CN214797435U - 一种黑体灵敏的室温低维碲红外光电探测器 - Google Patents

一种黑体灵敏的室温低维碲红外光电探测器 Download PDF

Info

Publication number
CN214797435U
CN214797435U CN202120744682.2U CN202120744682U CN214797435U CN 214797435 U CN214797435 U CN 214797435U CN 202120744682 U CN202120744682 U CN 202120744682U CN 214797435 U CN214797435 U CN 214797435U
Authority
CN
China
Prior art keywords
low
dimensional
black body
photoelectric detector
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202120744682.2U
Other languages
English (en)
Inventor
胡伟达
彭孟
王振
谢润章
余弈叶
王鹏
张莉丽
王芳
陈效双
陆卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN202120744682.2U priority Critical patent/CN214797435U/zh
Application granted granted Critical
Publication of CN214797435U publication Critical patent/CN214797435U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本专利公开了一种黑体灵敏的室温低维碲红外光电探测器。其器件结构自下而上依次为是衬底、低维的纳米半导体,覆盖在器件两端的金属源漏电极。器件制备步骤是将CVD生长的碲(Te)纳米线或者纳米片转移到具有氧化物层的硅衬底上,运用激光直写或者电子束光刻的方法,结合热蒸发工艺制备金属电极作为半导体沟道的源极和漏极,形成纳米线半导体场效应晶体管结构,成为低维纳米光电探测器。器件首先需要在源极和漏极间施加一小电压,通过黑体光源光照下的电流信号变化,进而实现黑体探测。该黑体灵敏探测器具有室温工作、黑体灵敏、响应快、稳定性好及低功耗等特点。

Description

一种黑体灵敏的室温低维碲红外光电探测器
技术领域
本专利涉及一种低维半导体光电探测器件,具体指一种黑体灵敏室温低维碲红外光电探测器。
背景技术
黑体响应被广泛应用为一个标准的特征红外焦平面探测器,这是一个重要的参数反映红外光电探测器的灵敏度,并确定相应的实际应用。到目前为止,大多数可用的和高性能的红外与黑体响应光电探测器基于传统III-V和II-VI 族化合物材料,如InGaAs InSb,HgCdTe。然而分子束外延(MBE)、金属有机化学气相沉积(MOCVD)等外延生长方法的高生长成本以及严格的冷却要求,严重限制了这些传统红外探测器的广泛应用和推广。
随着低维材料的兴起和逐步发展,窄带隙低维材料在室温下工作的下一代红外光电探测器中表现出了非凡的潜力。与传统材料相比,低维层状材料独特的平面外范德瓦尔斯力使其脱离了表面悬垂键,减少了器件表面复合产生的暗电流。另一方面,由于量子的限制,产生了强光-物相互作用流。尺寸材料使它们能够表现出优异的光探测能力。目前,低维红外探测器在红外激光照明下获得了超高的响应率和探测性。然而,在红外光电探测器的实际应用中,黑体源辐射更接近被探测物体的实际辐照,而不是激光源。黑体的灵敏度意味着低维系统探测器可以向商业应用迈出重要的一步。到目前为止,只有少数基于量子点、碳管和黑磷的红外探测器对黑体辐射有响应。
低维碲作为一种新兴的窄带隙半导体,是室温下高性能晶体管和光电探测器的理想选择。其具备半导体、光电、热电、压电、气敏和透明导电等特性,作为光电子器件可以在光纤通讯、高速电子器件、光电子器件、生物传感器、光电探测器和通讯卫星以及太阳能电池等诸多技术领域有着广阔的应用价值。
为了解决上述黑体灵敏探测器目前遇到的问题,本专利提出了黑体灵敏室温低维碲红外光电探测方法。该方法是基于化学气相沉积(CVD)生长的碲(Te) 制作场效应晶体管,由于CVD生长的低维Te具有丰富的表面态、大的比表面积和高载流子迁移率,这三个性质一起可以助于低维纳米器件在室温下黑体灵敏。
发明内容
本专利提出了一种黑体灵敏室温低维碲红外光电探测器,实现了低维纳米半导体场效应结构在室温黑体灵敏探测领域的应用。
上述专利将低维纳米材料及其光栅效应引入黑体灵敏探测结构,该探测器结构基于场效应晶体管,在室温下利用低维纳米碲表面态俘获光子诱导的电子,引起光栅效应,可实现器件的高灵敏、低功耗,黑体探测。
本专利指一种黑体灵敏室温低维碲红外光电探测器及制备方法,其特征在于,器件结构自下而上依次为:
P型Si衬底1、SiO2氧化物层2、在SiO2氧化层上的低维Te半导体3、分别位于低维Te半导体两端的金属源极4及金属漏极5,其中:
所述的衬底1为硼重掺杂的Si衬底,电阻率小于0.05Ω·cm;
所述的氧化物层2为SiO2,厚度280±10纳米;
所述的低维Te半导体3为Te纳米线或纳米片,沟道长度从10微米,纳米线的直径从50纳米到300纳米,纳米片的厚度40~80纳米,宽度为5~8微米;
所述的金属源极4、金属漏极5为Pt和Au复合金属电极,Pt覆盖在Au 上,Pt厚度为50纳米,Au厚度为50纳米,
本专利指一种黑体灵敏室温低维碲红外光电探测器及制备方法,其特征在于器件制备包括以下步骤:
1)氧化物层制备
在重掺杂Si衬底上通过热氧化法制备氧化物层二氧化硅,厚度为280纳米。
2)低维纳米半导体制备及转移
采用化学气相沉积方法在Si衬底上生长制备低维Te纳米线以及纳米片材料,并采用物理转移方法将低维Te纳米线或纳米片半导体3转移至氧化物层2表面。
3)低维纳米半导体源、漏电极的制备
利用电子束曝光EBL技术,热蒸发和剥离等技术在预先转移的Te纳米材料的上方准确定位沉积铂和金的金属源极4、金属漏极5,电极为铂、金,厚度分别为50纳米,50纳米。
器件工作时,源极漏极间通入微小恒定电压,检测电极两端电流。器件工作的状态示意图如图2所示。当黑体光源辐照在器件上时,产生光生电子空穴。电子在负向偏压的作用下被激发到纳米线表面态中,且被长时间俘获,空穴留在器件沟道中。另一方面,被俘获的电子通过电容耦合作用使得低维碲纳米材料中的空穴浓度增多,再一次使得沟道电流增大。这两个作用同时进行,在检测源漏电极两段的电流中可以观察到电流的明显跳变。低维碲纳米器件的黑体响应率以及比探测率如图3所示。
本专利专利的优点在于:本专利基于高质量的低维碲材料,其具有丰富的表面态、大的比表面积和高载流子迁移率,结合场效应结构,利用低维纳米器件的表面态能有效地长时间俘获光生空穴,从而引起光栅效应,使得黑体光源辐照所引起地电流改变能被检测到。此外,器件还具有室温工作、黑体灵敏、响应快、稳定性好、低功耗等特点。
附图说明
图1为基于低维Te材料的黑体灵敏室温半导体探测器结构示意图。
图中:1衬底,2氧化物层、3低维碲半导体、4金属源极、5金属漏极。
图2基于低维Te材料的黑体灵敏室温半导体探测器进行黑体光源测试工作示意图。
图3基于低维Te材料的黑体灵敏室温半导体探测器在1200K黑体辐照光源下,不同频率斩波下的响应率以及比探测率。
具体实施方式
下面结合附图对本专利的具体实施方式作详细说明:
本专利提出了一种黑体灵敏室温低维碲红外光电探测器及制备方法,实现了低维纳米半导体场效应结构在室温黑体灵敏探测领域的应用。本专利将低维纳米材料及其光栅效应引入黑体灵敏探测结构,该探测器结构基于场效应晶体管,在室温下利用低维纳米碲表面态俘获光子诱导的电子,引起光栅效应,可实现器件的高灵敏、低功耗,黑体探测。
具体步骤如下:
1.衬底的选择
选用B重掺杂p型硅做为衬底,电阻率为0.05Ω·cm,SiO2氧化层厚度是 280nm;
2.mark标记的制作
利用紫外光刻方法在p型硅衬底上制备mark图形,利用热蒸发技术制备金属mark,铬15纳米,金45纳米,结合传统剥离方法,剥离金属膜,获得金属mark标记。
3.材料的制备与转移
采用化学气相沉积(CVD)方法在纯硅片上制备低维Te纳米材料,包括纳米线和纳米片,首先将SnTe2粉末放置在陶瓷舟上并置于石英管中央,石英管外围的管式炉可对系统进行加热。Si片平放在石英舟上,一起放入石英管气流下游距粉末15cm处。抽真空至1×10- 1Pa,反应过程中系统保持流量是为100 sccm的氩气作为载气,从室温开始加热到650℃,气压维持在1000Pa,然后保温30分钟,实验完成后,停止加热并持续通入载气,让反应管自然冷却到室温。最后将生长的纳米线或者纳米片物理转移到有SiO2氧化层带mark的p 型硅衬底上。
4.制备源、漏电极
通过光学显微镜在材料处拍照,利用DesignCAD21软件设计制备底电极的图形,用匀胶机旋涂PMMA,转速4000转/min,时间40s,170度烘干时间为5分钟;利用电子束曝光,对电极图形进行精准定位曝光,然后用PMMA 显影液进行显影;利用热蒸发技术制备金属电极,铂50纳米,金50纳米;结合传统的剥离方法,用丙酮溶液浸泡10分钟,剥离金属膜,获得源、漏电极。
5.图1是器件结构示意图。
6.图2器件进行黑体测试的示意图。当1200K的黑体光源辐照在器件上时,光敏区域产生光生电子空穴。电子在偏压的作用下被激发到纳米线表面态中,且被长时间俘获,空穴留在器件沟道中。另一方面,被俘获的电子通过电容耦合作用使得低维碲纳米材料中的空穴浓度增多,再一次使得沟道电流增大。这两个作用同时进行,在检测源漏电极两段的电流中可以观察到电流的明显跳变。
7.图3是基于低维Te材料的黑体灵敏室温半导体探测器在1200K黑体光源辐照下,不同频率斩波下的响应率和比探测率。对于不同的形貌(纳米线或纳米片)及尺寸(纳米线直径50~300nm;纳米片厚度40~80nm),器件均显示了超高的黑体响应性能,响应率和探测率公式分别为R=Iph/ (PA);
Figure DEST_PATH_GDA0003288626090000061
a).单根Te纳米线(直径30nm,沟道5μm)低维红外光电探测器光电探测器在黑体(1200K)的探测率达3×108Jones;
b).单根Te纳米线(直径150nm,沟道5μm)低维红外光电探测器光电探测器在黑体(1200K)的探测率达3.6×108Jones;
c).单根Te纳米线(直径300nm,沟道5μm)低维红外光电探测器光电探测器在黑体(1200K)的探测率达3.8×108Jones;
d).单根Te纳米片(宽度5μm,厚度40nm,沟道5μm)低维红外光电探测器光电探测器在黑体(1200K)的探测率达4.2×108Jones;
e).单根Te纳米片(宽度7μm,厚度60nm,沟道5μm)低维红外光电探测器光电探测器在黑体(1200K)的探测率达5.6×108Jones;
f).单根Te纳米片(宽度8μm,厚度80nm,沟道5μm)低维红外光电探测器光电探测器在黑体(1200K)的探测率达6.3×108Jones;
结果说明本专利黑体灵敏室温低维碲红外光电探测器及其制备方法,该结构器件,可有效室温探测黑体光源,进而提高纳米材料半导体光子探测器件的实用性。

Claims (1)

1.一种黑体灵敏的室温低维碲红外光电探测器,其特征在于,
所述的探测器的器件结构自下而上依次为:P型Si衬底(1)、SiO2氧化物层(2)、低维Te半导体(3);分别位于低维Te半导体两端的金属源极(4)及金属漏极(5),其中:
所述的衬底(1)为硼重掺杂的Si衬底;
所述的氧化物层(2)为SiO2,厚度280±10纳米;
所述的低维Te半导体(3)为Te纳米线或纳米片,沟道长度从5微米,纳米线的直径从30纳米到300纳米,纳米片的厚度40~80纳米,宽度为5~8微米;
所述的金属源极(4)和金属漏极(5)为Pt和Au复合金属电极,Pt覆盖在Au上,Pt厚度为50纳米,Au厚度为50纳米。
CN202120744682.2U 2021-04-13 2021-04-13 一种黑体灵敏的室温低维碲红外光电探测器 Active CN214797435U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202120744682.2U CN214797435U (zh) 2021-04-13 2021-04-13 一种黑体灵敏的室温低维碲红外光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202120744682.2U CN214797435U (zh) 2021-04-13 2021-04-13 一种黑体灵敏的室温低维碲红外光电探测器

Publications (1)

Publication Number Publication Date
CN214797435U true CN214797435U (zh) 2021-11-19

Family

ID=78670710

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202120744682.2U Active CN214797435U (zh) 2021-04-13 2021-04-13 一种黑体灵敏的室温低维碲红外光电探测器

Country Status (1)

Country Link
CN (1) CN214797435U (zh)

Similar Documents

Publication Publication Date Title
Ezhilmaran et al. Recent developments in the photodetector applications of Schottky diodes based on 2D materials
An et al. Self-powered ZnS nanotubes/Ag nanowires MSM UV photodetector with high on/off ratio and fast response speed
Jiang et al. A versatile photodetector assisted by photovoltaic and bolometric effects
Goswami et al. Fabrication of GaN nano-towers based self-powered UV photodetector
Shen et al. Recent developments in III–V semiconducting nanowires for high-performance photodetectors
CN107749433A (zh) 一种二维范德华异质结光电探测器及其制备方法
CN207529954U (zh) 一种二维范德华异质结光电探测器
Sun et al. Recent advances in group III–V nanowire infrared detectors
Yadav et al. Sol-gel-based highly sensitive Pd/n-ZnO thin film/n-Si Schottky ultraviolet photodiodes
KR101558801B1 (ko) 그래핀-실리콘 양자점 하이브리드 구조를 이용한 포토 다이오드 및 그 제조방법
JP6642769B1 (ja) グラフェンを用いた電子デバイスの製造方法
CN106449854A (zh) 全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法
Mukherjee et al. Scalable integration of coplanar heterojunction monolithic devices on two-dimensional In2Se3
Huang et al. High-and reproducible-performance graphene/II-VI semiconductor film hybrid photodetectors
KR101546500B1 (ko) 광 검출 소자 및 제조 방법
Hekmatikia et al. Graphene–silicon-based high-sensitivity and broadband phototransistor
Tran et al. Photoresponsive properties of ultrathin silicon nanowires
JP2019036706A (ja) 二次元電子デバイスおよび関連する製造方法
Li et al. Correlation between the response performance of epitaxial graphene/SiC UV-photodetectors and the number of carriers in graphene
Tetseo et al. CuO nanowire-based metal semiconductor metal infrared photodetector
Chang et al. Facile fabrication of self-assembled ZnO nanowire network channels and its gate-controlled UV detection
Ghalamboland et al. MoS 2/Si-based heterojunction bipolar transistor as a broad band and high sensitivity photodetector
Pal et al. Near-infrared detection in Si/InP core-shell radial heterojunction nanowire arrays
Wu et al. Van der Waals integration inch-scale 2D MoSe2 layers on Si for highly-sensitive broadband photodetection and imaging
Tang et al. GaN nanowire/Nb-doped MoS2 nanoflake heterostructures for fast UV–visible photodetectors

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant