CN107706260B - 一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器及其制备方法 - Google Patents

一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器及其制备方法 Download PDF

Info

Publication number
CN107706260B
CN107706260B CN201710631098.4A CN201710631098A CN107706260B CN 107706260 B CN107706260 B CN 107706260B CN 201710631098 A CN201710631098 A CN 201710631098A CN 107706260 B CN107706260 B CN 107706260B
Authority
CN
China
Prior art keywords
sio
indium oxide
pva film
oxide nano
wse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710631098.4A
Other languages
English (en)
Other versions
CN107706260A (zh
Inventor
郭楠
刘军库
贾怡
肖林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Space Technology CAST
Original Assignee
China Academy of Space Technology CAST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Space Technology CAST filed Critical China Academy of Space Technology CAST
Priority to CN201710631098.4A priority Critical patent/CN107706260B/zh
Publication of CN107706260A publication Critical patent/CN107706260A/zh
Application granted granted Critical
Publication of CN107706260B publication Critical patent/CN107706260B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明涉及一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器及其制备方法,该近红外光电探测器为低维材料复合结构近红外光电探测器,具体是指利用二硒化钨(WSe2)与氧化铟(In2O3)纳米线之间功函数的差异,在这两种材料界面处形成能带弯曲,近红外光激发WSe2中的载流子积累在界面处,所形成的局域电场对In2O3纳米线沟道电导率进行调控,同时通过外加偏压的施加使得器件工作在暗电流极低的耗尽区,提高近红外探测器的光响应率和探测率。

Description

一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测 器及其制备方法
技术领域
本发明涉及一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器及其制备方法,该近红外光电探测器为低维材料复合结构近红外光电探测器,具体是指利用二硒化钨(WSe2)与氧化铟(In2O3)纳米线之间功函数的差异,在这两种材料界面处形成能带弯曲,近红外光激发WSe2中的载流子积累在界面处,所形成的局域电场对In2O3纳米线沟道电导率进行调控,同时通过外加偏压的施加使得器件工作在暗电流极低的耗尽区,提高近红外探测器的光响应率和探测率。
背景技术
现有的红外探测器通常采用了传统的窄带隙半导体作为感光材料,为了提高探测灵敏度、缩短器件响应时间、减小背景噪声的影响,这些器件的正常工作需要液氮制冷环境,这使得器件的应用场合和工作时长受到极大限制。同时,传统光电探测材料量子效率小于1的经典理论极限限制了其探测灵敏度的进一步提升。因此,如何实现室温条件下对红外光的高响应率和高探测率已成为红外探测领域的核心难点问题。近年来,随着低维纳米材料(如石墨烯、二维过渡金属硫化物)等新材料体系的构建,为实现新型的室温高性能红外探测器提供了新的思路和有效的途径,已经成为当前红外光电探测器前沿研究的焦点。
与传统光电材料相比,尽管低维材料在一些半导体性能等方面表现出独特的优势,例如:石墨烯超高的载流子迁移率可以获得很高的增益带宽、二维过渡金属硫化物半导体材料随着层数的变化带隙可调实现宽光谱探测。但低维材料较薄的原子层级的厚度也使得其在与光相互作用时不能像体材料那样实现完全吸收,因此光的利用效率很低,进而抑制了器件的光响应率和探测率。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提出一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器及其制备方法。
本发明的技术解决方案是:
一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器,该近红外光电探测器包括Si/SiO2衬底、源电极、漏电极、氧化铟纳米线和二硒化钨薄片;
所述的源电极、漏电极、氧化铟纳米线和二硒化钨薄片均位于Si/SiO2衬底上,氧化铟纳米线的一端与源电极相连,氧化铟纳米线的另一端与漏电极相连,二硒化钨薄片搭在氧化铟纳米线上,即二硒化钨薄片的中间部分位于氧化铟纳米线上。
所述的二硒化钨薄片为感光材料。
所述的氧化铟纳米线为导电材料。
所述的源电极和漏电极用于收集氧化铟纳米线的电信号。
一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器的制备方法,该方法的步骤包括:
(1)采用化学气相沉积的方法生长In2O3纳米线;
(2)将步骤(1)制备的In2O3纳米线物理转移到一Si/SiO2衬底上;
(3)利用电子束光刻技术、热蒸镀金属电极制备单根In2O3纳米线的背栅晶体管器件;
(4)采用机械剥离的方法在另一Si/SiO2衬底上制备WSe2的纳米薄片;
(5)将步骤(4)制备的WSe2的纳米薄片转移到步骤(3)制备的In2O3纳米线的背栅晶体管器件上,得到二硒化钨薄片/氧化铟纳米线复合结构。
所述的步骤(2)中,Si/SiO2衬底上SiO2的厚度为100nm。
所述的步骤(2)中,Si/SiO2衬底上SiO2的厚度为285nm。
所述的步骤(5)中,将WSe2的纳米薄片转移到In2O3纳米线的背栅晶体管器件上的具体方法为:
首先在载玻片的下表面形成表面平滑的PDMS膜,将PVA膜贴附在PDMS膜的下表面上,载玻片安装在三维位移平台上,并通过显微镜将PVA膜对准机械剥离获得的WSe2薄片;通过三维位移平台将PVA膜逐渐靠近并接触WSe2薄片,同时对SiO2厚度为285nm的Si/SiO2衬底加热软化PVA膜,使得PVA膜与SiO2厚度为285nm的Si/SiO2衬底接触完全,从显微镜下观察两者接触完全后停止加热;将载玻片慢慢抬起使PVA膜与PDMS膜分离;将PVA膜从SiO2厚度为285nm的Si/SiO2衬底上慢慢剥离下来,同时WSe2薄片也附着在PVA膜上一同剥离下来;将载有WSe2薄片的PVA膜重新贴附到PDMS膜上,对准In2O3纳米线的背栅晶体管;通过三维位移平台将PVA膜逐渐靠近使得WSe2薄片接触In2O3纳米线,同时对SiO2厚度为100nm的Si/SiO2衬底加热软化PVA膜,使得PVA膜与SiO2厚度为100nm的Si/SiO2衬底接触完全,从显微镜下观察两者接触完全后停止加热;将载玻片慢慢抬起使PVA膜与PDMS膜分离;最后将SiO2厚度为100nm的Si/SiO2衬底放入去离子水中浸泡去掉PVA膜,吹干。
本发明的优点是:
本发明采用低维材料复合结构将感光材料与导电沟道分离,窄带隙的感光材料用于吸收近红外光,宽带隙的导电材料受栅压调控可获得极低的暗电流,同时,通过两种材料间的能带匹配设计,使得界面处形成能带弯曲,光生载流子在界面的积累形成的局域电场调节沟道电导,获得高响应与高探测率。
附图说明
图1为本发明的复合结构示意图;
图2为本发明的方法过程示意图;
图3为本发明的材料能带结构及工作原理示意图;
图4为在有无光照的条件下,本发明的复合结构的转移特性曲线;
图5为本发明的复合结构的响应率、探测率随光功率的变化趋势。
具体实施方式
如图1所示,一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器,该近红外光电探测器包括Si/SiO2衬底、源电极、漏电极、氧化铟纳米线和二硒化钨薄片;
所述的源电极、漏电极、氧化铟纳米线和二硒化钨薄片均位于Si/SiO2衬底上,氧化铟纳米线的一端与源电极相连,氧化铟纳米线的另一端与漏电极相连,二硒化钨薄片搭在氧化铟纳米线上,即二硒化钨薄片的中间部分位于氧化铟纳米线上;
所述的二硒化钨薄片为感光材料,氧化铟纳米线为导电材料,源电极和漏电极用于收集氧化铟纳米线的电信号。
如图2所示,一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器的制备方法,该方法的步骤包括:
(1)采用化学气相沉积的方法生长In2O3纳米线;
(2)将步骤(1)制备的In2O3纳米线物理转移到Si/SiO2(100nm)衬底上;
(3)利用电子束光刻技术、热蒸镀金属电极制备单根In2O3纳米线的背栅晶体管器件;
(4)采用机械剥离的方法在Si/SiO2(285nm)衬底上制备WSe2的纳米薄片;
(5)将步骤(4)制备的WSe2的纳米薄片转移到步骤(3)制备的In2O3纳米线的背栅晶体管器件上,得到二硒化钨薄片/氧化铟纳米线复合结构。
所述的步骤(5)中,将WSe2的纳米薄片转移到In2O3纳米线的背栅晶体管器件上的具体方法为:
首先在载玻片的下表面形成表面平滑的PDMS膜(Polydimethylsiloxane,聚二甲基硅氧烷),将PVA膜(polyvinyl alcohol,聚乙烯醇)贴附在PDMS膜的下表面上,载玻片安装在三维位移平台上,并通过显微镜将PVA膜对准机械剥离获得的WSe2薄片(图2a);通过三维位移平台将PVA膜逐渐靠近并接触WSe2薄片(图2b),同时对Si/SiO2(285nm)衬底加热软化PVA膜,使得PVA膜与Si/SiO2(285nm)衬底接触完全,从显微镜下观察两者接触完全后停止加热;将载玻片慢慢抬起使PVA膜与PDMS膜分离(图2c);将PVA膜从Si/SiO2(285nm)衬底上慢慢剥离下来,同时WSe2薄片也附着在PVA膜上一同剥离下来(图2d);将载有WSe2薄片的PVA膜重新贴附到PDMS膜上,对准将要转移到的目标,即In2O3纳米线的背栅晶体管(图2e);通过三维位移平台将PVA膜逐渐靠近使得WSe2薄片接触In2O3纳米线(图2f),同时对Si/SiO2(100nm)衬底加热软化PVA膜,使得PVA膜与Si/SiO2(100nm)衬底接触完全,从显微镜下观察两者接触完全后停止加热;将载玻片慢慢抬起使PVA膜与PDMS膜分离(图2g);最后将Si/SiO2(100nm)衬底放入去离子水中浸泡去掉PVA膜,吹干即可。
如图3所示,所得到的二硒化钨薄片/氧化铟纳米线复合结构中宽带隙(~2.75eV)的In2O3纳米线为导电材料,窄带隙(~1.2eV)的WSe2薄片为感光材料叠在In2O3纳米线导电沟道上响应近红外光;p型的WSe2薄片与n型的In2O3纳米线接触后,由于受两者之间功函数的差异的影响,在界面处形成能带弯曲,当大于WSe2薄片带隙的近红外光照射在器件上时,WSe2薄片中所激发的光生电子-空穴对受界面处内建电场的作用而分开,空穴会积累在WSe2薄片与In2O3纳米线的界面处,形成局域电场来调节In2O3纳米线的沟道电导,实现电流放大;此外,栅压的施加可有效调节WSe2薄片和In2O3纳米线的费米能级,该能带弯曲随着栅压对器件从增强区到耗尽区的调节逐渐变大,载流子在器件耗尽区的积累达到最大,因此器件可在极低的暗电流下工作获得高响应,最终得到高的探测率。
实施例
(1)采用化学气相沉积的方法生长In2O3纳米线,并将其物理转移到Si/SiO2(100nm)衬底上,利用电子束光刻技术、热蒸镀技术沉积源-漏(S-D)金属电极Cr/Au(15nm/50nm),制备单根In2O3纳米线的背栅晶体管器件,重掺杂p型Si衬底作为背栅电极;
(2)采用机械剥离的方法在Si/SiO2(285nm)衬底上制备WSe2的纳米薄片,由于二维材料WSe2随着其层数由单层到多层的增加,带隙宽度从1.7eV减小到1.2eV,所以为了响应近红外波段,选择带隙较窄的厚的WSe2纳米薄片,并将WSe2的薄片转移到In2O3纳米线的背栅晶体管器件上,实现复合结构,如图1所示,源漏偏压为Vds,背栅偏压为Vgs
(3)转移WSe2薄片过程:首先在载玻片的下表面形成表面平滑的PDMS膜(Polydimethylsiloxane,聚二甲基硅氧烷),将PVA膜(polyvinyl alcohol,聚乙烯醇)贴附在PDMS膜的下表面上,载玻片安装在三维位移平台上,并通过显微镜将PVA膜对准机械剥离获得的WSe2薄片(图2a);通过三维位移平台将PVA膜逐渐靠近并接触WSe2薄片(图2b),同时对Si/SiO2(285nm)衬底加热软化PVA膜,使得PVA膜与Si/SiO2(285nm)衬底接触完全,从显微镜下观察两者接触完全后停止加热;将载玻片慢慢抬起使PVA膜与PDMS膜分离(图2c);将PVA膜从Si/SiO2(285nm)衬底上慢慢剥离下来,同时WSe2薄片也附着在PVA膜上一同剥离下来(图2d);将载有WSe2薄片的PVA膜重新贴附到PDMS膜上,对准将要转移到的目标,即In2O3纳米线的背栅晶体管(图2e);通过三维位移平台将PVA膜逐渐靠近使得WSe2薄片接触In2O3纳米线(图2f),同时对Si/SiO2(100nm)衬底加热软化PVA膜,使得PVA膜与Si/SiO2(100nm)衬底接触完全,从显微镜下观察两者接触完全后停止加热;将载玻片慢慢抬起使PVA膜与PDMS膜分离(图2g);最后将Si/SiO2(100nm)衬底放入去离子水中浸泡去掉PVA膜,吹干即可;
(4)p型的WSe2薄片(带隙为1.2eV)与n型的In2O3纳米线(带隙为2.75eV)接触后,由于受两者之间功函数的差异的影响,在界面处形成能带弯曲,当入射的近红外光照射在器件上时,在WSe2薄片中激发的光生空穴会在界面处形成积累(图3),形成的正的局域电场会增强n型纳米线的沟道电导,形成电流放大;在该复合结构中,窄带隙的WSe2薄片为感光材料,宽带隙的纳米线为导电材料,选择宽带隙的纳米线一方面是为了避免与WSe2薄片同时响应近红外波段,另一方面通过外加偏压的设置可有效的耗尽纳米线的暗电流,使得器件工作在耗尽区,实现高响应和高探测率;图4为940nm近红外光照射下复合结构的转移特性曲线,可以看到光照之后受界面处带正电荷的空穴积累影响曲线向左平移,相比于暗电流曲线,在耗尽区光电流有102nA的变化,而且复合结构的暗电流极低达到10-14~10-13A,图5为器件的光响应率与探测率随入射光功率变化的曲线,器件的最高响应率~104A/W,最高探测率为1016Jones(1Jones=1cm Hz1/2W-1)。

Claims (8)

1.一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器,其特征在于:该近红外光电探测器包括Si/SiO2衬底、源电极、漏电极、氧化铟纳米线和二硒化钨薄片;
所述的源电极、漏电极、氧化铟纳米线和二硒化钨薄片均位于Si/SiO2衬底上,氧化铟纳米线的一端与源电极相连,氧化铟纳米线的另一端与漏电极相连,二硒化钨薄片搭在氧化铟纳米线上,即二硒化钨薄片的中间部分位于氧化铟纳米线上。
2.根据权利要求1所述的一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器,其特征在于:所述的二硒化钨薄片为感光材料。
3.根据权利要求1所述的一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器,其特征在于:所述的氧化铟纳米线为导电材料。
4.根据权利要求1所述的一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器,其特征在于:所述的源电极和漏电极用于收集氧化铟纳米线的电信号。
5.一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器的制备方法,其特征在于该方法的步骤包括:
(1)采用化学气相沉积的方法生长In2O3纳米线;
(2)将步骤(1)制备的In2O3纳米线物理转移到一Si/SiO2衬底上;
(3)利用电子束光刻技术、热蒸镀金属电极制备单根In2O3纳米线的背栅晶体管器件;
(4)采用机械剥离的方法在另一Si/SiO2衬底上制备WSe2的纳米薄片;
(5)将步骤(4)制备的WSe2的纳米薄片转移到步骤(3)制备的In2O3纳米线的背栅晶体管器件上,得到二硒化钨薄片/氧化铟纳米线复合结构。
6.根据权利要求5所述的一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器的制备方法,其特征在于:所述的步骤(2)中,Si/SiO2衬底上SiO2的厚度为100nm。
7.根据权利要求5所述的一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器的制备方法,其特征在于:所述的步骤(4)中,Si/SiO2衬底上SiO2的厚度为285nm。
8.根据权利要求5所述的一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器的制备方法,其特征在于:所述的步骤(5)中,将WSe2的纳米薄片转移到In2O3纳米线的背栅晶体管器件上的具体方法为:
首先在载玻片的下表面形成表面平滑的PDMS膜,将PVA膜贴附在PDMS膜的下表面上,载玻片安装在三维位移平台上,并通过显微镜将PVA膜对准机械剥离获得的WSe2薄片;通过三维位移平台将PVA膜逐渐靠近并接触WSe2薄片,同时对SiO2厚度为285nm的Si/SiO2衬底加热软化PVA膜,使得PVA膜与SiO2厚度为285nm的Si/SiO2衬底接触完全,从显微镜下观察两者接触完全后停止加热;将载玻片慢慢抬起使PVA膜与PDMS膜分离;将PVA膜从SiO2厚度为285nm的Si/SiO2衬底上慢慢剥离下来,同时WSe2薄片也附着在PVA膜上一同剥离下来;将载有WSe2薄片的PVA膜重新贴附到PDMS膜上,对准In2O3纳米线的背栅晶体管;通过三维位移平台将PVA膜逐渐靠近使得WSe2薄片接触In2O3纳米线,同时对SiO2厚度为100nm的Si/SiO2衬底加热软化PVA膜,使得PVA膜与SiO2厚度为100nm的Si/SiO2衬底接触完全,从显微镜下观察两者接触完全后停止加热;将载玻片慢慢抬起使PVA膜与PDMS膜分离;最后将SiO2厚度为100nm的Si/SiO2衬底放入去离子水中浸泡去掉PVA膜,吹干。
CN201710631098.4A 2017-07-28 2017-07-28 一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器及其制备方法 Expired - Fee Related CN107706260B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710631098.4A CN107706260B (zh) 2017-07-28 2017-07-28 一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710631098.4A CN107706260B (zh) 2017-07-28 2017-07-28 一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN107706260A CN107706260A (zh) 2018-02-16
CN107706260B true CN107706260B (zh) 2019-04-09

Family

ID=61170104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710631098.4A Expired - Fee Related CN107706260B (zh) 2017-07-28 2017-07-28 一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN107706260B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108845017B (zh) * 2018-05-31 2023-11-14 清华大学 一种基于二硒化钨的柔性离子传感器
CN109734048B (zh) * 2018-12-29 2020-10-30 哈尔滨工业大学 一种近红外光电器件的加工方法
CN109817757B (zh) * 2019-01-18 2021-02-05 中国空间技术研究院 一种二硒化钨薄片/氧化锌纳米带结型场效应晶体管光电探测器及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219403B (zh) * 2013-04-19 2016-06-08 苏州大学 基于二维层状原子晶体材料的光探测器
CN103681895A (zh) * 2013-11-28 2014-03-26 北京大学 一种基于碳纳米管的红外成像探测器及其制备方法
KR102395776B1 (ko) * 2015-05-18 2022-05-09 삼성전자주식회사 이차원 물질을 포함하는 반도체소자 및 그 제조방법
WO2017009777A1 (en) * 2015-07-13 2017-01-19 King Abdullah University Of Science And Technology Deformable paper origami optoelectronic devices
CN106449854B (zh) * 2016-10-13 2017-11-21 中国科学院上海技术物理研究所 全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法

Also Published As

Publication number Publication date
CN107706260A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
CN104766902B (zh) 基于石墨烯碳纳米管复合吸收层的红外光探测晶体管
Ezhilmaran et al. Recent developments in the photodetector applications of Schottky diodes based on 2D materials
Yoo et al. High photosensitive indium–gallium–zinc oxide thin-film phototransistor with a selenium capping layer for visible-light detection
Chen et al. Ultrahigh sensitive near-infrared photodetectors based on MoTe 2/germanium heterostructure
CN108281554B (zh) 一种量子点结构光电探测器及其制备方法
Hossain et al. Transparent, flexible silicon nanostructured wire networks with seamless junctions for high-performance photodetector applications
Wang et al. Amorphous ZnO/PbS quantum dots heterojunction for efficient responsivity broadband photodetectors
CN103346199B (zh) 基于单层石墨烯/氧化锌纳米棒阵列肖特基结的紫外光电探测器及其制备方法
CN111682088A (zh) 一种基于范德华异质结的隧穿型光电探测器及其制备方法
CN107706260B (zh) 一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器及其制备方法
CN109817757B (zh) 一种二硒化钨薄片/氧化锌纳米带结型场效应晶体管光电探测器及其制备方法
CN110459548B (zh) 一种基于范德瓦尔斯异质结的光电探测器及其制备方法
Mandavkar et al. Significantly improved photo carrier injection by the MoS2/ZnO/HNP hybrid UV photodetector architecture
CN108281493B (zh) 二硒化钨和金属垂直型肖特基结自驱动光电探测器及制备
CN107527968A (zh) 一种石墨烯‑二硫化钼侧向异质结光电探测器结构
Kajli et al. Efficient UV–visible photodetector based on single CuO/Cu2O core-shell nanowire
WO2022100053A1 (zh) 含有金属硅化物红外吸收层的石墨烯场效应电荷耦合器件
Tran et al. Photoresponsive properties of ultrathin silicon nanowires
Kim et al. High-performing ITO/CuO/n-Si photodetector with ultrafast photoresponse
CN108630782B (zh) 一种宽探测波段双重等离子工作光电探测器的制备方法
Nguyen et al. Self-powered transparent photodetectors for broadband applications
CN110729375B (zh) 单边耗尽区的高效快速范德华异质结探测器及制备方法
Yao et al. Graphene-based heterojunction for enhanced photodetectors
CN111799342A (zh) 一种基于硒化亚锡/硒化铟异质结的光电探测器及其制备方法
CN108878575B (zh) 一种基于硅/氟化石墨烯的双工作模式宽波段光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190409

Termination date: 20190728

CF01 Termination of patent right due to non-payment of annual fee