CN106449854B - 全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法 - Google Patents

全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法 Download PDF

Info

Publication number
CN106449854B
CN106449854B CN201610893709.8A CN201610893709A CN106449854B CN 106449854 B CN106449854 B CN 106449854B CN 201610893709 A CN201610893709 A CN 201610893709A CN 106449854 B CN106449854 B CN 106449854B
Authority
CN
China
Prior art keywords
nano
inp
ferroelectricity
wire
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610893709.8A
Other languages
English (en)
Other versions
CN106449854A (zh
Inventor
胡伟达
王建禄
郑定山
骆文锦
王鹏
陈效双
陆卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201610893709.8A priority Critical patent/CN106449854B/zh
Publication of CN106449854A publication Critical patent/CN106449854A/zh
Application granted granted Critical
Publication of CN106449854B publication Critical patent/CN106449854B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法。器件制备步骤是将CVD生长的InP纳米线物理转移到有SiO2氧化层的Si衬底上,利用电子束曝光技术制作源、漏和侧栅电极,并旋涂铁电聚合物薄膜,制备成具有侧栅结构的铁电侧栅纳米线光电探测器。利用独特的侧栅器件结构,并通过铁电聚合物材料负向极化所产生的超强静电场来完全耗尽纳米线沟道中因缺陷或陷阱所产生的本征载流子,从而显著降低了探测器在无栅压下的暗电流,大幅提高了器件的信噪比和探测能力。铁电材料调控下的单根InP及CdS纳米线光电探测器在近红外及可见光波段均显示了超高的探测率。本发明的优点是暗电流低,探测率高,功耗低和响应快。

Description

全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法
技术领域
本发明涉及铁电聚合物材料及其与纳米线相结合的侧栅结构探测器的设计与测试,具体是指利用这种独特的侧栅器件结构,并通过P(VDF-TrFE)铁电聚合物材料负向极化所产生的超强静电场来完全耗尽纳米线沟道中因缺陷或陷阱所产生的本征载流子,从而大大降低探测器在无栅压下的暗电流,提高器件的信噪比和探测能力。
背景技术
一维半导体纳米线由于具有特殊的光、电、磁等物理化学性能及纳米结构的奇特性能,引起了科学家们的广泛关注,被公认为是发展下一代纳米光电器件和集成系统的基础,成为当今纳米材料研究领域的前沿。磷化铟(InP)作为重要的III-V族化合物半导体材料,具有闪锌矿结构,是一种直接带隙半导体,常温下禁带宽度为1.35eV。InP纳米线具有诸多优越的物理性能,如丰富的表面态、大的比表面积和高载流子迁移率,具备半导体、光电、热电、压电、气敏和透明导电等特性,作为光电子器件可以在纳米激光器、发光二极管、光纤通讯、高速电子器件、光电子器件、生物传感器、光电探测器和通讯卫星以及太阳能电池等诸多技术领域有着广阔的应用价值。近年来,对于制备InP纳米线及其异质材料以及相关性能的研究已成为半导体材料领域的热点。基于InP纳米线的光电探测器因其具有可调光波长灵敏度、响应快以及高效的光电转换特性而备受关注。此外,硫化镉(CdS)作为一种重要的直接带隙II-VI族化合物半导体材料,常温下禁带宽度为2.4eV,被广泛应用于信号检测、液晶显示器和太阳能电池等高科技领域。然而,基于这些半导体纳米线的光电探测器因其大的比表面积、表面态和晶格缺陷会产生高的本征载流子浓度,在一定程度上导致器件具有较大的暗电流,从而严重影响了器件的光探测性能。因此,迫切需要研究一种独特的器件结构来耗尽这些因缺陷或陷阱所产生的本征载流子以降低暗电流,从而提高器件的信噪比和探测能力。
为了解决上述问题,本发明提出了一种全耗尽铁电侧栅单根纳米线近红外光电探测器及其制备方法。该方法是结合P(VDF-TrFE)铁电聚合物材料和纳米线制备成具有侧栅结构的纳米线光电探测器。利用侧栅施加一瞬间负向电压,并通过P(VDF-TrFE)铁电聚合物材料负向极化所产生的超强静电场来完全耗尽纳米线沟道中因缺陷或陷阱所产生的本征载流子,从而大大降低了探测器在无栅压下的暗电流,提高了器件的信噪比和探测能力。
发明内容
本发明提供了一种全耗尽铁电侧栅单根纳米线近红外光电探测器及其制备方法。该探测器利用独特的侧栅结构,并通过P(VDF-TrFE)铁电聚合物材料负向极化所产生的超强静电场来完全耗尽纳米线沟道中的本征载流子,显著抑制了探测器的暗电流,大幅提高了探测器的灵敏度。
所述的探测器的结构为:在P型Si衬底1上是SiO2氧化层2、在SiO2氧化层2上制备有InP或CdS纳米线3,在InP或CdS纳米线3纳米线两端是源或漏电极4、在其两侧有侧栅电极5,铁电聚合物薄膜6覆盖在InP或CdS纳米线3及电极上,并且保证每个电极有部分裸露在外;
所述的的P型Si衬底1是硼重掺杂,电阻率小于0.05Ω·cm;
所述的SiO2氧化层2厚度是110nm;
所述的InP或CdS纳米线3长度是5μm到20μm,直径是50nm到300nm;
所述的源或漏电极4是金属Cr和Au,厚度分别是15和50nm;
所述的侧栅电极5是金属Cr和Au,厚度分别是15和50nm,与纳米线距离是100nm到1μm;
所述的铁电聚合物薄膜6是聚偏氟乙烯基[P(VDF-TrFE)],厚度是200nm。
本发明的一种铁电侧栅单根纳米线光电探测器的制备方法步骤如下:
1.采用化学气相沉积方法在Si衬底上利用Au催化剂生长制备InP及CdS纳米线,利用XRD、SEM、TEM、EDS等对纳米线的微观形貌、结构及物性进行表征;
2.将生长的纳米线物理转移到有SiO2氧化层的Si衬底上,利用电子束曝光EBL技术,对单根纳米线利用预先沉积的金属坐标进行定位,利用热蒸镀和剥离等技术沉积铬和金作为源、漏和侧栅电极,形成以纳米线为沟道两端金属接触的场效应晶体管。其中沟道长度1μm到5μm,侧栅电极距离纳米线100nm到1μm;
3.在制备好的背栅器件上旋涂P(VDF-TrFE)铁电聚合物薄膜,并在130℃温度下退火2小时,以改善铁电聚合物薄膜的结晶性,从而制备成具有侧栅结构的铁电侧栅单根纳米线光电探测器。
因纳米线中缺陷或陷阱会产生高的本征载流子浓度,在一定的源漏偏压下,这些本征载流子所产生的热电子和隧穿电流形成了较大的沟道电流即暗电流。光照下,当入射光子的能量大于纳米线的禁带宽度时,产生的光生电子-空穴对会形成光生电流。此时的沟道电流为暗电流与光生电流的总和。利用铁电侧栅纳米线这种独特的器件结构,在侧栅电极上施加一瞬间的负向脉冲,通过P(VDF-TrFE)铁电聚合物材料负向极化所产生的超强静电场来完全耗尽纳米线沟道中因缺陷或陷阱所产生的本征载流子,使得探测器的暗电流能降至pA以下,达到抑制暗电流的目的。P(VDF-TrFE)铁电聚合物具有较强的剩余极化及稳定的保持特性,可以长时间保持此耗尽状态。因此,在耗尽后,光照下的沟道电流主要是由光生电子-空穴对所产生的光生电流形成的。由于暗电流得到了有效的抑制,从而大大提高了器件的信噪比和探测能力。
本发明专利的优点在于:
本发明利用铁电侧栅结构,并通过P(VDF-TrFE)铁电聚合物材料负向极化所产生的超强静电场来完全耗尽纳米线沟道中因缺陷或陷阱所产生的本征载流子,从而大大降低了探测器在无栅压下的暗电流,提高了器件的信噪比和探测能力。基于该方法,铁电材料调控下的单根InP纳米线光电探测器在近红外波段的探测率最高可达9.1×1015Jones,而单根CdS纳米线光电探测器在可见光波段则显示了超高的探测率最高可达1.7×1018Jones。此外,器件还具有低功耗、微弱信号探测、快速响应等特点。
附图说明
图1是铁电侧栅单根纳米线光电探测器的结构示意图。
图2是铁电侧栅纳米线光电探测器耗尽态下的剖面图;
图1、2中:1Si衬底,2SiO2氧化层,3InP或CdS纳米线,4源或漏电极,5金属侧栅电极,6铁电聚合物薄膜。
图3是铁电侧栅纳米线光电探测器在耗尽前后光照下的能带图。
图4是铁电侧栅纳米线光电探测器被耗尽前后分别在无光和有光照下的输出特性曲线,插图为相应的对数曲线。其中图(a)是InP的输出特性曲线和图(b)是CdS的输出特性曲线。
图5是铁电侧栅纳米线光电探测器在不同入射光功率下的响应率和比探测率。其中图(a)是InP的数据曲线和图(b)是CdS的数据曲线。
具体实施方式
下面结合附图对本发明的具体实施方式作详细说明:
本发明研制了全耗尽铁电侧栅单根纳米线光电探测器。通过P(VDF-TrFE)铁电聚合物材料负向极化所产生的超强静电场完全耗尽了纳米线沟道中的本征载流子,从而大大降低了探测器在无栅压下的暗电流,提高了器件的探测性能。
具体步骤如下:
1.采用化学气相沉积(CVD)方法在P型Si衬底上制备InP及CdS纳米线。首先在Si衬底上热蒸发1nm厚的Au薄膜,将适量高纯InP(或CdS)粉末放在陶瓷舟上并置于石英管中央,石英管外围的管式炉可对系统进行加热。Si片平放在石英舟上,一起放入石英管气流下游距粉末15cm处。在生长InP纳米线之前,先将管内抽真空至1×10-3mbar,反应过程中系统保持流量是为100sccm的氩气和氢气(20%)混合气作是载气,从室温开始加热到800℃,气压维持在2mbar,然后保温50分钟,InP蒸气随载气流动,在Si衬底上沉积下来生长成InP纳米结构。对于CdS纳米线的生长,所不同的是粉末源加热温度为700℃,混合载气的流量是50sccm,气压是100mbar。实验完成后,停止加热并持续通入载气,让反应管自然冷却到室温。
2.制备所得纳米线样品,利用X射线衍射仪(XRD)对纳米线的物性进行了表征。利用扫描电子显微镜(SEM,JEOL6510)、透射电子显微镜(TEM,JEOL2010)及能谱仪(EDS)对纳米线样品的微观形貌进行表征。
3.将生长的纳米线物理转移到有SiO2氧化层的Si衬底上,利用DesignCAD2000软件设计出电子束曝光的源、漏及侧栅电极图形;用匀胶机旋涂光刻胶MMA和PMMA并烘干;利用电子束曝光(扫描电镜JEOL 6510与微图形发生系统NPGS的组装),对各电极图形进行精准定位曝光,然后显影;利用热蒸镀沉积铬和金(15和50nm);在丙酮中进行金属的剥离,形成以纳米线为沟道两端金属接触的背栅场效应晶体管,其中沟道长度1μm到5μm,侧栅电极距离纳米线100nm到1μm。
4.在制备好的背栅器件上旋涂P(VDF-TrFE)铁电聚合物薄膜,并在130℃温度下退火2小时,以改善铁电聚合物薄膜的结晶性,最后制备成具有侧栅结构的铁电侧栅纳米线光电探测器。图1是器件结构示意图。
5.图2是铁电聚合物在负栅压作用下耗尽纳米线内部载流子的剖面示意图。因纳米线中缺陷或陷阱会产生高的本征载流子浓度,会导致较大的暗电流,从而影响器件的探测性能。为了实现对本征载流子的耗尽,在其中一侧栅电极上施加时长2s、大小为-20V的负向电压时,负向电场梯度的作用将使铁电聚合物的极化方向指向侧栅电极。因而,通过P(VDF-TrFE)铁电聚合物材料负向极化所产生的超强静电场来完全耗尽纳米线沟道中因缺陷或陷阱所产生的本征载流子,使得探测器的暗电流能降至pA以下,达到抑制暗电流的目的。
6.图3是探测器在耗尽前后光照下的能带图。其中,图3(a)是耗尽前的能带图,纳米线中因缺陷或陷阱产生的本征载流子在一定的源-漏偏压下,在沟道中形成热电子和隧穿电流即暗电流;而光照下,当入射光子的能量大于纳米线的禁带宽度时,产生的光生电子空穴对在沟道中形成光生电流,此时的沟道电流为暗电流与光生电流的总和。图3(b)是耗尽后的能带图。耗尽后,导带底部向上升高,导带底部与价带顶部的能级差变大,沟道中的电子被耗尽,暗电流被完全抑制,因而光照下的沟道电流主要由光生电子空穴对所产生的光生电流形成。
7.图4是探测器被耗尽前后分别在无光和有光照下的输出特性曲线,插图为相应的对数曲线。其中,图4(a)是InP的输出特性曲线,图4(b)是CdS的输出特性曲线。耗尽前,InP和CdS纳米线光探测器的光开关比均小于1。耗尽后,两种纳米线光探测器的暗电流均降至pA以下,光开关比Iph与Idark之比达106到107,信噪比得到大大地提高。
8.图5是光电探测器在不同入射光功率下的响应率和比探测率。其中,图5(a)是InP铁电侧栅光电探测器的相应曲线,图5(b)是CdS铁电侧栅光电探测器的相应曲线。对于不同的沟道长度(1μm到5μm)以及不同的侧栅距离(100nm到1μm),耗尽后器件均显示了超高的光响应性能。铁电材料调控下的单根InP纳米线(直径50nm,沟道5μm,侧栅距离100nm到1μm)光电探测器在近红外波段(λ=830nm)的探测率达2.5×1014Jones;铁电材料调控下的单根InP纳米线(直径100nm,沟道3μm,侧栅距离100nm到1μm)光电探测器在近红外波段(λ=830nm)的探测率达1×1015Jones;铁电材料调控下的单根InP纳米线(直径300nm,沟道1μm,侧栅距离100nm到1μm)光电探测器在近红外波段(λ=830nm)的探测率达9.1×1015Jones。而单根CdS纳米线(直径直径50nm,沟道5μm,侧栅距离100nm到1μm)光电探测器在近红外波段(λ=520nm)的探测率达2.8×1017Jones;单根CdS纳米线(直径100nm,沟道3μm,侧栅距离100nm到1μm)光电探测器在近红外波段(λ=520nm)的探测率达6.5×1017Jones;单根CdS纳米线(直径300nm,沟道1μm,侧栅距离100nm到1μm)光电探测器在近红外波段(λ=520nm)的探测率达1.7×1018Jones。结果说明本发明提供的利用可耗尽型铁电侧栅单根纳米线光电探测器来降低暗电流、提高器件的信噪比和探测能力的方法是合理的、有效的。

Claims (2)

1.一种全耗尽铁电侧栅单根纳米线近红外光电探测器,其特征在于:
所述的探测器的结构:在P型Si衬底(1)上是SiO2氧化层(2)、在SiO2氧化层(2)上制备有InP或CdS纳米线(3),在InP或CdS纳米线(3)纳米线两端是源或漏电极(4)、在其两侧有侧栅电极(5),铁电聚合物薄膜(6)覆盖在InP或CdS纳米线(3)及电极上,并且保证每个电极有部分裸露在外;
所述的P型Si衬底(1)是硼重掺杂,电阻率小于0.05Ω·cm;
所述的SiO2氧化层(2)厚度是110nm;
所述的InP或CdS纳米线(3)长度是5μm到20μm,直径是50nm到300nm;
所述的源或漏电极(4)是金属Cr和Au,厚度分别是15和50nm;
所述的侧栅电极(5)是金属Cr和Au,厚度分别是15和50nm,与纳米线距离是300nm;
所述的铁电聚合物薄膜(6)是聚偏氟乙烯基[P(VDF-TrFE)],厚度是200nm。
2.一种制备如权利要求1所述的全耗尽铁电侧栅单根纳米线光电探测器的方法,其特征在于方法如下:
采用化学气相沉积方法在Si衬底上利用Au催化剂生长制备InP或CdS纳米线;将CVD生长的纳米线物理转移到有SiO2氧化层的Si衬底上,利用电子束曝光EBL技术、热蒸镀和剥离步骤制作源、漏和侧栅电极,形成背栅纳米线场效应晶体管器件;在制备好的背栅器件上旋涂P(VDF-TrFE)铁电聚合物薄膜,并在130℃温度下退火2小时,制备成具有侧栅结构的铁电侧栅单根纳米线光电探测器。
CN201610893709.8A 2016-10-13 2016-10-13 全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法 Active CN106449854B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610893709.8A CN106449854B (zh) 2016-10-13 2016-10-13 全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610893709.8A CN106449854B (zh) 2016-10-13 2016-10-13 全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法

Publications (2)

Publication Number Publication Date
CN106449854A CN106449854A (zh) 2017-02-22
CN106449854B true CN106449854B (zh) 2017-11-21

Family

ID=58173734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610893709.8A Active CN106449854B (zh) 2016-10-13 2016-10-13 全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法

Country Status (1)

Country Link
CN (1) CN106449854B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107240616B (zh) * 2017-06-12 2018-11-13 北京工业大学 具有本征层结构的InGaAs/InP光敏晶体管红外探测器
CN107195722A (zh) * 2017-07-12 2017-09-22 中国科学院上海技术物理研究所 一种室温纳米线光子数可分辨探测器及制备方法
CN107706260B (zh) * 2017-07-28 2019-04-09 中国空间技术研究院 一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器及其制备方法
CN109734048B (zh) * 2018-12-29 2020-10-30 哈尔滨工业大学 一种近红外光电器件的加工方法
CN110379873A (zh) * 2019-07-30 2019-10-25 纳晶科技股份有限公司 一种量子点探测器
CN113948594A (zh) * 2021-10-13 2022-01-18 北京理工大学 可编程光电探测器及其制备方法
CN114141892B (zh) * 2021-11-26 2022-11-22 湖北大学 铁电-半导体量子点耦合增强型太阳能电池及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8946678B2 (en) * 2012-03-15 2015-02-03 Virginia Commonwealth University Room temperature nanowire IR, visible and UV photodetectors
CN206282869U (zh) * 2016-10-13 2017-06-27 中国科学院上海技术物理研究所 全耗尽铁电侧栅单根纳米线近红外光电探测器

Also Published As

Publication number Publication date
CN106449854A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN106449854B (zh) 全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法
KR101558801B1 (ko) 그래핀-실리콘 양자점 하이브리드 구조를 이용한 포토 다이오드 및 그 제조방법
Yadav et al. Sol-gel-based highly sensitive Pd/n-ZnO thin film/n-Si Schottky ultraviolet photodiodes
US8551558B2 (en) Techniques for enhancing efficiency of photovoltaic devices using high-aspect-ratio nanostructures
Tsai et al. p-Cu 2 O-shell/n-TiO 2-nanowire-core heterostucture photodiodes
TWI705577B (zh) 二維電子元件與相關製造方法
Saghaei et al. Vapor treatment as a new method for photocurrent enhancement of UV photodetectors based on ZnO nanorods
US9064991B2 (en) Photovoltaic devices with enhanced efficiencies using high-aspect ratio nanostructures
EP2253021B1 (en) Photovoltaic devices with high-aspect-ratio nanostructures
Daimary et al. Ultrafast photoresponse using axial n-ZnO/p-CuO heterostructure nanowires array-based photodetectors
Zheng et al. Hybrid graphene-perovskite quantum dot photodetectors with solar-blind UV and visible light response
CN206282869U (zh) 全耗尽铁电侧栅单根纳米线近红外光电探测器
Kathalingam et al. Effect of indium on photovoltaic property of n-ZnO/p-Si heterojunction device prepared using solution-synthesized ZnO nanowire film
CN209691770U (zh) 一种利用二氧化铪钝化增强型低维纳米探测器
Kuang et al. ZnS/carbon quantum dot heterojunction phototransistors for solar-blind ultraviolet detection
Lu et al. Noise characteristics of ZnO-nanowire photodetectors prepared on ZnO: Ga/glass templates
CN214797435U (zh) 一种黑体灵敏的室温低维碲红外光电探测器
CN109950359A (zh) 一种利用二氧化铪钝化增强型低维纳米探测器及制备方法
GEZGİN et al. Diode Property Of n-ZnO/p-Si Heterojunction Structure in the Dark and Illumination Condition
KR100996162B1 (ko) 박막형 태양전지와 이의 제조방법, 및 박막형 태양전지의 광흡수층 제조방법
CN113517371A (zh) 一种黑体灵敏的室温低维碲红外光电探测器及制备方法
Amirpoor et al. Fabrication of UV detector by Schottky Pd/ZnO/Si contacts
Bapathi et al. Enhancing silicon photodetector performance through spectral downshifting using core-shell CdZnS/ZnS and perovskite CsPbBr3 quantum dots
Toprak et al. DIODE PROPERTY OF n-ZnO/p-Si HETEROJUNCTION STRUCTURE IN THE DARK AND ILLUMINATION CONDITION
Zala et al. Broadband optoelectronic properties of p-CuCrO 2/n-Si Heterojunction prepared by Pulsed Laser Deposition

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant