CN111223943A - 一种基于碳量子点和石墨烯的光电探测器及制备方法 - Google Patents

一种基于碳量子点和石墨烯的光电探测器及制备方法 Download PDF

Info

Publication number
CN111223943A
CN111223943A CN202010052443.0A CN202010052443A CN111223943A CN 111223943 A CN111223943 A CN 111223943A CN 202010052443 A CN202010052443 A CN 202010052443A CN 111223943 A CN111223943 A CN 111223943A
Authority
CN
China
Prior art keywords
carbon quantum
graphene
quantum dot
quantum dots
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010052443.0A
Other languages
English (en)
Inventor
陈刚
吴向东
徐煌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN202010052443.0A priority Critical patent/CN111223943A/zh
Publication of CN111223943A publication Critical patent/CN111223943A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种基于碳量子点和石墨烯的光电探测器及制备方法,该光电探测器包括硅衬底、石墨烯薄膜、碳量子点和源漏电极。本发明提供的碳量子点和石墨烯的光电探测器以碳量子点为光吸收介质层,实现了光电信号的转换;以石墨烯为传输材料,实现了载流子的快速运输;同时点缀在石墨烯薄膜上的碳量子点带隙可调并且可以和石墨烯相互作用,使得光生载流子能够有效的分离和快速运输,提高了探测器的响应度;本发明制备工艺简单,成本低廉,具有结构可控、易于集成、响应度高等特点。

Description

一种基于碳量子点和石墨烯的光电探测器及制备方法
技术领域
本发明属于光电探测技术领域,涉及光电探测器件结构,尤其涉及一种基于碳量子点和石墨烯的光电探测器及制备方法。
背景技术
光电探测器是一种将光信号转换为电信号的仪器设备,其基本原理是利用光的辐射引起背照射材料的电导率发生改变,从而引起电信号的变化。光电探测器在军事和国民经济等许多领域具有广泛的用途。随着激光与紫外技术的发展,以及材料性能的改进和制造工艺的不断完善,光电探测器朝着集成化的方向发展,这大大缩小了器件的体积,改善了性能,降低了成本。虽然基于硅光电探测器发展比较成熟,然而由于不断缩小的集成电路及硅的成本高易碎等诸多缺点,基于探索新的活性材料。自2004年石墨烯被发现,制备出石墨烯器件之后,石墨烯在各种电子器件中被广泛应用,有望成为下一代集成电路的基础材料。
石墨烯是有单层碳原子按照蜂窝状结构紧密排列的一种二维平面晶体材料,由于其只有一个原子层的厚度,具有极高的载流子迁移率、亚微米量级的弹道运输、优异的机械性能和导热性以及良好的光学特性和化学稳定性等一系列优越的特性。因此石墨烯在光电探测领域极具潜力,具有光谱频带宽、响应速度快等优点,理论上可以将其作为半导体光电探测器件的功能层。但是石墨烯在具有光电探测器件应用中存在两个方面的主要问题。一方面,石墨烯是一种零带隙半导体,其光学吸收能力较弱,并且产生的热电子-空穴对寿命短;另一方面,石墨烯易受到衬底及界面效应的影响,由于衬底及界面效应引起的各种散射对石墨烯的迁移率影响很大,进而影响空穴的运输。这两个方面因素造成石墨烯光电探测器的灵敏度和响应度降低。
碳点作为一种新型的碳基零维材料,由于其独特的化学和光电性质,优异的水溶性优越环境友好、原料来源广、生产成本低等诸多优点被广泛应用于光电探测领域,并且碳点具有大的光学吸收,可以弥补石墨烯的弱光学吸收,同时带隙可调,可以检测从紫外、可见甚至到近红外波段。因此将二维石墨烯和零维碳量子点结合起来构建全碳基光电探测器件,其中碳量子点作为光学吸收介质,实现光电信号转换;石墨烯作为传输材料,为载流子的快速运输提供通道。该器件制备工艺简单,成本低廉,具有结构可控、易于集成、响应度高等特点。
发明内容
本发明的目的在于针对现有技术的不足,提供一种基于碳量子点和石墨烯的光电探测器及制备方法。
本发明的目的是通过以下技术方案来实现的:硅衬底1、石墨烯薄膜2、碳量子点3和源漏电极4;其中,所述硅衬底的上表面覆盖石墨烯薄膜,在石墨烯薄膜上覆盖碳量子点,在石墨烯薄膜上覆盖源漏电极;
所述的硅衬底1为p型硅衬底,厚度为200μm,其上有厚度为300nm的二氧化硅氧化层,电阻率为<0.01Ω·cm;
所述的石墨烯薄膜2为单层石墨烯;
所述的碳量子点3带隙可调,在紫外和可见光波段都有吸收,粒径为2.0-4.0nm,平均粒径为2.54nm;
所述的源漏电极4的电极材料为铬和金,金层位于铬层之上,其中铬黏附层的厚度为5nm,金层的厚度为60nm。
该制备方法包括以下步骤:
(1)硅衬底的切割、清洗和预处理:首先对硅衬底进行切割;然后将衬底分别置于丙酮、无水乙醇和去离子水中超声清洗数次;最后将清洗干净的衬底放入等离子刻蚀机中进行刻蚀;
(2)覆盖石墨烯薄膜:在硅衬底的上表面湿法转移一层石墨烯薄膜;
(3)旋涂碳量子点:将制备好的碳量子点溶液超声分散,通过旋涂的方法在石墨烯的上表面旋涂碳量子点,最后在加热板上加热;
(4)光刻、蒸镀源漏电极图案,首先设计不同尺寸的电极掩模版;然后进行紫外光刻,然后采用热蒸发技术,在石墨烯上蒸镀源漏电极图案,首先生长5nm的铬粘附层,然后生长厚度为60nm的金电极
(5)套刻和氧刻碳量子点石墨烯纳米结构:首先设计套刻版;然后对石墨烯薄膜进行紫外套刻以及氧等离子体刻蚀,形成具有一定有效面积的碳量子点和石墨烯光电探测器。
步骤(1)中所述的氧等离子体刻蚀机中刻蚀的功率为100W-300W,真空度100mTorr-120mTorr,刻蚀时间60s-180s。
步骤(2)中所述的石墨烯薄膜采用化学气相沉积方法在铜箔基底上制备。
步骤(3)中所述的碳量子点是以柠檬酸为碳源,乙二胺为氮源通过水热法制备;合成的氮掺杂碳量子点通过0.22um抽滤膜抽滤,12000r/min离心和500道尔顿透析膜透析来提纯。
步骤(3)中所述旋涂方法中的旋转速度为2000rpm-3000rpm,加热温度90℃-120℃,加热时间3-5min。
步骤(5)中所述的氧等离子体刻蚀压强为100torr-120torr的压强,刻蚀功率为100W-300W,刻蚀时间60s-180s。
本发明基于碳量子点和石墨烯的光电探测器的工作原理如下:
由于碳量子点在紫外到可见波段有很强的吸收峰,入射光照射到本发明的光电探测器表面,很容易被碳量子点和石墨烯以及衬底吸收,产生的电子空穴对,其在电场作用下很快被分离,降低表面复合,空穴在碳量子点中被缺陷态捕获,电荷在电场作用下突破碳量子点的表面束缚转移到载流子迁移率很大的石墨烯上从而形成很大的光电流信号,具有很高的增益,在紫外光区域,量子效率很高。
本发明具有以下有益效果:
1.入射光照射到本发明光电探测器表面,被碳量子点和石墨烯以及衬底吸收。加小偏压加到器件两端,产生的光生载流子(空穴电子对)在内建电场作用下被分离,空穴在碳量子点中被缺陷态捕获,电荷在电场作用下被快速分离,从而形成很大的光信号电流,具有很高的增益。
2.碳量子点在可见光尤其紫外波段有很强的吸收峰。入射光容易被吸,产生的电子空穴很快被内部电场分离,降低表面复合。在紫外光区域,量子效率很高。
3.石墨烯作为透明电极,增强入射光吸收,提高光生电流,具有很高的光学响应。石墨烯的载流子迁移率很大,可以提高器件的时间响应。
4.本发明光电探测器所用材料以硅为基本材料,制备过程简单,成本低,易与现有半导体标准工艺兼容。
附图说明
图1为本发明基于碳量子点和石墨烯的光电探测器的结构示意图;
图2为本发明实施例1碳量子点和石墨烯的光电探测器的制备流程图;
具体实施方式
以下结合实施例对本发明进一步详细说明。但本实施例仅用于说明本发明,而不应视为限定本发明的范围,凡采用本发明的相似方法及其相似变化,均应列入本发明的保护范围。
下面结合附图和实施例对本发明作进一步的说明。
如图1所示,本发明提供的一种基于碳量子点和石墨烯的光电探测器,包括:硅衬底、石墨烯薄膜、碳量子点和源漏电极;其中,所述硅衬底的上表面覆盖石墨烯薄膜,在石墨烯薄膜上表面覆盖碳量子点,在石墨烯薄膜上覆盖源漏电极。
实施例1:
1)将p型硅衬底切割成尺寸为1cm×1cm;将衬底分别置于丙酮、无水乙醇和去离子水中超声清洗数次,将清洗好的衬底置于等离子刻蚀机腔体中,在功率为100W,真空度100mTorr的条件,刻蚀时间60s;
2)将步骤(1)得到的样品上通过湿法转移一层通过化学气相沉积方法生张的单层石墨烯;
3)通过水热法制备碳量子点,其粒径大小为2nm,平均高度1.25nm,在240nm、360nm处有两个明显的吸收峰,将其超声分散30min,将将步骤(2)得到的样品置于匀胶机上,以2000rmp的速度旋转45s,并将其置于加热板上在90℃条件下加热3min,重复操作5次;
4)将步骤(3)得到的样品在旋涂参数为前转500r/s后转4000r/s分别旋转5s、35s在目标衬底上旋涂AZ5214光刻胶;随后将其放置于90℃的加热板上加热2min加热烘干;使用紫外光刻机在掩模版辅助下曝光4s,再用AZ1500正胶显影液0.5wt%NaOH浸泡30s,最后用去离子水清洗干净;
5)将步骤(4)中光刻完成的样品置于热蒸发镀膜系统中,以
Figure BDA0002371666900000061
的沉积速率将5nm Cr和60nm Au沉积形成源漏电极;将沉积完成的样品浸泡在丙酮溶液中30min进行剥离,最后用无水乙醇和去离子水分别清洗;
6)将步骤(5)得到的样品在旋涂参数为前转500r/s后转4000r/s分别旋转5s、35s在目标衬底上旋涂AZ5214光刻胶;随后将其放置于90℃的加热板上加热2min加热烘干;使用紫外光刻机在套刻版辅助下曝光4s,再用AZ1500正胶显影液0.5wt%NaOH浸泡30s,最后用去离子水清洗干净;
7)将步骤(6)的到的样品置于等离子刻蚀机腔体中,在功率为100W,真空度100mTorr的条件,刻蚀时间60s,形成具有一定有效面积的碳量子点和石墨烯光电探测器件。
实施例2:
1)将p型硅衬底切割成尺寸为1cm×1cm;将衬底分别置于丙酮、无水乙醇和去离子水中超声清洗数次,将清洗好的衬底置于等离子刻蚀机腔体中,在功率为200W,真空度110mTorr的条件,刻蚀时间90s;
2)将步骤(1)得到的样品上通过湿法转移一层通过化学气相沉积方法生张的单层石墨烯;
3)通过水热法制备碳量子点,其粒径大小为2.54nm,平均高度1.25nm,在240nm、360nm处有两个明显的吸收峰,将其超声分散30min,将将步骤(2)得到的样品置于匀胶机上,以2500rmp的速度旋转45s,并将其置于加热板上在100℃条件下加热4min,重复操作5次;
4)将步骤(3)得到的样品在旋涂参数为前转500r/s后转4000r/s分别旋转5s、35s在目标衬底上旋涂AZ5214光刻胶;随后将其放置于90℃的加热板上加热2min加热烘干;使用紫外光刻机在掩模版辅助下曝光4s,再用AZ1500正胶显影液(0.5wt%NaOH)浸泡30s,最后用去离子水清洗干净;
5)将步骤(4)中光刻完成的样品置于热蒸发镀膜系统中,以
Figure BDA0002371666900000071
的沉积速率将5nm Cr和60nm Au沉积形成源漏电极;将沉积完成的样品浸泡在丙酮溶液中30min进行剥离,最后用无水乙醇和去离子水分别清洗;
6)将步骤(5)得到的样品在旋涂参数为前转500r/s后转4000r/s分别旋转5s、35s在目标衬底上旋涂AZ5214光刻胶;随后将其放置于90℃的加热板上加热2min加热烘干;使用紫外光刻机在套刻版辅助下曝光4s,再用AZ1500正胶显影液0.5wt%NaOH浸泡30s,最后用去离子水清洗干净;
7)将步骤(6)的到的样品置于等离子刻蚀机腔体中,在功率为200W,真空度110mTorr的条件,刻蚀时间120s,形成具有一定有效面积的碳量子点和石墨烯光电探测器件。
实施例3:
1)将p型硅衬底(含氧化层)切割成尺寸为1cm×1cm;将衬底分别置于丙酮、无水乙醇和去离子水中超声清洗数次,将清洗好的衬底置于等离子刻蚀机腔体中,在功率为300W,真空度120mTorr的条件,刻蚀时间180s;
2)将步骤(1)得到的样品上通过湿法转移一层通过化学气相沉积方法生长的单层石墨烯;
3)通过水热法制备碳量子点,其粒径大小4nm,平均高度1.25nm,在240nm、360nm处有两个明显的吸收峰,将其超声分散30min,将将步骤(2)得到的样品置于匀胶机上,以3000rmp的速度旋转45s,并将其置于加热板上在120℃条件下加热5min,重复操作5次;
4)将步骤(3)得到的样品在旋涂参数为前转500r/s后转4000r/s分别旋转5s、35s在目标衬底上旋涂AZ5214光刻胶;随后将其放置于90℃的加热板上加热2min加热烘干;使用紫外光刻机在掩模版辅助下曝光4s,再用AZ1500正胶显影液0.5wt%NaOH浸泡30s,最后用去离子水清洗干净;
5)将步骤(4)中光刻完成的样品置于热蒸发镀膜系统中,以
Figure BDA0002371666900000081
的沉积速率将5nm Cr和60nm Au沉积形成源漏电极;将沉积完成的样品浸泡在丙酮溶液中30min进行剥离,最后用无水乙醇和去离子水分别清洗;
6)将步骤(5)得到的样品在旋涂参数为前转500r/s后转4000r/s分别旋转5s、35s在目标衬底上旋涂AZ5214光刻胶;随后将其放置于90℃的加热板上加热2min加热烘干;使用紫外光刻机在套刻版辅助下曝光4s,再用AZ1500正胶显影液0.5wt%NaOH浸泡30s,最后用去离子水清洗干净;
7)将步骤(6)的到的样品置于等离子刻蚀机腔体中,在功率为300W,真空度120mTorr的条件,刻蚀时间180s,形成具有一定有效面积的碳量子点和石墨烯光电探测器件。

Claims (7)

1.一种基于碳量子点和石墨烯的光电探测器,包括:硅衬底(1)、石墨烯薄膜(2)、碳量子点(3)和源漏电极(4),其特征在于:
所述的光电探测器底层为硅衬底(1),石墨烯薄膜(2)位于衬底硅(1)之上,碳量子点(3)位于石墨烯薄膜(2)之上,源漏电极(4)位于石墨烯薄膜(2)之上;
所述的硅衬底(1)为p型硅衬底,厚度为200μm,其上有厚度为300nm的二氧化硅氧化层,电阻率为<0.01Ω·cm;
所述的石墨烯薄膜(2)为单层石墨烯;
所述的碳量子点(3)带隙可调,在紫外和可见光波段都有吸收,粒径为2.0-4.0nm,平均粒径为2.54nm;
所述的源漏电极(4)的电极材料为铬和金,金层位于铬层之上,其中铬黏附层的厚度为5nm,金层的厚度为60nm。
2.一种制备如权利要求1所述的基于碳量子点和石墨烯的光电探测器的方法,其特征在于包括以下步骤:
1)硅衬底的切割、清洗和预处理:首先对硅衬底进行切割;然后将衬底分别置于丙酮、无水乙醇和去离子水中超声清洗数次;最后将清洗干净的衬底放入氧等离子刻蚀机中进行刻蚀;
2)覆盖石墨烯薄膜:在硅衬底的上表面借助湿法转移一层石墨烯薄膜;
3)旋涂碳量子点:将制备好的碳量子点溶液超声分散,通过旋涂的方法在石墨烯薄膜上旋涂碳量子点,最后在加热板上加热;
4)光刻、蒸镀源漏电极图案:首先设计电极掩模版;再进行紫外光刻,然后采用热蒸发技术,在石墨烯薄膜上蒸镀源漏电极图案,首先生长5nm的铬粘附层,然后生长厚度为60nm的金电极;
5)套刻和氧刻碳量子点石墨烯纳米结构:首先设计套刻版;然后对石墨烯薄膜进行紫外套刻以及氧等离子体刻蚀,形成具有一定有效面积的碳量子点和石墨烯的光电探测器。
3.根据权利要求2所述的一种制备如权利要求1所述的基于碳量子点和石墨烯的光电探测器的方法,其特征在于:步骤1)中所述的氧等离子体刻蚀机中刻蚀的功率为100W-300W,真空度100mTorr-120mTorr,刻蚀时间60s-180s。
4.根据权利要求2所述的一种制备如权利要求1所述的基于碳量子点和石墨烯的光电探测器的方法,其特征在于:步骤2)中所述的石墨烯薄膜采用化学气相沉积方法在铜箔基底上制备。
5.根据权利要求2所述的一种制备如权利要求1所述的基于碳量子点和石墨烯的光电探测器的方法,其特征在于:步骤3)中所述的碳量子点是以柠檬酸为碳源,乙二胺为氮源通过水热法制备;合成的氮掺杂碳量子点通过0.22um抽滤膜抽滤,12000r/min离心和500道尔顿透析膜透析来提纯。
6.根据权利要求2所述的一种制备如权利要求1所述的基于碳量子点和石墨烯的光电探测器的方法,其特征在于:步骤3)中所述旋涂方法中的旋转速度为2000rpm-3000rpm,加热温度90℃-120℃,加热时间3-5min。
7.根据权利要求2所述的一种制备如权利要求1所述的基于碳量子点和石墨烯的光电探测器的方法,其特征在于:步骤5)中所述的氧等离子体刻蚀压强为100torr-120torr的压强,刻蚀功率为100W-300W,刻蚀时间60s-180s。
CN202010052443.0A 2020-01-17 2020-01-17 一种基于碳量子点和石墨烯的光电探测器及制备方法 Pending CN111223943A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010052443.0A CN111223943A (zh) 2020-01-17 2020-01-17 一种基于碳量子点和石墨烯的光电探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010052443.0A CN111223943A (zh) 2020-01-17 2020-01-17 一种基于碳量子点和石墨烯的光电探测器及制备方法

Publications (1)

Publication Number Publication Date
CN111223943A true CN111223943A (zh) 2020-06-02

Family

ID=70829634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010052443.0A Pending CN111223943A (zh) 2020-01-17 2020-01-17 一种基于碳量子点和石墨烯的光电探测器及制备方法

Country Status (1)

Country Link
CN (1) CN111223943A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739963A (zh) * 2020-06-10 2020-10-02 中国科学院上海微系统与信息技术研究所 一种硅基宽光谱光电探测器的制备方法
CN112701173A (zh) * 2020-12-24 2021-04-23 上海交通大学 一种石墨烯高灵敏度光电探测器及其制备方法
CN114823950A (zh) * 2022-05-10 2022-07-29 云南师范大学 一种基于碳量子点和贵金属纳米颗粒的光电探测器
CN115020516A (zh) * 2022-06-10 2022-09-06 云南师范大学 一种基于柔性石墨烯的光电探测装置
CN114823950B (zh) * 2022-05-10 2024-06-07 云南师范大学 一种基于碳量子点和贵金属纳米颗粒的光电探测器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120161106A1 (en) * 2009-08-24 2012-06-28 Industry-University Cooperation Foundation, Hanyang University Photodetector using a graphene thin film and nanoparticles, and method for producing the same
CN103633183A (zh) * 2013-11-18 2014-03-12 西安电子科技大学 一种石墨烯中远红外探测器及其制备方法
US20140299741A1 (en) * 2013-04-05 2014-10-09 Nokia Corporation Transparent Photodetector for Mobile Devices
US20160005894A1 (en) * 2013-03-22 2016-01-07 Nanyang Technological University Method of manufacturing a monolayer graphene photodetector and monolayer graphene photodetector
CN106601857A (zh) * 2016-11-22 2017-04-26 浙江大学 基于掺硼硅量子点/石墨烯/二氧化硅的光电导探测器及制备方法
US20170352492A1 (en) * 2016-06-07 2017-12-07 The University Of Hong Kong Graphene-semiconductor based wavelength selective photodetector for sub-bandgap photo detection
CN108649082A (zh) * 2018-04-18 2018-10-12 南京信息工程大学 一种ZnS碳量子点日盲紫外探测器及其制备方法
CN109473506A (zh) * 2018-10-24 2019-03-15 中国科学院上海微系统与信息技术研究所 高敏感度中红外光电探测器及其制备方法
CN110165023A (zh) * 2019-06-12 2019-08-23 中国科学院重庆绿色智能技术研究院 一种石墨烯硅复合光电探测器的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120161106A1 (en) * 2009-08-24 2012-06-28 Industry-University Cooperation Foundation, Hanyang University Photodetector using a graphene thin film and nanoparticles, and method for producing the same
US20160005894A1 (en) * 2013-03-22 2016-01-07 Nanyang Technological University Method of manufacturing a monolayer graphene photodetector and monolayer graphene photodetector
US20140299741A1 (en) * 2013-04-05 2014-10-09 Nokia Corporation Transparent Photodetector for Mobile Devices
CN103633183A (zh) * 2013-11-18 2014-03-12 西安电子科技大学 一种石墨烯中远红外探测器及其制备方法
US20170352492A1 (en) * 2016-06-07 2017-12-07 The University Of Hong Kong Graphene-semiconductor based wavelength selective photodetector for sub-bandgap photo detection
CN106601857A (zh) * 2016-11-22 2017-04-26 浙江大学 基于掺硼硅量子点/石墨烯/二氧化硅的光电导探测器及制备方法
CN108649082A (zh) * 2018-04-18 2018-10-12 南京信息工程大学 一种ZnS碳量子点日盲紫外探测器及其制备方法
CN109473506A (zh) * 2018-10-24 2019-03-15 中国科学院上海微系统与信息技术研究所 高敏感度中红外光电探测器及其制备方法
CN110165023A (zh) * 2019-06-12 2019-08-23 中国科学院重庆绿色智能技术研究院 一种石墨烯硅复合光电探测器的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHIH-HAO CHENG等: "All Carbon-Based Photodetectors: An eminent integration of graphite quantum dots and two dimensional graphene", 《SCIENTIFIC REPORTS》 *
XIANGDONG WU ETAL: "Photoluminescence and Photodetecting Properties of the Hydrothermally Synthesized Nitrogen-Doped Carbon Quantum Dots", 《J. PHYS. CHEM. C》 *
XIAOXU CHEN等: "Enhanced photoresponsivity in carbon quantum dots-coupled graphene/silicon Schottky-junction photodetector", 《LASER PHYSICS LETTERS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739963A (zh) * 2020-06-10 2020-10-02 中国科学院上海微系统与信息技术研究所 一种硅基宽光谱光电探测器的制备方法
CN112701173A (zh) * 2020-12-24 2021-04-23 上海交通大学 一种石墨烯高灵敏度光电探测器及其制备方法
CN112701173B (zh) * 2020-12-24 2022-03-01 上海交通大学 一种石墨烯高灵敏度光电探测器及其制备方法
CN114823950A (zh) * 2022-05-10 2022-07-29 云南师范大学 一种基于碳量子点和贵金属纳米颗粒的光电探测器
CN114823950B (zh) * 2022-05-10 2024-06-07 云南师范大学 一种基于碳量子点和贵金属纳米颗粒的光电探测器
CN115020516A (zh) * 2022-06-10 2022-09-06 云南师范大学 一种基于柔性石墨烯的光电探测装置

Similar Documents

Publication Publication Date Title
CN111223943A (zh) 一种基于碳量子点和石墨烯的光电探测器及制备方法
CN109461790B (zh) 氧化镓/石墨烯异质结零功耗光电探测器及其制造方法
CN107146830B (zh) 一种制备柔性透明的石墨烯/硅金属-半导体-金属光电探测器的方法
CN111463295A (zh) 氧等离子体处理的硒氧化铋纳米片光电探测器及制备方法
CN110690317A (zh) 一种基于单层MoS2薄膜/GaN纳米柱阵列的自供电紫外探测器及其制备方法
CN116314386A (zh) 混维范德瓦尔斯异质结光电探测器及其制备方法
Chakrabarty et al. Enhanced performance of hybrid self-biased heterojunction photodetector on soft-lithographically patterned organic platform
CN108321242A (zh) 基于石墨烯和耦合光栅的光探测器及其制作方法
CN114883441B (zh) 一种偏振光探测器及其制备方法
CN112510109A (zh) 一种PtSe2/CsPbI3异质结光电探测器及其制备方法和应用
CN111341874B (zh) 基于Si微米孔/CuO垂直结构异质结的自驱动宽带光电探测器及其制备方法
CN111354804B (zh) 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法
CN110350043B (zh) 一种自组装结晶/非晶氧化镓相结光电探测器及其制造方法
CN209691770U (zh) 一种利用二氧化铪钝化增强型低维纳米探测器
CN114242800A (zh) 日盲AlGaN紫外光电探测器及其制备方法
CN111244222B (zh) 六方氮化硼紫外光探测器及制备方法
CN110690316A (zh) 一种基于核壳结构GaN-MoO3纳米柱的自供电紫外探测器及其制备方法
CN109950359A (zh) 一种利用二氧化铪钝化增强型低维纳米探测器及制备方法
CN114759104B (zh) 基于ⅱ型范德华异质结近红外偏振光电探测器及其制备方法
CN218215330U (zh) 一种MoS2/AlN基深紫外光电探测器
CN218586000U (zh) 一种MXenes/AlN基深紫外探测器
CN114464694B (zh) 光电探测器及其制备方法
CN113097320B (zh) 一种C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法
CN111933740B (zh) 紫外光电二极管及其制备方法
CN114664967A (zh) 一种嵌入式msm结构的六方氮化硼深紫外光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200602