穿型光电探测器,并使用光电探测器测试系统测试其光电性能。
9.根据权利要求8所述的基于范德华异质结的隧穿光电探测器的制备方法,其特征在于,二维层状材料的合成方法可以是化学气相沉积法、机械剥离法、化学剥离法、物理气相沉积法和分子束外延法。
10.根据权利要求8所述的基于范德华异质结的隧穿光电探测器的制备方法,其特征在于,所述的两个金属电极的制备方法可以是热蒸发镀膜技术、电子束蒸镀技术或磁控溅射技术中的一种。
CN202010615790.XA 2020-06-30 2020-06-30 一种基于范德华异质结的隧穿型光电探测器及其制备方法 Pending CN111682088A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010615790.XA CN111682088A (zh) 2020-06-30 2020-06-30 一种基于范德华异质结的隧穿型光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010615790.XA CN111682088A (zh) 2020-06-30 2020-06-30 一种基于范德华异质结的隧穿型光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN111682088A true CN111682088A (zh) 2020-09-18

Family

ID=72456945

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010615790.XA Pending CN111682088A (zh) 2020-06-30 2020-06-30 一种基于范德华异质结的隧穿型光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN111682088A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112420872A (zh) * 2020-11-12 2021-02-26 苏州科技大学 基于WSe2/KTaO3范德华异质结的光电探测器及其制备方法
CN112420852A (zh) * 2020-11-28 2021-02-26 郑州大学 一种二维材料光探测器及其制备方法
CN112993074A (zh) * 2021-02-08 2021-06-18 中国人民解放军军事科学院国防科技创新研究院 光电探测器、制备方法及光电器件
CN113097319A (zh) * 2021-03-08 2021-07-09 华南师范大学 一种碳化硅/二硫化锡异质结光电晶体管及其制备方法和应用
CN113205987A (zh) * 2021-04-07 2021-08-03 清华大学 基于多层二维材料的平面光致电子发射源
CN113659021A (zh) * 2021-07-16 2021-11-16 浙江大学 一种基于调控半导体材料吸收层厚度的光谱探测器件
CN113937023A (zh) * 2021-08-31 2022-01-14 清华大学 测试二维材料异质结中缺陷影响能量转移的方法
CN114023844A (zh) * 2021-10-15 2022-02-08 华南师范大学 一种自驱动光电探测器及其制备方法
CN114927587A (zh) * 2022-03-15 2022-08-19 中国民用航空飞行学院 一种基于三元材料平面隧穿效应的光电探测器及制备方法
CN114927586A (zh) * 2022-03-15 2022-08-19 中国民用航空飞行学院 一种基于新型三元材料的异质结光电探测器及制备方法
CN114975675A (zh) * 2022-06-30 2022-08-30 中国科学院半导体研究所 光电器件及其制备方法
CN116365363A (zh) * 2023-03-22 2023-06-30 江苏第三代半导体研究院有限公司 激光器外延结构及激光器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140264275A1 (en) * 2013-03-13 2014-09-18 The Regents Of The University Of Michigan Photodetectors based on double layer heterostructures
CN107749433A (zh) * 2017-08-30 2018-03-02 中国科学院上海技术物理研究所 一种二维范德华异质结光电探测器及其制备方法
CN108831950A (zh) * 2018-05-23 2018-11-16 北京科技大学 一种超短沟道金属-半导体-金属型光探测器及制作方法
US20190252569A1 (en) * 2018-02-13 2019-08-15 Samsung Electronics Co., Ltd. Near-infrared light sensors including 2-dimensional insulator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140264275A1 (en) * 2013-03-13 2014-09-18 The Regents Of The University Of Michigan Photodetectors based on double layer heterostructures
CN107749433A (zh) * 2017-08-30 2018-03-02 中国科学院上海技术物理研究所 一种二维范德华异质结光电探测器及其制备方法
US20190252569A1 (en) * 2018-02-13 2019-08-15 Samsung Electronics Co., Ltd. Near-infrared light sensors including 2-dimensional insulator
CN108831950A (zh) * 2018-05-23 2018-11-16 北京科技大学 一种超短沟道金属-半导体-金属型光探测器及制作方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAO LI 等: "Restoring the photovoltaic effect in graphene-based van der Waals heterojunctions towards self-powered high-detectivity photodetectors", 《NANO ENERGY》 *
HONGHUI SUN 等: "Electro-photo modulation of the fermi level in WSe2/graphene van der Waals heterojunction", 《PHYSICA E》 *
QUOC AN VU 等: "Tuning Carrier Tunneling in van der Waals Heterostructures for Ultrahigh Detectivity", 《NANO LETT.》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112420872A (zh) * 2020-11-12 2021-02-26 苏州科技大学 基于WSe2/KTaO3范德华异质结的光电探测器及其制备方法
CN112420872B (zh) * 2020-11-12 2023-06-16 苏州科技大学 基于WSe2/KTaO3范德华异质结的光电探测器及其制备方法
CN112420852B (zh) * 2020-11-28 2022-07-01 郑州大学 一种二维材料光探测器及其制备方法
CN112420852A (zh) * 2020-11-28 2021-02-26 郑州大学 一种二维材料光探测器及其制备方法
CN112993074A (zh) * 2021-02-08 2021-06-18 中国人民解放军军事科学院国防科技创新研究院 光电探测器、制备方法及光电器件
CN113097319A (zh) * 2021-03-08 2021-07-09 华南师范大学 一种碳化硅/二硫化锡异质结光电晶体管及其制备方法和应用
CN113205987A (zh) * 2021-04-07 2021-08-03 清华大学 基于多层二维材料的平面光致电子发射源
CN113659021A (zh) * 2021-07-16 2021-11-16 浙江大学 一种基于调控半导体材料吸收层厚度的光谱探测器件
CN113937023A (zh) * 2021-08-31 2022-01-14 清华大学 测试二维材料异质结中缺陷影响能量转移的方法
CN113937023B (zh) * 2021-08-31 2024-06-11 清华大学 测试二维材料异质结中缺陷影响能量转移的方法
CN114023844A (zh) * 2021-10-15 2022-02-08 华南师范大学 一种自驱动光电探测器及其制备方法
CN114927587A (zh) * 2022-03-15 2022-08-19 中国民用航空飞行学院 一种基于三元材料平面隧穿效应的光电探测器及制备方法
CN114927586A (zh) * 2022-03-15 2022-08-19 中国民用航空飞行学院 一种基于新型三元材料的异质结光电探测器及制备方法
CN114927587B (zh) * 2022-03-15 2024-03-22 中国民用航空飞行学院 一种基于三元材料平面隧穿效应的光电探测器及制备方法
CN114927586B (zh) * 2022-03-15 2024-03-22 中国民用航空飞行学院 一种基于新型三元材料的异质结光电探测器及制备方法
CN114975675A (zh) * 2022-06-30 2022-08-30 中国科学院半导体研究所 光电器件及其制备方法
CN116365363A (zh) * 2023-03-22 2023-06-30 江苏第三代半导体研究院有限公司 激光器外延结构及激光器

Similar Documents

Publication Publication Date Title
CN111682088A (zh) 一种基于范德华异质结的隧穿型光电探测器及其制备方法
Luo et al. A graphene/single GaAs nanowire Schottky junction photovoltaic device
Won et al. Efficient photovoltaic effect in graphene/h-BN/silicon heterostructure self-powered photodetector
CN107316915B (zh) 可见光波段的集成石墨烯二硫化钼的光电探测器及其制备方法
CN107833940B (zh) 一种基于二维二硫化钼-二硫化铼异质结的光电子器件、制备方法及应用
CN113097334B (zh) 一种SiC基二硫化钨紫外-可见光电探测器及其制备方法和应用
TWI705577B (zh) 二維電子元件與相關製造方法
CN107527968A (zh) 一种石墨烯‑二硫化钼侧向异质结光电探测器结构
CN111463295A (zh) 氧等离子体处理的硒氧化铋纳米片光电探测器及制备方法
CN108630782B (zh) 一种宽探测波段双重等离子工作光电探测器的制备方法
CN110729375B (zh) 单边耗尽区的高效快速范德华异质结探测器及制备方法
CN111129169B (zh) 一种基于石墨烯/二硒化钨/二硒化锡叠层结构的光电器件及其制备方法
CN112133777A (zh) 一种核-壳结构量子点宽光谱光电探测器及其制备方法
Zhang et al. Graphene/InP Schottky junction near-infrared photodetectors
Zhou et al. A full transparent high-performance flexible phototransistor with an ultra-short channel length
KR100809427B1 (ko) 광전 변환 소자 및 이의 제조 방법
RU2694113C2 (ru) Тонкопленочный гибридный фотоэлектрический преобразователь и способ его изготовления
CN107731936B (zh) 一种基于三维狄拉克材料的隧穿型光电探测器及制备方法
CN110190150A (zh) 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法
CN113964230A (zh) 一种硫硒化亚锡纳米片/GaAs异质结光电二极管及其制备方法和应用
CN116130529B (zh) 一种具有宽频光电响应的探测器件及其制备方法
CN115000212B (zh) 一种二维直接带隙半导体探测器及其制备方法
CN108649095B (zh) 基于纳晶结构碳膜的场效应管结构光电器件及其制备方法
Yang et al. Cr-doped ZnS for intermediate band solar cells
KR20110107934A (ko) 탄소나노튜브/ZnO 투명태양전지 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination