CN110729375B - 单边耗尽区的高效快速范德华异质结探测器及制备方法 - Google Patents
单边耗尽区的高效快速范德华异质结探测器及制备方法 Download PDFInfo
- Publication number
- CN110729375B CN110729375B CN201910850370.7A CN201910850370A CN110729375B CN 110729375 B CN110729375 B CN 110729375B CN 201910850370 A CN201910850370 A CN 201910850370A CN 110729375 B CN110729375 B CN 110729375B
- Authority
- CN
- China
- Prior art keywords
- asp
- van der
- mos
- der waals
- heterojunction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title abstract description 15
- 229910052751 metal Inorganic materials 0.000 claims abstract description 15
- 239000002184 metal Substances 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 11
- 238000012546 transfer Methods 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 230000005669 field effect Effects 0.000 claims abstract description 4
- 230000008569 process Effects 0.000 claims abstract description 4
- 238000000609 electron-beam lithography Methods 0.000 claims abstract description 3
- 239000004065 semiconductor Substances 0.000 claims description 13
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 6
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 claims description 6
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 claims description 6
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 6
- 238000002207 thermal evaporation Methods 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims 1
- 230000004044 response Effects 0.000 abstract description 16
- 230000007547 defect Effects 0.000 abstract description 9
- 238000006243 chemical reaction Methods 0.000 abstract description 8
- 238000005215 recombination Methods 0.000 abstract description 8
- 230000006798 recombination Effects 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 7
- 230000005641 tunneling Effects 0.000 abstract description 5
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 abstract 2
- 229910052982 molybdenum disulfide Inorganic materials 0.000 abstract 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract 1
- CTNCAPKYOBYQCX-UHFFFAOYSA-N [P].[As] Chemical compound [P].[As] CTNCAPKYOBYQCX-UHFFFAOYSA-N 0.000 abstract 1
- 229910052710 silicon Inorganic materials 0.000 abstract 1
- 239000010703 silicon Substances 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 239000010410 layer Substances 0.000 description 8
- 239000011651 chromium Substances 0.000 description 7
- 239000010931 gold Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- 239000002390 adhesive tape Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- VJLLLMIZEJJZTE-BUDJNAOESA-N n-[(e,3r)-3-hydroxy-1-[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadec-4-en-2-yl]hexadecanamide Chemical compound CCCCCCCCCCCCCCCC(=O)NC([C@H](O)\C=C\CCCCCCCCCCCCC)CO[C@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VJLLLMIZEJJZTE-BUDJNAOESA-N 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/032—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
- H01L31/0321—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/102—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
- H01L31/109—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明公开了一种单边耗尽区的高效快速范德华异质结探测器及制备方法。器件结构自下而上依次为是衬底、范德华异质结,金属源漏电极。器件制备步骤是依次将机械剥离的黑砷磷(AsP)薄片和二硫化钼(MoS2)薄片通过定点转移到硅衬底上并形成范德华异质结。运用电子束光刻并结合lift‑off工艺制备金属源极和漏极,形成异质结场效应晶体管结构。器件的独特性在于其异质结是单边耗尽的pp结,有别于双边耗尽的pn结。单边耗尽的异质结可以有效抑制遂穿辅助的界面复合和界面缺陷捕获效应,从而实现高量子效率、光电转换效率以及快的响应速度。本发明的探测器具有信噪比高、量子效率和光电转换效率高、响应快的特点,并且可应用于太阳能电池领域。
Description
技术领域
本发明涉及一种范德华异质结光电探测器件,具体指利用p型MoS2和p型AsP形成具有单边耗尽区的范德华异质结,减少遂穿辅助的界面复合和界面缺陷捕获效应,实现高的量子效率、光电转换效率以及快的响应时间。
背景技术
二维范德华半导体材料由于具有特殊的光、电、磁等物理化学性能及纳米结构的奇特性能,引起了科学家们的广泛关注,被公认为是发展下一代纳米电子器件和光电子器件的基础,成为当今纳米材料研究领域的前沿。由于二维范德华材料表面无悬挂键,且层间由较弱的范德华力结合,因此可以很容易地将任意两种材料堆叠形成二维范德华异质结,避免传统半导体材料异质外延时的晶格匹配问题。这种任意堆叠给器件设计带来了很大的自由度,可以制备出传统半导体材料难以实现的异质结。二维范德华异质结在二极管器件、遂穿晶体管、探测器、太阳能电池等方面展现出潜在的优势及其应用前景。近年来,基于二维范德华异质结的光电探测器由于具有高的信噪比、低暗电流、高量子效率、快的响应时间而备受关注。然而,目前报道的二维范德华异质结探测器都是基于pn结,其p区和n区都是载流子耗尽的。光生电子和空穴都需要穿过异质界面,导致界面复合非常严重,大大降低了器件的量子效率。其次,目前制备的二维范德华异质结界面处都存在较多的缺陷态,这些缺陷态会捕获光生载流子,使得器件的响应时间变慢。
为了解决上述问题,本发明提出了一种单边耗尽区的高效快速二维范德华异质结探测器及制备方法。该器件是利用p型MoS2和p型AsP通过人工堆叠形成具有单边耗尽区的二维范德华异质结。该单边耗尽区存在于MoS2一侧。在光伏模式下,只有光生电子通过界面,因此可以有效减少遂穿辅助的界面复合和界面缺陷捕获效应,实现高的量子效率、光电转换效率以及快的响应时间。
发明内容
本发明提出了一种单边耗尽区的高效快速范德华异质结探测器及制备方法。该探测器利用独特的单边耗尽区器件结构,有效减少界面复合及界面缺陷捕获效应,显著提高了器件的量子效率、光电转换效率及响应时间。
所述的探测器的结构为:在P型Si衬底1上是SiO2氧化层2、在SiO2氧化层2上制备有由AsP二维半导体3和MoS2二维半导体4形成的范德华异质结,在AsP和MoS2两端分别是漏电极5和源电极6,且每个源漏电极都有两个。
所述的的P型Si衬底1是硼重掺杂,电阻率小于0.05Ω·cm;
所述的SiO2氧化层2厚度是285nm;
所述的二维半导体3为AsP薄片,薄片厚度在50-60nm;
所述的二维半导体4为MoS2薄片,薄片厚度在50-70nm;
所述的源或漏电极5或6是金属Cr和Au,厚度分别是10-15和45-85nm。
本发明的一种单边耗尽区的高效快速范德华异质结探测器的制备方法步骤如下:
1)AsP薄片制备及转移
在氮气保护的手套箱中,利用胶带,采用机械剥离的方法制备不同厚度的AsP薄片。利用PDMS将制备的AsP薄片转移至氧化物层2表面。在光学显微镜下,利用颜色选定特定厚度的AsP薄片。
2)MoS2薄片制备及转移
在氮气保护的手套箱中,利用胶带,采用机械剥离的方法制备不同厚度的MoS2薄片,将其转移至覆有PDMS的载玻片上。
3)二维范德华异质结MoS2/AsP的制备
在氮气保护的手套箱中,利用显微镜辅助的定点转移平台,选择合适厚度的MoS2薄片,将其转移至事先选好的AsP薄片上,以此形成二维范德华异质结MoS2/AsP。
4)二维范德华异质结MoS2/AsP源漏电极的制备
采用电子束光刻技术,结合热蒸发及lift-off工艺制备金属源极5和漏极6,形成背栅调控的二维异质结场效应晶体管器件结构。针对不同厚度的MoS2薄片,利用热蒸镀沉积不同厚度的铬和金(铬/金厚度分别为10/45nm,15/65nm,15/85nm)。器件制备完成后,旋涂一层PMMA光刻胶作为保护层,防止AsP接触空气而氧化。
单边耗尽区异质结的形成,关键在于p型MoS2。通过大量实验,发现MoS2的导电类型与厚度相关。当MoS2的厚度小于40nm时,MoS2是n型导电的;当MoS2的厚度介于40-50nm时,MoS2是呈现出双极性;当MoS2的厚度大于50nm时,MoS2是p型导电的。因此,选择50-70nm的MoS2薄片及AsP薄片,可以形成单边耗尽的pp异质结。由于单边耗尽区存在于MoS2一侧,在光伏模式下,只有光生电子通过界面,因此可以有效减少遂穿辅助的界面复合和界面缺陷捕获效应,实现高的量子效率、光电转换效率以及快的响应时间。器件的工作原理示意图如图2所示。正面入射的可见光被MoS2吸收,产生光生电子和空穴。其中光生电子在内建电场的作用下向AsP一侧漂移,越过异质结界面后与AsP中的多数载流子空穴复合,损失一小部分能量后被漏极收集。光生空穴则在内建电场作用下向源极一侧漂移并被源极收集。因此形成短路电流和开路电压,即该探测器可用作光伏型探测器或者太阳能电池。
本发明专利的优点在于:利用二维范德华材料无表面悬挂键的特点,可以将二维p型MoS2和p型AsP堆叠形成单边耗尽的范德华异质结。单边耗尽区可以有效减少光生载流子的界面复合和界面缺陷捕获效应,提高量子效率、光电转换效率以及响应速度。该探测器具有零偏压、信噪比高、量子效率高、响应快等优点。
附图说明
图1是单边耗尽区的范德华异质结探测器截面示意图。其中1为Si衬底,2为SiO2层,3为二维AsP,4为二维MoS2,5为源电极Cr/Au,6为漏电极Cr/Au。
图2是双边耗尽区pn结和单边耗尽区pp+结的区别。其中图2a是双边耗尽区pn结在红外光下响应下的能带图,图2b是双边耗尽区pn结在无光照下的I-V曲线,图2c是双边耗尽区pn结在1550和2000nm红外光下的光响应,图2d是单边耗尽区pp结在红外光下响应下的能带图,图2e是单边耗尽区pp结在无光照下的I-V曲线,图2f是单边耗尽区pp结在1550nm红外光下的光响应。
图3是单边耗尽区的MoS2/AsP范德华异质结光伏原理示意图。
图4是单边耗尽区的MoS2/AsP范德华异质结在无光照和光照下的输出特性曲线。
图5是单边耗尽区的MoS2/AsP范德华异质结光伏下的响应时间。
具体实施方式
下面结合附图对本发明的具体实施方式作详细说明:
本发明研制了单边耗尽区的范德华异质结探测器。通过二维p型MoS2和p型AsP堆叠形成单边耗尽的范德华异质结,以此减少界面复合和界面缺陷捕获效应,提高量子效率、光电转换效率以及响应速度。
具体步骤如下:
1、AsP薄片制备及转移
在氮气保护的手套箱中,将AsP块状单晶放在Schott蓝色胶带上,反复粘贴,利用胶带的粘附力机械剥离出不同厚度的AsP薄片。利用PDMS将制备的AsP薄片转移至SiO2衬底表面。在光学显微镜下,利用颜色选定特定厚度的AsP薄片。
2、MoS2薄片制备及转移
在氮气保护的手套箱中,采用1中同样的方法制备不同厚度的MoS2薄片,将其转移至覆有PDMS的载玻片上。
3、二维范德华异质结MoS2/AsP的制备
在氮气保护的手套箱中,利用显微镜辅助的定点转移平台,选择合适厚度的MoS2薄片,将其转移至事先选好的AsP薄片上,以此形成范德华异质结MoS2/AsP。
4、二维范德华异质结MoS2/AsP源漏电极的制备
利用DesignCAD express软件设计出电子束曝光的源、漏电极图形;用匀胶机旋涂光刻胶PMMA,并在150℃下加热5分钟;利用电子束曝光(扫描电镜SEM与微图形发生系统NPGS的组装),对各电极图形进行精准定位曝光,然后显影;针对不同厚度的MoS2薄片,利用热蒸镀沉积不同厚度的铬和金(铬/金厚度分别为10/45nm,15/65nm,15/85nm);在丙酮中进行金属的剥离,形成MoS2/AsP范德华异质结场效应晶体管。器件制备完成后,旋涂一层PMMA光刻胶作为保护层,防止AsP接触空气而氧化。
Claims (1)
1.一种制备单边耗尽区的高效快速范德华异质结探测器的方法,所述探测器的器件结构自下而上依次为:衬底(1),氧化物层(2)、AsP二维半导体(3)、MoS2二维半导体(4)、在AsP二维半导体(3)和MoS2二维半导体(4)两端分别是金属源极(5)和金属漏极(6),且每个源漏电极都有两个金属源极(5)、金属漏极(6),其中:
所述的衬底(1)为重掺杂的Si衬底;
所述的氧化物层(2)为SiO2,厚度285±10纳米;
所述的AsP二维半导体(3)的厚度在50-60 nm;
所述的MoS2二维半导体(4)的厚度在50-70 nm;
所述的金属源极(5)、金属漏极(6)为Cr和Au复合电极,Cr厚度为10-15 nm,Au厚度为45-85 nm;其特征在于包括以下步骤:
1) 通过机械剥离法获得不同厚度的AsP薄片,利用PDMS将AsP薄片转移到氧化物层(2)表面;
2)通过机械剥离法获得不同厚度的MoS2薄片,将其转移至PDMS上,然后利用干法定点转移将MoS2薄片堆叠在AsP薄片上,以此形成二维范德华异质结;
3) 采用电子束光刻技术,结合热蒸发及lift-off工艺制备金属源极(5),金属漏极(6),形成背栅结构二维异质结场效应晶体管器件结构。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910850370.7A CN110729375B (zh) | 2019-09-10 | 2019-09-10 | 单边耗尽区的高效快速范德华异质结探测器及制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910850370.7A CN110729375B (zh) | 2019-09-10 | 2019-09-10 | 单边耗尽区的高效快速范德华异质结探测器及制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110729375A CN110729375A (zh) | 2020-01-24 |
CN110729375B true CN110729375B (zh) | 2024-03-22 |
Family
ID=69218048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910850370.7A Active CN110729375B (zh) | 2019-09-10 | 2019-09-10 | 单边耗尽区的高效快速范德华异质结探测器及制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110729375B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111206284B (zh) * | 2020-02-21 | 2020-12-15 | 湖南大学 | 一种硒化钯单晶及其制备和应用 |
CN113532645B (zh) * | 2021-06-17 | 2022-07-12 | 北京理工大学 | 一种大视场小像差龙虾眼成像系统 |
CN115050846A (zh) * | 2022-06-10 | 2022-09-13 | 南京理工大学 | MoS2/Ta2NiSe5异质结光电探测器及其制备方法 |
CN118676239A (zh) * | 2024-08-21 | 2024-09-20 | 广州市南沙区北科光子感知技术研究院 | 基于Bi2Te3的双i型异质结红外探测器及其制作方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2157621A2 (en) * | 2008-08-22 | 2010-02-24 | Shin-Etsu Chemical Co., Ltd. | Heterojunction solar cell and process for manufacturing the same |
WO2010074275A1 (ja) * | 2008-12-26 | 2010-07-01 | 日本電気株式会社 | ヘテロ接合電界効果トランジスタ、ヘテロ接合電界トランジスタの製造方法、および電子装置 |
JP2014203924A (ja) * | 2013-04-03 | 2014-10-27 | 三菱電機株式会社 | 太陽電池の製造方法及び太陽電池 |
JP2015008244A (ja) * | 2013-06-26 | 2015-01-15 | 三菱電機株式会社 | ヘテロ接合電界効果型トランジスタおよびその製造方法 |
JP2015230972A (ja) * | 2014-06-05 | 2015-12-21 | 三菱電機株式会社 | ヘテロ接合電界効果型トランジスタおよびその製造方法 |
CN105762281A (zh) * | 2016-04-15 | 2016-07-13 | 中国科学院上海技术物理研究所 | 一种铁电局域场增强型二维半导体光电探测器及制备方法 |
CN106024861A (zh) * | 2016-05-31 | 2016-10-12 | 天津理工大学 | 二维黑磷/过渡金属硫族化合物异质结器件及其制备方法 |
WO2017190643A1 (zh) * | 2016-05-06 | 2017-11-09 | 杭州电子科技大学 | 一种新型iii-v异质结场效应晶体管 |
CN107749433A (zh) * | 2017-08-30 | 2018-03-02 | 中国科学院上海技术物理研究所 | 一种二维范德华异质结光电探测器及其制备方法 |
CN207529954U (zh) * | 2017-08-30 | 2018-06-22 | 中国科学院上海技术物理研究所 | 一种二维范德华异质结光电探测器 |
CN108447924A (zh) * | 2018-03-19 | 2018-08-24 | 齐鲁工业大学 | 基于二维硒化铟和黑磷的范德瓦尔斯异质结的光探测器及其制备 |
CN109390388A (zh) * | 2018-08-31 | 2019-02-26 | 国家纳米科学中心 | 一种范德华异质结器件及其制备方法和应用 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8866005B2 (en) * | 2008-10-17 | 2014-10-21 | Kopin Corporation | InGaP heterojunction barrier solar cells |
US9472686B2 (en) * | 2013-08-02 | 2016-10-18 | Northwestern University | Gate-tunable P-N heterojunction diode, and fabrication method and application of same |
TWI793076B (zh) * | 2017-06-30 | 2023-02-21 | 晶元光電股份有限公司 | 半導體元件 |
-
2019
- 2019-09-10 CN CN201910850370.7A patent/CN110729375B/zh active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2157621A2 (en) * | 2008-08-22 | 2010-02-24 | Shin-Etsu Chemical Co., Ltd. | Heterojunction solar cell and process for manufacturing the same |
WO2010074275A1 (ja) * | 2008-12-26 | 2010-07-01 | 日本電気株式会社 | ヘテロ接合電界効果トランジスタ、ヘテロ接合電界トランジスタの製造方法、および電子装置 |
JP2014203924A (ja) * | 2013-04-03 | 2014-10-27 | 三菱電機株式会社 | 太陽電池の製造方法及び太陽電池 |
JP2015008244A (ja) * | 2013-06-26 | 2015-01-15 | 三菱電機株式会社 | ヘテロ接合電界効果型トランジスタおよびその製造方法 |
JP2015230972A (ja) * | 2014-06-05 | 2015-12-21 | 三菱電機株式会社 | ヘテロ接合電界効果型トランジスタおよびその製造方法 |
CN105762281A (zh) * | 2016-04-15 | 2016-07-13 | 中国科学院上海技术物理研究所 | 一种铁电局域场增强型二维半导体光电探测器及制备方法 |
WO2017190643A1 (zh) * | 2016-05-06 | 2017-11-09 | 杭州电子科技大学 | 一种新型iii-v异质结场效应晶体管 |
CN106024861A (zh) * | 2016-05-31 | 2016-10-12 | 天津理工大学 | 二维黑磷/过渡金属硫族化合物异质结器件及其制备方法 |
CN107749433A (zh) * | 2017-08-30 | 2018-03-02 | 中国科学院上海技术物理研究所 | 一种二维范德华异质结光电探测器及其制备方法 |
CN207529954U (zh) * | 2017-08-30 | 2018-06-22 | 中国科学院上海技术物理研究所 | 一种二维范德华异质结光电探测器 |
CN108447924A (zh) * | 2018-03-19 | 2018-08-24 | 齐鲁工业大学 | 基于二维硒化铟和黑磷的范德瓦尔斯异质结的光探测器及其制备 |
CN109390388A (zh) * | 2018-08-31 | 2019-02-26 | 国家纳米科学中心 | 一种范德华异质结器件及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN110729375A (zh) | 2020-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110729375B (zh) | 单边耗尽区的高效快速范德华异质结探测器及制备方法 | |
Chen et al. | Ultrahigh sensitive near-infrared photodetectors based on MoTe 2/germanium heterostructure | |
CN107221575B (zh) | 基于二维材料垂直肖特基结近红外探测器及制备方法 | |
CN111682088A (zh) | 一种基于范德华异质结的隧穿型光电探测器及其制备方法 | |
CN113964219A (zh) | 一种基于拓扑绝缘体/二碲化钼异质结的光电晶体管及其制备方法和应用 | |
CN108231817A (zh) | 一种基于二维材料/绝缘层/半导体结构的低功耗电荷耦合器件 | |
TW201907574A (zh) | 二維電子元件與相關製造方法 | |
CN108389874B (zh) | 一种局域场增强型宽光谱高响应的光电探测器 | |
KR101598779B1 (ko) | 그래핀 핫 전자 나노 다이오드 | |
Bagheri et al. | Efficient heterojunction thin film CdSe solar cells deposited using thermal evaporation | |
KR20130111815A (ko) | 태양전지 및 이의 제조방법 | |
US9024367B2 (en) | Field-effect P-N junction | |
CN114300555A (zh) | 一种基于TaIrTe4/Si异质结的光电探测器及其制备方法 | |
JP5147795B2 (ja) | 薄膜光電変換素子と薄膜光電変換素子の製造方法 | |
CN210272386U (zh) | 一种单边耗尽区的高效快速范德华异质结探测器 | |
EP3555921B1 (fr) | Dispositif photovoltaïque tandem comprenant une sous-cellule à base de perovskite et une sous-cellule a base de silicium | |
Le Thi et al. | Doping-Free High-Performance Photovoltaic Effect in a WSe2 Lateral pn Homojunction Formed by Contact Engineering | |
Li et al. | Ultrahigh Sensitive Phototransistor Based on MoSe $ _ {\text {2}} $/Ge Mixed-Dimensional Heterojunction for Visible to Short-Wave Infrared Broadband Photodetection | |
Sabbar et al. | A fabricated solar cell from ZnO/a-Si/polymers | |
CN111509076B (zh) | 一种具有低暗电流的自驱动型光电探测器及其制备方法 | |
Oublal et al. | Optimization of a solar cell based on tin sulfide with different BSF materials-numerical approach | |
CN117855322B (zh) | 基于二硒化钯二硒化钨异质结的光探测器的制备方法 | |
KR101081248B1 (ko) | 태양전지 및 이의 제조방법 | |
CN115347066A (zh) | 一种基于TaIrTe4/Ge异质结的光电探测器及其制备方法 | |
CN115274908A (zh) | PtTe2/MoTe2光电晶体管、制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |