CN111463295A - 氧等离子体处理的硒氧化铋纳米片光电探测器及制备方法 - Google Patents

氧等离子体处理的硒氧化铋纳米片光电探测器及制备方法 Download PDF

Info

Publication number
CN111463295A
CN111463295A CN202010291662.4A CN202010291662A CN111463295A CN 111463295 A CN111463295 A CN 111463295A CN 202010291662 A CN202010291662 A CN 202010291662A CN 111463295 A CN111463295 A CN 111463295A
Authority
CN
China
Prior art keywords
bismuth oxide
oxygen plasma
nanosheet
selenium
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010291662.4A
Other languages
English (en)
Inventor
诸葛福伟
熊绪婧
翟天佑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202010291662.4A priority Critical patent/CN111463295A/zh
Publication of CN111463295A publication Critical patent/CN111463295A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于光电探测相关技术领域,其公开了一种氧等离子体处理的硒氧化铋纳米片光电探测器及制备方法,所述制备方法包括以下步骤:(1)采用化学气相沉积方法在衬底上制备硒氧化铋纳米片;(2)采用激光直写或者电子束曝光技术,结合热蒸发及电子束蒸发在所述硒氧化铋纳米片上制备一对源漏金属电极;(3)对所述硒氧化铋纳米片进行氧等离子体处理,由此得到硒氧化铋纳米片光电探测器。本发明采用等离子体处理的方法,可以使得硒氧化铋纳米片的初始暗态电流下降,可以增大器件的光响应,且制备方法工艺简单,操作容易,成本较低,有望应用于大规模改善硒氧化铋纳米片光电探测器的性能,为硒氧化铋在光电探测器的应用奠定了基础。

Description

氧等离子体处理的硒氧化铋纳米片光电探测器及制备方法
技术领域
本发明属于光电探测相关技术领域,更具体地,涉及一种氧等离子体处理的硒氧化铋纳米片光电探测器及制备方法。
背景技术
光电信号的转换技术极大地影响了日常生活,应用广泛,包括视觉成像、光通信、气相传感和探测器等等,尽管光电探测平台的尺寸和应用范围都在逐渐扩宽,但是从速度、效率、波长范围、柔性、透明度和兼容性等角度,对更高性能的光电探测的需求越来越大。
以石墨烯为代表的二维材料拥有很多优异的电学、光学、机械和热性能,尤其在光电性能上,二维材料很有可能替代光电探测器中的传统材料来满足高频通信、宽谱探测等需要。二维光电探测器有很多优点,如石墨烯探测器的光谱探测范围很广、响应超快,但是石墨烯在应用中由于零带隙和低光吸收系数的特点对光的响应度很小,过渡金属硫族化合物透明、柔性、易处理、带隙可调的特点使得过渡金属硫族化合物光电探测器可以实现柔性和不同光波长的探测,但是载流子迁移率较低限制了应用范围。黑磷带隙可调但稳定性差、难制备,限制了黑磷光电探测器的应用,因此,以发展新材料或者利用二维材料间的范德华作用力使其复合为主,大量的研究投入其中来改善器件的光电探测性能。
近几年,二维硒氧化铋由于性能独特而受到广泛关注,硒氧化铋具有二维层状结构,带隙约0.8eV,在室温下非常稳定,有效质量小,具有高迁移率(室温~450cm2V-1S-1)。高的迁移率可使器件运行速度快,功耗降低,适用于高频。但二维硒氧化铋的载流子浓度高达1019~1020cm-3。载流子浓度和迁移率决定半导体的导电能力,因此二维硒氧化铋的导电能力很强,做光电探测器时的暗电流大,对光的响应小,不利于实现高性能光电探测器。
目前主要有两种方案改善二维硒氧化铋导电能力强的特点,一种主要通过改善化学气相沉积合成二维硒氧化铋的方法,但是化学气相沉积法合成的材料之间存在性质不均一的问题;一种是将二维硒氧化铋转移到有氧化层的硅衬底,利用外部电压等来调控,但是工序复杂。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种氧等离子体处理的硒氧化铋纳米片光电探测器及制备方法,其采用等离子体处理的方法,可以使得硒氧化铋纳米片的初始暗态电流下降,可以增大器件的光响应,且制备方法工艺简单,操作容易,成本较低,有望应用于大规模改善硒氧化铋纳米片光电探测器的性能,为硒氧化铋在光电探测器的应用奠定了基础。
为实现上述目的,按照本发明的一个方面,提供了一种氧等离子体处理的硒氧化铋纳米片光电探测器的制备方法,所述制备方法包括以下步骤:
(1)采用化学气相沉积方法在衬底上制备硒氧化铋纳米片;
(2)采用激光直写或者电子束曝光技术,结合热蒸发及电子束蒸发在所述硒氧化铋纳米片上制备一对源漏金属电极;
(3)对所述硒氧化铋纳米片进行氧等离子体处理,由此得到硒氧化铋纳米片光电探测器。
进一步地,所述衬底为绝缘材料,其为云母片。
进一步地,所述硒氧化铋纳米片的厚度为10nm~100nm。
进一步地,所述源漏金属电极为铬金复合电极,其中铬的厚度为5nm~10nm,金的厚度为50nm~100nm。
进一步地,所述氧等离子体的流量为10sccm;处理频率为60kHz~100kHz;处理时间为6s~180s;处理压力为0.1mBar~0.4mBar。
进一步地,将硒氧化铋纳米片放入等离子体清洗剂的真空腔室中,采用氧等离子体对硒氧化铋纳米片表面进行氧化,形成氧等离子体处理的硒氧化铋纳米片光电探测器。
进一步地,在所述硒氧化铋纳米片的表面通过激光直写或者电子束曝光得到金属电极图形;然后,采用热蒸发或者电子束蒸发按照所述金属电极图形沉积厚度为5nm-10nm的Cr黏附层,然后在所述Cr黏附层上沉积50nm~100nm的Au电极,由此得到所述源漏金属电极。
按照本发明的另一个方面,提供了一种氧等离子体处理的硒氧化铋纳米片光电探测器,所述光电探测器是采用如上所述的氧等离子体处理的硒氧化铋纳米片光电探测器的制备方法制备而成的。
进一步地,所述光电探测器包括衬底、一对源漏金属电极及硒氧化铋纳米片,所述硒与氧化铋纳米片是通过化学气相沉积方法形成在所述衬底的表面上的;一对所述源漏金属电极分别设置在所述硒氧化铋纳米片远离所述衬底的表面相背的两侧;所述硒氧化铋纳米片是经过氧等离子体处理的。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,本发明提供的氧等离子体处理的硒氧化铋纳米片光电探测器及制备方法主要具有以下有益效果:
1.所述制备方法使得光响应较差的硒氧化铋纳米片光电探测器能够对光有一个很好的响应。
2.氧等离子体处理的硒氧化铋纳米片暗电流可以大大降低,具有高开关比,高的光响应度、光探测度。
3.本发明提供的氧等离子体处理的硒氧化铋纳米片所用材料以氧等离子体处理的硒氧化铋纳米片为基本材料,制备过程简单,成本低,易于实现。
4.所述制备方法的制备工艺简单,易于实施,有利于推广应用。
附图说明
图1是本发明提供的氧等离子体处理的硒氧化铋纳米片光电探测器的制备方法的流程示意图;
图2是本发明提供的氧等离子体处理的硒氧化铋纳米片光电探测器的结构示意图;
图3是图2中的氧等离子体处理的硒氧化铋纳米片光电探测器在氧等离子体处理不同程度的时间分辨光响应图;
图4是图2中的硒氧化铋纳米片光电探测器在氧等离子体处理不同程度的响应度探测度示意图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:1-衬底,2-源漏金属电极,3-硒氧化铋纳米片。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
请参阅图1及图2,本发明提供的氧等离子体处理的硒氧化铋纳米片光电探测器的制备方法,所述制备方法主要包括以下步骤:
步骤一,采用化学气相沉积方法在衬底上制备硒氧化铋纳米片。
本实施方式中,所述衬底为绝缘材料,其为云母片;所述硒氧化铋纳米片的厚度为10nm~100nm,其形状为正方形。
步骤二,采用激光直写或者电子束曝光技术,结合热蒸发及电子束蒸发工艺在所述硒氧化铋纳米片上制备一对源漏金属电极。
本实施方式中,所述源漏金属电极为铬金复合电极,其中铬的厚度为5nm~10nm,金的厚度为50nm~100nm。
具体地,在所述硒氧化铋纳米片的表面通过激光直写或者电子束曝光得到金属电极图形;然后采用热蒸发或者电子束蒸发按照所述金属电极图形沉积厚度为5nm~10nm的Cr黏附层,然后在所述Cr黏附层上沉积50nm~100nm的Au电极,由此得到所述源漏金属电极。
步骤三,对所述硒氧化铋纳米片进行氧等离子体处理,由此得到硒氧化铋纳米片光电探测器。
本实施方式中,所述氧等离子体的流量为10sccm;处理频率为60kHz~100kHz;处理时间为6s~180s;处理压力为0.1mBar~0.4mBar。
具体地,将硒氧化铋纳米片放入等离子体清洗剂的真空腔室中,采用氧等离子体对硒氧化铋纳米片表面进行氧化,形成氧等离子体处理的硒氧化铋纳米片光电探测器。
本发明提供的氧等离子体处理的硒氧化铋纳米片光电探测器,所述光电探测器包括衬底1、一对源漏金属电极2及硒氧化铋纳米片3,所述硒氧化铋纳米片3是通过化学气相沉积方法形成在所述衬底1的表面上的。一对所述源漏金属电极2分别设置在所述硒氧化铋纳米片3远离所述衬底1的表面相背的两侧;所述硒氧化铋纳米片3是经过氧等离子体处理的。
以下以具体实施例来对本发明进行详细说明。
首先,在管式炉载气流动方向的下游,距离加热中心8cm~14cm放置云母衬底(化学式KMg3(AlSi3O10)F2),称取40mg Bi2O3粉末和35mg~37mg Bi2Se3块体为原料,用97mm磁舟装好并置于管式炉石英管的加热中心;其中,载气为氩气,控制管式炉的气体流量为150sccm~250sccm,沉积温度为850℃~900℃,加热时间为25~30分钟,保温时间为15~25分钟结束,沉积完毕后自然降温至室温,由此得到硒氧化铋纳米片。
得到硒氧化铋纳米片后,通过激光直写/电子束曝光的方法得到电极图案,前者需旋涂激光直写光刻胶进行曝光,后者可先用光刻的方法在云母衬底上制作mark标记,沉积金属,然后按照正常电子束曝光的流程制作。接着,通过热蒸镀/电子束蒸镀沉积金属铬/金,用丙酮等有机溶剂去除光刻胶,氮气吹干。最后,将硒氧化铋纳米片器件放置在氧等离子体中处理,得到氧等离子处理的硒氧化铋纳米片光电探测器。
所得到的氧等离子体处理的硒氧化铋纳米片光电探测器包括衬底材料为云母的衬底、化学气相沉积法合成厚度为26nm的硒氧化铋纳米片、以及热蒸镀/电子束蒸镀的源漏铬金金属电极;Cr黏附层的厚度为10nm,Au电极的厚度为100nm,氧等离子体处理过的硒氧化铋纳米片表面。
如图3所示,氧等离子体分别处理6、12、18秒得到的硒氧化铋纳米片光电探测器,测试处理前和处理6、12、18秒后对波长为680nm、功率为318.31μW/cm2可见光的时间分辨光响应曲线;由图可知,随氧等离子体处理的时间增加,暗电流越来越小,由93微安下降到50微安,净光电流越来越大,由29微安上升至43微安。
如图4所示,氧等离子体分别处理6、12、18秒得到的硒氧化铋纳米片光电探测器,测试处理前和处理6、12、18秒后对波长为680nm、功率为318.31μW/cm2可见光的响应度和探测度曲线;由图可知,随氧等离子体处理器件的时间增加,响应度和探测度越来越大,且最大的响应度约为22500A/W,探测度为1.1×1011Jones。
本发明采用氧等离子体处理的硒氧化铋纳米片作为感光材料,以实现光电探测;氧等离子体处理可以降低硒氧化铋纳米片的暗态电流,同时保持一定的光电流,大大增加光响应度及光探测度。氧等离子体处理简单快速降低硒氧化铋纳米片暗电流的方法,将在硒氧化铋纳米片光电探测器中有广泛应用。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种氧等离子体处理的硒氧化铋纳米片光电探测器的制备方法,其特征在于,该方法包括以下步骤:
(1)采用化学气相沉积方法在衬底上制备硒氧化铋纳米片;
(2)采用激光直写或者电子束曝光技术,结合热蒸发及电子束蒸发在所述硒氧化铋纳米片上制备一对源漏金属电极;
(3)对所述硒氧化铋纳米片进行氧等离子体处理,由此得到硒氧化铋纳米片光电探测器。
2.如权利要求1所述的氧等离子体处理的硒氧化铋纳米片光电探测器的制备方法,其特征在于:所述衬底为绝缘材料,其为云母片。
3.如权利要求1所述的氧等离子体处理的硒氧化铋纳米片光电探测器的制备方法,其特征在于:所述硒氧化铋纳米片的厚度为10nm~100nm。
4.如权利要求1所述的氧等离子体处理的硒氧化铋纳米片光电探测器的制备方法,其特征在于:所述源漏金属电极为铬金复合电极,其中铬的厚度为5nm~10nm,金的厚度为50nm~100nm。
5.如权利要求1所述的氧等离子体处理的硒氧化铋纳米片光电探测器的制备方法,其特征在于:所述氧等离子体的流量为10sccm;处理频率为60kHz~100kHz;处理时间为6s~180s;处理压力为0.1mBar~0.4mBar。
6.如权利要求1-5任一项所述的氧等离子体处理的硒氧化铋纳米片光电探测器的制备方法,其特征在于:将硒氧化铋纳米片放入等离子体清洗剂的真空腔室中,采用氧等离子体对硒氧化铋纳米片表面进行氧化,形成氧等离子体处理的硒氧化铋纳米片光电探测器。
7.如权利要求1-5任一项所述的氧等离子体处理的硒氧化铋纳米片光电探测器的制备方法,其特征在于:在所述硒氧化铋纳米片的表面通过激光直写或者电子束曝光得到金属电极图形;然后,采用热蒸发或者电子束蒸发按照所述金属电极图形沉积厚度为5nm-10nm的Cr黏附层,然后在所述Cr黏附层上沉积50nm~100nm的Au电极,由此得到所述源漏金属电极。
8.一种氧等离子体处理的硒氧化铋纳米片光电探测器,其特征在于:所述的氧等离子体处理的硒氧化铋纳米片光电探测器是采用权利要求1-7任一项所述的氧等离子体处理的硒氧化铋纳米片光电探测器的制备方法制备而成的。
9.如权利要求8所述的氧等离子体处理的硒氧化铋纳米片光电探测器,其特征在于:所述光电探测器包括衬底、一对源漏金属电极及硒氧化铋纳米片,所述硒氧化铋纳米片是通过化学气相沉积方法形成在所述衬底的表面上的;一对所述源漏金属电极分别设置在所述硒氧化铋纳米片远离所述衬底的表面相背的两侧;所述硒氧化铋纳米片是经过氧等离子体处理的。
CN202010291662.4A 2020-04-14 2020-04-14 氧等离子体处理的硒氧化铋纳米片光电探测器及制备方法 Pending CN111463295A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010291662.4A CN111463295A (zh) 2020-04-14 2020-04-14 氧等离子体处理的硒氧化铋纳米片光电探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010291662.4A CN111463295A (zh) 2020-04-14 2020-04-14 氧等离子体处理的硒氧化铋纳米片光电探测器及制备方法

Publications (1)

Publication Number Publication Date
CN111463295A true CN111463295A (zh) 2020-07-28

Family

ID=71679387

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010291662.4A Pending CN111463295A (zh) 2020-04-14 2020-04-14 氧等离子体处理的硒氧化铋纳米片光电探测器及制备方法

Country Status (1)

Country Link
CN (1) CN111463295A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113206168A (zh) * 2021-04-09 2021-08-03 电子科技大学 可见光探测器及制备方法
CN113804294A (zh) * 2021-09-15 2021-12-17 哈尔滨工业大学 一种铋氧硒纳米片自供能光电探测器的制备方法
CN113804736A (zh) * 2021-09-15 2021-12-17 哈尔滨工业大学 铋/铋氧硒金属半导体异质结的制备方法及其应用
WO2022052305A1 (zh) * 2020-09-10 2022-03-17 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法、显示装置
CN114197051A (zh) * 2021-12-08 2022-03-18 电子科技大学长三角研究院(湖州) 一种自支撑二维硒氧化物纳米片阵列及其制备方法
CN114497279A (zh) * 2022-01-13 2022-05-13 电子科技大学 一种高性能光电探测器的制备方法
CN117096206A (zh) * 2023-10-17 2023-11-21 北京大学 一种基于铋氧硒-钙钛矿异质结的光感算一体器件及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160111590A1 (en) * 2010-07-02 2016-04-21 Semiconductor Energy Laboratory Co., Ltd. Manufacturing Method of Semiconductor Film, Manufacturing Method of Semiconductor Device, and Manufacturing Method of Photoelectric Conversion Device
CN106783552A (zh) * 2017-01-22 2017-05-31 北京大学 二维硒氧化铋晶体及近红外光电探测器件
CN111799378A (zh) * 2020-06-17 2020-10-20 华南师范大学 一种基于二维材料与氮化镓薄膜双异质结的光电探测器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160111590A1 (en) * 2010-07-02 2016-04-21 Semiconductor Energy Laboratory Co., Ltd. Manufacturing Method of Semiconductor Film, Manufacturing Method of Semiconductor Device, and Manufacturing Method of Photoelectric Conversion Device
CN106783552A (zh) * 2017-01-22 2017-05-31 北京大学 二维硒氧化铋晶体及近红外光电探测器件
CN111799378A (zh) * 2020-06-17 2020-10-20 华南师范大学 一种基于二维材料与氮化镓薄膜双异质结的光电探测器及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J.D. HWANG 等: ""Using oxygen-plasma treatment to improve the photoresponse of Mg0.18Zn0.82O/p-Si heterojunction photodetectors"", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
JIE LI 等: ""High-Performance Near-Infrared Photodetector Based on Ultrathin Bi2O2Se Nanosheets"", 《ADV. FUNCT. MATER.》 *
W. S. SHIH 等: ""Effect of Oxygen Plasma Treatment on Characteristics of TiO2"", 《IEEE SENSORS JOURNAL》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022052305A1 (zh) * 2020-09-10 2022-03-17 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法、显示装置
US11923384B2 (en) 2020-09-10 2024-03-05 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel, manufacturing method thereof, and display device
CN113206168A (zh) * 2021-04-09 2021-08-03 电子科技大学 可见光探测器及制备方法
CN113206168B (zh) * 2021-04-09 2022-10-25 电子科技大学 可见光探测器及制备方法
CN113804294A (zh) * 2021-09-15 2021-12-17 哈尔滨工业大学 一种铋氧硒纳米片自供能光电探测器的制备方法
CN113804736A (zh) * 2021-09-15 2021-12-17 哈尔滨工业大学 铋/铋氧硒金属半导体异质结的制备方法及其应用
CN113804736B (zh) * 2021-09-15 2023-08-29 哈尔滨工业大学 铋/铋氧硒金属半导体异质结的制备方法及其应用
CN113804294B (zh) * 2021-09-15 2023-12-01 哈尔滨工业大学 一种铋氧硒纳米片自供能光电探测器的制备方法
CN114197051A (zh) * 2021-12-08 2022-03-18 电子科技大学长三角研究院(湖州) 一种自支撑二维硒氧化物纳米片阵列及其制备方法
CN114197051B (zh) * 2021-12-08 2024-03-15 电子科技大学长三角研究院(湖州) 一种自支撑二维硒氧化物纳米片阵列及其制备方法
CN114497279A (zh) * 2022-01-13 2022-05-13 电子科技大学 一种高性能光电探测器的制备方法
CN117096206A (zh) * 2023-10-17 2023-11-21 北京大学 一种基于铋氧硒-钙钛矿异质结的光感算一体器件及其制备方法

Similar Documents

Publication Publication Date Title
CN111463295A (zh) 氧等离子体处理的硒氧化铋纳米片光电探测器及制备方法
CN106601857B (zh) 基于掺硼硅量子点/石墨烯/二氧化硅的光电导探测器及制备方法
CN107316915B (zh) 可见光波段的集成石墨烯二硫化钼的光电探测器及其制备方法
CN111682088A (zh) 一种基于范德华异质结的隧穿型光电探测器及其制备方法
CN108565301B (zh) 基于金属表面等离子诱导双波段响应的光电探测器及制备方法
CN107833940B (zh) 一种基于二维二硫化钼-二硫化铼异质结的光电子器件、制备方法及应用
CN109411331B (zh) 二维超晶格硒化铟及其制备方法与在制备光电探测器中的应用
CN106449854B (zh) 全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法
CN108630782B (zh) 一种宽探测波段双重等离子工作光电探测器的制备方法
CN111223943A (zh) 一种基于碳量子点和石墨烯的光电探测器及制备方法
CN109841703A (zh) 一种高稳定、低暗电流全无机钙钛矿光电探测器及其制备方法
Bazargan et al. High-performance transparent ultraviolet photodetector based on thermally reduced graphene oxide and ZnO thin films
CN116314386A (zh) 混维范德瓦尔斯异质结光电探测器及其制备方法
CN108878575B (zh) 一种基于硅/氟化石墨烯的双工作模式宽波段光电探测器及其制备方法
CN110190150B (zh) 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法
Sun et al. Study on piezo-phototronic effect of AlZnO thin film flexible ultraviolet photodetector
CN113193069B (zh) 一种hBN/BAlN异质结紫外探测器及其制备方法
CN107403847A (zh) 一种二维层状二硫化钼薄膜的光探测器及制备方法
Zhou et al. High-Performance, Flexible Perovskite Photodetector Based on CsPbBr $ _ {\text {3}} $ Nanonet
Li et al. Highly transparent oxide-based ultraviolet photodetectors for flexible electronics
CN112310242A (zh) PbS薄膜的敏化方法、红外光电探测器及其制备方法
CN114695597B (zh) 一种基于二维碲化钼的同质异相光电探测器的制备及应用
CN114759104B (zh) 基于ⅱ型范德华异质结近红外偏振光电探测器及其制备方法
CN110739399B (zh) 柔性垂直结构npb/氮掺杂石墨烯纳米异质结紫外探测器及其制备方法
CN113284970B (zh) 碳纳米管超宽带光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200728

WD01 Invention patent application deemed withdrawn after publication