CN113471324A - 一种基于石墨烯同质结的宽波段光电探测器及其制备方法 - Google Patents

一种基于石墨烯同质结的宽波段光电探测器及其制备方法 Download PDF

Info

Publication number
CN113471324A
CN113471324A CN202110702353.6A CN202110702353A CN113471324A CN 113471324 A CN113471324 A CN 113471324A CN 202110702353 A CN202110702353 A CN 202110702353A CN 113471324 A CN113471324 A CN 113471324A
Authority
CN
China
Prior art keywords
graphene
substrate
homojunction
silicon
photoelectric detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110702353.6A
Other languages
English (en)
Other versions
CN113471324B (zh
Inventor
伍俊
魏兴战
蒋昊
史浩飞
韩钦
申钧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Chongqing Institute of Green and Intelligent Technology of CAS
Original Assignee
Chongqing University
Chongqing Institute of Green and Intelligent Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University, Chongqing Institute of Green and Intelligent Technology of CAS filed Critical Chongqing University
Priority to CN202110702353.6A priority Critical patent/CN113471324B/zh
Publication of CN113471324A publication Critical patent/CN113471324A/zh
Application granted granted Critical
Publication of CN113471324B publication Critical patent/CN113471324B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于石墨烯同质结的宽波段光电探测器及其制备方法,其中:探测器包括衬底、石墨烯条带和电极,石墨烯条带覆盖在衬底上方,电极为分别设置在所述石墨烯条带两端上方的两个金属电极,衬底表面包括呈周期性平行排列的沟道;制备方法为在硅‑氧化硅‑硅衬底上刻蚀形成周期性平行沟道,制备石墨烯薄膜并转移到衬底上,然后在石墨烯薄膜两端分别沉积金属形成金属电极,最后将石墨烯薄膜条带化。本发明克服了石墨烯载流子寿命短的缺陷,激发出石墨烯宽光谱探测的能力,能够在不依赖于光学辅助的情况下进行中红外波段进行探测,是一种极具实用性的光电探测器结构。

Description

一种基于石墨烯同质结的宽波段光电探测器及其制备方法
技术领域
本发明涉及光电探测技术领域,具体为一种基于石墨烯同质结的宽波段光电探测器及其制备方法。
背景技术
石墨烯由于其零带隙的特点成为高光谱成像和传感系统中宽带光检测的非常有吸引力的材料,吸收波段可从紫外到远红外波段。
然而低的石墨烯光吸收率(2.3%)和短的载流子寿命(1ps)导致了石墨烯极低的量子效率,对于其应用在光电子器件一直是一项挑战。利用石墨烯本身作为吸光材料的光电探测器量子效率很低,专利201510825269.8“基于石墨烯薄膜的光电探测器及其制备方法”公开了一种基于石墨烯背栅晶体管的光伏型石墨烯光电探测器,利用金属-石墨烯接触的内建电场,实现光生载流子分离,但是由于金属接触区域的局限性此结构的光电探测探测效率较低,光响应度受到较大限制。许多光学操纵的方法(参见Zhao B.Zhao J M,ZhangZ M.Enhancement of near-infrared absorption in graphene with metalgratings.Applied Physics Letters,2014,105(3):031905.)对探测波段具有局限性,效率也不高。缺乏增益机制的石墨烯光电探测器无法得到高响应度。
近期研究表明,石墨烯复合结构光电探测器利用陷阱效应为其提供了增益机制实现了高响应度(参见Fang,Hehai;Hu,Weida.Photogating in Low DimensionalPhotodetectors.Advanced Science,2017,4(12):1700323.),然而光吸收依赖于半导体材料而不是石墨烯,因此吸收谱仅局限于吸光材料的窄的固定波段。界面接触问题一直是异质结器件面临的挑战,界面缺陷会导致慢的响应时间以及不可控缺陷的产生。这些都局限了高增益光电探测器的进一步发展。
发明内容
针对上述存在的技术问题,本发明提供了一种基于石墨烯同质结的宽波段光电探测器及其制备方法,通过在石墨烯沟道中引入纳米尺寸的掺杂来构筑同质结,从而形成横向电势差,建立起阻碍沟道电荷复合的屏障,达到提升光生载流子的分离效率和光电探测器的量子效率的目的。
本发明的技术方案为:
一种基于石墨烯同质结的宽波段光电探测器,包括衬底、石墨烯条带和电极,石墨烯条带完整地覆盖在衬底上方,电极为分别设置在石墨烯条带两端的两个金属电极,衬底表面包括被刻蚀成周期性平行排列的沟道,衬底为SOI衬底。
进一步的,衬底在结构上从上至下地包括轻掺杂顶硅、氧化硅和轻掺杂底硅,衬底表面分为轻掺杂顶硅区域和氧化硅区域,轻掺杂顶硅区域和氧化硅区域周期性交替平行排列组成沟道,排列周期优选的为300nm、600nm、800nm、1200nm、3μm和10μm。
进一步的,轻掺杂顶硅区域厚度为220nm,氧化硅区域厚度为2μm,轻掺杂底硅区域厚度为450μm。
进一步的,石墨烯条带为整体一条或由平行阵列设置的多条组成,优选的石墨烯条带的尺寸为80μm×80μm。
进一步的,金属电极材质为金、和/或铬、和/或钛、和/或钯、和/或铝、和/或钪、和/或银,两个金属电极之间的连接方向与衬底上的沟道相平行。
该基于石墨烯同质结的宽波段光电探测器工作原理是通过在石墨烯沟道内部引入具有周期性的同质结,使得在石墨烯中产生的光生载流子在同质结的内建电场作用下分离并注入到拥有不同电势的沟道中,电势形成的壁垒很大程度上避免了光生电荷在传输至电极前因短的寿命过快地复合,从而获得高的增益。这种机制激发了石墨烯本身宽波段的光吸收特点,与异质结相比,同质结通常具有更好的匹配界面和较少的陷阱,同时还利于获得较小的暗电流和低的噪声。
利用交替排列的不同材质的衬底使石墨烯得到周期性的掺杂,在石墨烯中构筑得到若干垂直于载流子传输方向的同质结,来抑制光生载流子在石墨烯中的复合,延长了载流子寿命。
一种基于石墨烯同质结的宽波段光电探测器的制备方法,其步骤为:
(1)准备SOI衬底,SOI衬底结构由上至下依次为220nm厚的轻掺杂顶硅、2μm厚的氧化硅和450μm厚的轻掺杂底硅;
(2)衬底图案化,在SOI衬底表面上周期性直写曝光,然后蒸镀铬保护层并剥离,刻蚀所述SOI衬底上的轻掺杂顶硅,最后去掉铬保护层得到结构化的衬底;
(3)制备石墨烯薄膜并转移至SOI衬底上;
(4)在石墨烯薄膜两端分别沉积金属形成金属电极;
(5)条带化刻蚀石墨烯薄膜。
进一步的,步骤(2)中使用电子束在SOI衬底表面上周期性平行电子直写光栅图案,然后在光栅图案上电子束蒸镀铬保护层并剥离,最后使用六氟化硫气体干法刻蚀SOI衬底表面上未被保护层覆盖的轻掺杂顶硅,得到硅和氧化硅交替排列的沟道,所使用的光刻胶优选的为475PMMA。
进一步的,步骤(3)中使用化学气相沉积法在基底上生长石墨烯薄膜,然后将石墨烯薄膜转移到已经刻蚀好的衬底上。优选的基底为表面平整的铜箔,然后使用湿法转移,采用浓盐酸、双氧水和水进行溶铜。
进一步的,步骤(4)中使用光刻技术在石墨烯薄膜表面进行电极图形化,然后使用磁控溅射或电子束蒸镀镀膜机沉积金属并结合剥离工艺制备金属电极。
进一步的,步骤(5)中利用光刻和氧等离子体刻蚀技术刻蚀石墨烯薄膜形成石墨烯条带,然后去除光刻胶。
该方法通过在石墨烯沟道中引入纳米尺寸的掺杂来构筑同质结,从而形成横向电势差,建立起阻碍沟道电荷复合的屏障,达到提升光生载流子的分离效率和光电探测器的量子效率的目的。
本发明的有益之处在于:
避免了冗繁的石墨烯化学掺杂工艺,利用衬底掺杂石墨烯有效构筑同质结来达到提升光生载流子的分离效率和光电探测器的量子效率的目的。在近红外和中红外波段获得了超高的响应度的同时获得高的比探测率。该观点检测器及其制备方法充分发挥了石墨烯宽吸收波段和高迁移率的特点,解决了石墨烯作为吸光材料量子效率低的问题,这项工作对于基于纯石墨烯光电探测器实现宽波段探测有着重要的指导意义。
附图说明
图1为本发明的基于石墨烯同质结的宽波段光电探测器的结构示意图。
图2为本发明的基于石墨烯同质结的宽波段光电探测器的衬底的剖面结构示意图。
图3为本发明的基于石墨烯同质结的宽波段光电探测器的原理示意图。
图4为本发明的基于石墨烯同质结的宽波段光电探测器的制备方法流程图
图5为本发明的基于石墨烯同质结的宽波段光电探测器的SEM图像。
具体实施方式
下面结合附图,对本发明作详细的说明。
所举实施例是为了更好地对本发明进行说明,但并不是本发明的内容仅局限于所举实施例。所以熟悉本领域的技术人员根据上述发明内容对实施方案进行非本质的改进和调整,仍属于本发明的保护范围。
实施例1
本实施例为一种基于石墨烯同质结的宽波段光电探测器。该光电探测器的结构包括SOI衬底、石墨烯条带和电极,石墨烯条带覆盖在衬底上,SOI衬底包括硅和氧化硅,两个电极为通过石墨烯条带连接且分别设置在石墨烯条带两端上方的两个金属电极,衬底表面还有周期性平行排列的沟道,如图1所示。
衬底从上至下地包括厚220nm的掺杂顶硅、厚2μm的氧化硅和厚450μm的轻掺杂底硅,衬底表面分为轻掺杂顶硅区域和氧化硅区域,这两个区域周期性交替平行排列组成沟道,排列周期分别为为300nm、600nm、800nm、1200nm、3μm和10μm。
石墨烯条带由平行阵列设置的多条组成,面积为80μm×80μm。
金属电极的材质为银,且两个电极的连接方向与衬底上的沟道相平行。
本实施例中对石墨烯周期性掺杂的方式是衬底掺杂,接触氧化硅区域的石墨烯不发生电荷转移,而接触硅区域的石墨烯将与硅发生电荷转移并产生接触电势,原理如图3所示。接触电势大小由以下公式:
Figure BDA0003126971230000051
其中q为元电荷,N为衬底的载流子浓度,ω为耗尽区宽度,∈s为介电常数。石墨烯与硅接触后硅中的空穴将注入石墨烯,导致石墨烯的费米能级下移,从而形成接触电势ψs。石墨烯内部由于费米能级不同从而被有效地构筑同质结。
同质结致光增益的核心思想是利用石墨烯易被掺杂的特点在石墨烯沟道中进行掺杂来构筑周期性的电势屏障,一方面促进光生载流子的分离,另一方面抑制光生载流子的复合,使得光生电荷复合时间延长,电导循环产生的增益提升。
实施例2
本实施例为基于石墨烯同质结的宽波段光电探测器的制备方法,其制备流程为衬底准备、衬底刻蚀、石墨烯生长、石墨烯转移、金属电极制备、石墨烯条带化,如图4所示。
衬底准备,在本实施例中采用结构由上到下依次为220nm厚的轻掺杂顶硅、2μm厚的氧化硅和450μm厚的轻掺杂底硅SOI衬底。衬底在使用前,依次利用丙酮和乙醇超声20min来清洗。
衬底刻蚀,利用475PMMA作光刻胶,电子束直写为曝光方式在顶硅表面写出不同周期的光栅图案。在衬底表面蒸镀30nm的铬层,剥离后未曝光区域的顶硅层裸露出来,曝光区域的顶硅被铬保护。用六氟化硫作为刻蚀气体对未保护区域的顶硅进行刻蚀,直到氧化硅层裸露出来。利用去铬液溶解铬后得到硅和氧化硅区域交替排列的周期性沟道。
石墨烯生长,利用化学气相沉积仪生长石墨烯薄膜,基底采用表面较为平整的铜箔,原料为分析纯乙醇。在高温作用下,乙醇中的碳原子通过在铜衬底上吸附、迁移等过程后沉积在衬底表面形成石墨烯薄膜。最终获得的石墨烯薄膜层数控制在1~2层。
石墨烯转移,利用PMMA胶有机光刻胶作为支撑体,将石墨烯从铜箔上转移到硅片表面。将石墨烯铜箔切割成大约所需尺寸(在本实施例中,可选4cm×4cm),用高温胶带粘贴四周边缘固定到硬质衬底上,然后将PMMA溶液旋涂至石墨烯表面,转速为500转3秒接4000转25秒,随后取下石墨烯铜箔在加热台100度烘烤10分钟。然后用湿法腐蚀去除铜箔,以水+浓盐酸+过氧化氢溶液(120:10:5)为浓刻蚀溶液,拖拽背面铜箔半小时后转移到水+浓盐酸+过氧化氢溶液(300:10:5)的稀刻蚀溶液反应7-12小时。溶铜完成后,利用去离子水反复漂洗,然后用刻蚀好的目标衬底将带有PMMA的石墨烯捞起晾干2小时,然后置于加热台150度烘30分钟,再将硅片进入丙酮溶液去除PMMA胶,石墨烯转移完成。
金属电极制备,金属电极采用光刻技术在石墨烯薄膜表面进行电极图形化,然后使用电子束蒸镀镀膜机沉积金属并结合剥离工艺。在本实施例中,采用Cr+Au组合,厚度分别为3nm+50nm。
石墨烯条带化,此步骤主要实现微米级的石墨烯条带化,基于光刻+反应离子刻蚀的方式加工。
完成后的器件SEM图象如图5所示,虚线框内为覆盖在衬底上的石墨烯。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种基于石墨烯通同质结的宽波段光电探测器,其特征在于:包括衬底、石墨烯条带和电极,所述石墨烯条带覆盖在所述衬底上方,所述电极为分别设置在所述石墨烯条带两端上方的两个金属电极,所述衬底表面包括呈周期性平行排列的沟道。
2.根据权利要求1所述的基于石墨烯同质结的宽波段光电探测器,其特征在于:所述衬底从上至下包括轻掺杂顶硅、氧化硅和轻掺杂底硅,所述衬底表面分为轻掺杂顶硅区域和氧化硅区域,所述轻掺杂顶硅区域和氧化硅区域周期性交替平行排列组成沟道,排列周期为300nm、600nm、800nm、1200nm、3μm和10μm。
3.根据权利要求2所述的基于石墨烯同质结的宽波段光电探测器,其特征在于:所述轻掺杂顶硅区域厚度为220nm,所述氧化硅区域厚度为2μm,所述轻掺杂底硅区域厚度为450μm。
4.根据权利要求1所述的基于石墨烯同质结的宽波段光电探测器,其特征在于:所述石墨烯条带为整体一条或由平行阵列设置的多条组成。
5.根据权利要求1所述的基于石墨烯同质结的宽波段光电探测器,其特征在于:所述金属电极材质为金、和/或铬、和/或钛、和/或钯、和/或铝、和/或钪、和/或银,所述两个金属电极之间的连接方向与所述衬底上的沟道平行。
6.根据权利要求1-4所述的基于石墨烯同质结的宽波段光电探测器的制备方法,包括步骤:
(1)准备SOI衬底,所述SOI衬底结构由上至下依次为轻掺杂顶硅、氧化硅和轻掺杂底硅;
(2)衬底图案化,在所述SOI衬底表面上周期性直写曝光,然后蒸镀铬保护层并剥离,刻蚀所述SOI衬底上的轻掺杂顶硅,最后去掉所述铬保护层得到结构化的衬底;
(3)制备石墨烯薄膜并转移至所述SOI衬底上;
(4)在石墨烯薄膜两端分别沉积金属制备金属电极;
(5)条带化刻蚀石墨烯薄膜。
7.根据权利要求5所述的基于石墨烯同质结的宽波段光电探测器的制备方法,其特征在于:步骤(2)中使用电子束在所述SOI衬底表面上周期性平行电子束直写光栅图案,然后在所述光栅图案上电子束蒸镀铬保护层并剥离,最后使用六氟化硫气体干法刻蚀所述SOI衬底表面上的轻掺杂顶硅。
8.根据权利要求5所述的基于石墨烯同质结的宽波段光电探测器的制备方法,其特征在于:步骤(3)中使用化学气相沉积法在基底上生长石墨烯薄膜,然后将石墨烯薄膜转移到已经刻蚀好的衬底上。
9.根据权利要求5所述的基于石墨烯同质结的宽波段光电探测器的制备方法,其特征在于:步骤(4)中使用光刻技术在所述石墨烯薄膜表面进行电极图形化,然后使用磁控溅射或电子束蒸镀镀膜机沉积金属并结合剥离工艺制备金属电极。
10.根据权利要求5所述的基于石墨烯同质结的宽波段光电探测器的制备方法,其特征在于:步骤(5)中利用光刻和氧等离子体刻蚀技术刻蚀石墨烯薄膜,然后去除光刻胶。
CN202110702353.6A 2021-06-22 2021-06-22 一种基于石墨烯同质结的宽波段光电探测器及其制备方法 Active CN113471324B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110702353.6A CN113471324B (zh) 2021-06-22 2021-06-22 一种基于石墨烯同质结的宽波段光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110702353.6A CN113471324B (zh) 2021-06-22 2021-06-22 一种基于石墨烯同质结的宽波段光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN113471324A true CN113471324A (zh) 2021-10-01
CN113471324B CN113471324B (zh) 2022-09-16

Family

ID=77872568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110702353.6A Active CN113471324B (zh) 2021-06-22 2021-06-22 一种基于石墨烯同质结的宽波段光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN113471324B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583003A (zh) * 2022-04-29 2022-06-03 浙江大学 基于硅/石墨烯纳米膜/锗的垂直光电探测器及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811568A (zh) * 2014-02-21 2014-05-21 中国科学院半导体研究所 一种基于一维光栅的表面入射石墨烯光电探测器
CN104300028A (zh) * 2014-08-08 2015-01-21 浙江大学 以氟化石墨烯为吸收层的紫外雪崩光电探测器及制备方法
KR20200005801A (ko) * 2018-07-09 2020-01-17 한국과학기술원 플라즈몬 결합을 통한 다층그래핀 기반의 광전소자
WO2020130935A1 (en) * 2018-12-19 2020-06-25 National University Of Singapore A semiconductor device and a method of manufacturing a semiconductor device
CN111554757A (zh) * 2020-05-11 2020-08-18 深圳激子科技有限公司 一种基于等离激元增强的石墨烯中红外光探测器及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811568A (zh) * 2014-02-21 2014-05-21 中国科学院半导体研究所 一种基于一维光栅的表面入射石墨烯光电探测器
CN104300028A (zh) * 2014-08-08 2015-01-21 浙江大学 以氟化石墨烯为吸收层的紫外雪崩光电探测器及制备方法
KR20200005801A (ko) * 2018-07-09 2020-01-17 한국과학기술원 플라즈몬 결합을 통한 다층그래핀 기반의 광전소자
WO2020130935A1 (en) * 2018-12-19 2020-06-25 National University Of Singapore A semiconductor device and a method of manufacturing a semiconductor device
CN111554757A (zh) * 2020-05-11 2020-08-18 深圳激子科技有限公司 一种基于等离激元增强的石墨烯中红外光探测器及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNRU AN等: ""Efficient graphene in-plane homogeneous p-n-p junction based infrared photodetectors with low dark current"", 《SCIENCE CHINA INFORMATION SCIENCES》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583003A (zh) * 2022-04-29 2022-06-03 浙江大学 基于硅/石墨烯纳米膜/锗的垂直光电探测器及制备方法

Also Published As

Publication number Publication date
CN113471324B (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
CN107342345A (zh) 一种基于铁电栅介质和薄层二硫化钼沟道的光电晶体管
CN104157721B (zh) 基于石墨烯/硅/石墨烯的雪崩光电探测器及其制备方法
JP2013502735A (ja) 単一またはいくつかの層のグラフェン・ベースの光検出デバイスおよびその形成方法
WO2020003564A1 (ja) グラフェンを用いた電子デバイス、その製造方法及びそれを備えた電磁波検出器
US8461571B2 (en) Method and apparatus for converting photon energy to electrical energy
CN111341875B (zh) 一种石墨烯/二硒化钯/硅异质结自驱动光电探测器
CN105957955B (zh) 一种基于石墨烯平面结的光电探测器
KR20130056011A (ko) 복합 투명 전극을 포함하는 그래핀 기반 포토 디텍터와 그 제조방법 및 포토 디텍터를 포함하는 장치
CN113972262B (zh) 氧化镓-二维p型范德华隧穿晶体管、双波段光电探测器件及制备方法
CN111628020B (zh) 一种基于TMDCs横向PIN同质结的光电二极管及制备方法
CN113471324B (zh) 一种基于石墨烯同质结的宽波段光电探测器及其制备方法
WO2022100053A1 (zh) 含有金属硅化物红外吸收层的石墨烯场效应电荷耦合器件
CN113540154B (zh) 基于二维材料的双异质结构的柔性光电探测器及其制备工艺
CN111081806A (zh) 一种基于超短沟道石墨烯的光电探测器及其制备方法
JP2014072209A (ja) 光電変換素子および光電変換素子の製造方法
KR101476125B1 (ko) 박막형 태양전지 및 그 제조방법
AU2018253508A1 (en) Solar cell and preparation method thereof
CN211480068U (zh) 一种基于超短沟道石墨烯的光电探测器
CN114300551A (zh) 石墨烯/等离子激元黑硅近红外探测器结构及其制备方法
JP2014183073A (ja) 光電変換素子および光電変換素子の製造方法
JP2013168605A (ja) 太陽電池の製造方法
CN219226309U (zh) 红外探测器
CN110957396B (zh) 一种零偏压工作石墨烯光电器件及其制备方法
CN114256367B (zh) 石墨烯锗硅量子点集成的复合结构探测器及其制备方法
CN111244222B (zh) 六方氮化硼紫外光探测器及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant