CN112701173A - 一种石墨烯高灵敏度光电探测器及其制备方法 - Google Patents

一种石墨烯高灵敏度光电探测器及其制备方法 Download PDF

Info

Publication number
CN112701173A
CN112701173A CN202011554686.0A CN202011554686A CN112701173A CN 112701173 A CN112701173 A CN 112701173A CN 202011554686 A CN202011554686 A CN 202011554686A CN 112701173 A CN112701173 A CN 112701173A
Authority
CN
China
Prior art keywords
graphene
layer
substrate
sensitivity
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011554686.0A
Other languages
English (en)
Other versions
CN112701173B (zh
Inventor
陈长鑫
周庆萍
陈志刚
李欣悦
何卓洋
贺志岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202011554686.0A priority Critical patent/CN112701173B/zh
Publication of CN112701173A publication Critical patent/CN112701173A/zh
Application granted granted Critical
Publication of CN112701173B publication Critical patent/CN112701173B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于光电器件技术领域,公开了一种石墨烯高灵敏度光电探测器及其制备方法,所述石墨烯高灵敏度光电探测器包括:复合衬底、隔离层、石墨烯接触电极、碳量子点、石墨烯薄膜及抗反射层;所述隔离层位于复合衬底;所述电极位于隔离层;所述碳量子点位于电极;所述石墨烯薄膜位于电极;所述石墨烯薄膜表面覆盖有抗反射层;所述复合衬底由硬质衬底和脆性衬底通过键合形成;所述硬质衬底为由二氧化硅构成,所述脆性衬底由InP或Ge构成;所述抗反射层为由二氧化硅组成的透明薄膜。本发明制备的光电探测器超薄、易于大面积集成,灵敏度高,能提高光电探测器的响应速度,在射线测量和探测、工业自动控制、光度量计等领域有着广泛的应用前景。

Description

一种石墨烯高灵敏度光电探测器及其制备方法
技术领域
本发明属于光电器件技术领域,尤其涉及一种石墨烯高灵敏度光电探测器及其制备方法。
背景技术
目前,光电探测器以光电效应为基础能把光信号转换为电信号。光电探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等,在家用电器方面可用于电视机、手机背光调节,感应照明工具节能控制等。
常规的半导体光电探测器存在响应度低、响应时间慢、探测灵敏度低等问题。例如,基于硅,砷化镓,铟镓砷等半导体材料的传统光电探测器普遍存在响应波段窄,响应灵敏度不够高等问题。因此,亟需一种新的石墨烯高灵敏度光电探测器及其制备方法。
通过上述分析,现有技术存在的问题及缺陷为:现有光电探测器响应度低、响应时间慢、探测灵敏度低。
发明内容
针对现有技术存在的问题,本发明提供了一种石墨烯高灵敏度光电探测器及其制备方法。
本发明是这样实现的,一种石墨烯高灵敏度光电探测器的制备方法,所述石墨烯高灵敏度光电探测器的制备方法包括以下步骤:
步骤一,于硬性衬底上刻蚀形成凹部,在脆性衬底上刻蚀与形成的凹部形状相同的凸部;分别对硬性衬底凹部内的和脆性衬底凸部的键合面进行抛光;
步骤二,将键合面放置于去离子水中超声清洗,在清洗后的键合面上涂布键合用的液体,将硬性衬底的凹部与脆性衬底的凸部对准,并将硬性衬底与脆性衬底贴合;
步骤三,在惰性气体气氛中在160-200℃退火200-220min,再在500-600℃退火10-20分钟;对已经键合的脆性衬底进行离子注入形成缺陷层,对进行离子注入后的已键合的衬底进行加热;
步骤四,保温直到脆性衬底从所述缺陷层剥离,将脆性衬底的一部分保留在硬性衬底上;对脆性衬底的断裂面进行抛光,即可得所述复合衬底;在制备得到的复合衬底上于700-800℃下氧化生长隔离层;
步骤五,在隔离层上表面生长第一介质层;在所述第一介质层与石墨烯接触电极区对应的区域和所述隔离层的所述石墨烯接触电极区注入硅离子和/或铟离子;在所述第一介质层的上表面生长第二介质层;在所述第二介质层与所述第一区域对应的部分的上表面涂覆第二光刻胶层;
步骤六,通过干法刻蚀工艺分别去除所述第一介质层和所述第二介质层与所述石墨烯接触电极区对应的部分;通过电子束蒸发工艺在所述隔离层的上表面蒸发所述金属层;去除所述第二光刻胶层;
步骤七,分别去除所述第一介质层和所述第二介质层与所述石墨烯接触电极区对应的部分;在所述隔离层的所述石墨烯接触电极区的上表面生长金属层,得到覆盖石墨烯接触电极的隔离层;
步骤八,用体积比为1:1的无水乙醇和去离子水混合而成的溶液配置0.125M的维生素C溶液,得到透明反应前驱体溶液;将前驱体溶液加入到反应釜中进行反应,得到深褐色产物;
步骤九,向所述深褐色产物中加入二氯甲烷,多次萃取,取上层水溶液并经过透析膜进行分离纯化,得到碳量子点溶液;将制备好的碳量子点溶液进行超声分散;通过旋涂的方法在覆盖石墨烯接触电极的隔离层上旋涂碳量子点;
步骤十,于铜箔基底上进行石墨烯薄膜的制备,并将制备的石墨烯薄膜转移覆盖于碳量子点层的表面;在石墨烯薄膜的表面光刻出反射层图形,采用电子束蒸发技术生长二氧化硅薄膜。
进一步,步骤三中,所述离子为H、He中的一种或多种。
进一步,步骤三中,所述加热的方法为:从80℃加热到400℃,升温速率为每5℃/10min。
进一步,步骤八中,所述将前驱体溶液加入到反应釜中进行反应的条件为:设置反应时间为10-12h,反应温度为230-260℃。
进一步,步骤十中,所述于铜箔基底上进行石墨烯薄膜的制备,包括:
(1)利用盐酸与去离子水中分别清洗铜箔,对经过清洗的铜箔进行电化学抛光;将乙醇作为清洗剂,对经过抛光的铜箔进行超声波清洗;并利用氮气干燥经过超声波清洗的铜箔;
(2)将铜箔在通有氩气的化学气相淀积管式炉中加热至预设的生长温度;在铜箔保持在所述生长温度第一时长之后,向所述管式炉中通入氢气,对所述铜箔进行恒温退火处理;
(3)向所述管式炉中通入甲烷;在向所述管式炉中通入甲烷第二时长之后,停止向所述管式炉通入甲烷,并将所述铜箔的温度降低至预设的外延温度,即可得到石墨烯薄膜。
进一步,步骤(2)中,所述恒温退火处理的方法为:在管式在线退火炉内进行退火处理,所述退火温度为400-600℃,退火时间为0.2-0.6s,保护气氛为95%N2和5%H2
进一步,步骤十中,所述将制备的石墨烯薄膜转移覆盖于碳量子点层的表面,包括:
(1)将石墨烯薄膜表面均匀涂覆一层聚甲基丙烯酸甲酯薄膜,放入刻蚀溶液中6小时腐蚀去除铜箔,保留由聚甲基丙烯酸甲酯支撑的石墨烯薄膜;
(2)将聚甲基丙烯酸甲酯支撑的石墨烯薄膜用丙酮清洗后转移到碳量子点层的表面;
(3)用乙醇和异丙醇去除聚甲基丙烯酸甲酯。
本发明的另一目的在于提供一种应用所述的石墨烯高灵敏度光电探测器的制备方法制备得到的石墨烯高灵敏度光电探测器,所述石墨烯高灵敏度光电探测器包括:
复合衬底、隔离层、石墨烯接触电极、碳量子点、石墨烯薄膜及抗反射层;
所述隔离层位于复合衬底上;所述电极位于所述隔离层上;
所述碳量子点位于电极上;所述石墨烯薄膜位于电极上;
所述石墨烯薄膜表面覆盖有抗反射层。
进一步,所述复合衬底由硬质衬底和脆性衬底通过键合形成;所述硬质衬底为由二氧化硅构成,所述脆性衬底由InP或Ge构成。
进一步,所述抗反射层为由二氧化硅组成的透明薄膜。
结合上述的所有技术方案,本发明所具备的优点及积极效果为:本发明提供的石墨烯高灵敏度光电探测器的制备方法,提高了光电探测器的响应速度,本发明制备的光电探测器超薄、易于大面积集成,且灵敏度高,在射线测量和探测、工业自动控制、光度量计等领域有着广泛的应用前景。
本发明的光电探测器制备方法简单。本发明的复合衬底能够提高脆性衬底在半导体制造工艺中的强度,提高光电探测器的优良率;本发明的复合衬底的制备方法的工艺简单,能够提高生产效率。
本发明制备的石墨烯接触电极质量良好,能够保证金属层表面平整、边缘光滑整齐,保证制备的光电探测器击穿电压稳定、可靠性和寿命长。
本发明碳量子点在可见光尤其紫外波段有很强的吸收峰。入射光容易被吸,产生的电子空穴很快被内部电场分离,降低表面复合。在紫外光区域,量子效率很高。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图做简单的介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的石墨烯高灵敏度光电探测器的制备方法流程图。
图2是本发明实施例提供的复合衬底的制备方法流程图。
图3是本发明实施例提供的利用电子束工艺在隔离层上覆盖石墨烯接触电极制备的方法流程图。
图4是本发明实施例提供的碳量子点溶液的制备方法方法流程图。
图5是本发明实施例提供的于铜箔基底上进行石墨烯薄膜制备的方法流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
针对现有技术存在的问题,本发明提供了一种石墨烯高灵敏度光电探测器及其制备方法,下面结合附图对本发明作详细的描述。
本发明实施例提供的石墨烯高灵敏度光电探测器包括:复合衬底、隔离层、石墨烯接触电极、碳量子点、石墨烯薄膜以及抗反射层。
所述隔离层位于复合衬底上;所述电极位于所述隔离层上;所述碳量子点位于电极上;所述石墨烯薄膜位于电极上;所述石墨烯薄膜表面覆盖有抗反射层。
本发明实施例提供的复合衬底由硬质衬底和脆性衬底通过键合形成;所述硬质衬底为由二氧化硅构成,所述脆性衬底由InP或Ge构成。
本发明实施例提供的抗反射层为由二氧化硅组成的透明薄膜。
如图1所示,本发明实施例提供的石墨烯高灵敏度光电探测器的制备方法包括以下步骤:
S101,制备复合衬底;在制备得到的复合衬底上于700-800℃下氧化生长隔离层;
S102,利用电子束工艺在隔离层上覆盖石墨烯接触电极;制备碳量子点溶液,并将制备好的碳量子点溶液进行超声分散;
S103,通过旋涂的方法在覆盖石墨烯接触电极的隔离层上旋涂碳量子点;于铜箔基底上进行石墨烯薄膜的制备;
S104,将制备的石墨烯薄膜转移覆盖于碳量子点层的表面;在石墨烯薄膜的表面光刻出反射层图形,采用电子束蒸发技术生长二氧化硅薄膜。
本发明实施例提供的步骤S104中,将制备的石墨烯薄膜转移覆盖于碳量子点层的表面,包括:
(1)将石墨烯薄膜表面均匀涂覆一层聚甲基丙烯酸甲酯薄膜,放入刻蚀溶液中6小时腐蚀去除铜箔,保留由聚甲基丙烯酸甲酯支撑的石墨烯薄膜;
(2)将聚甲基丙烯酸甲酯支撑的石墨烯薄膜用丙酮清洗后转移到碳量子点层的表面;用乙醇和异丙醇去除聚甲基丙烯酸甲酯。
下面结合具体实施例对本发明作进一步描述。
实施例1
本发明实施例提供的石墨烯高灵敏度光电探测器的制备方法如图1所示,作为优选实施例,如图2所示,本发明实施例提供的复合衬底的制备方法包括:
S201,于硬性衬底上刻蚀形成凹部,在脆性衬底上刻蚀与形成的凹部形状相同的凸部;分别对硬性衬底凹部内的和脆性衬底凸部的键合面进行抛光;
S202,将键合面放置于去离子水中超声清洗,在清洗后的键合面上涂布键合用的液体,将硬性衬底的凹部与脆性衬底的凸部对准,并将硬性衬底与脆性衬底贴合;
S203,在惰性气体气氛中在160-200℃退火200-220min,再在500-600℃退火10-20min;对已经键合的脆性衬底进行离子注入形成缺陷层,对进行离子注入后的已键合的衬底进行加热;
S204,保温直到脆性衬底从所述缺陷层剥离,将脆性衬底的一部分保留在硬性衬底上;对脆性衬底的断裂面进行抛光,即可得所述复合衬底。
本发明实施例提供的步骤S203中,离子为H、He中的一种或多种。
本发明实施例提供的步骤S203中,加热方法为:从80℃加热到400℃,升温速率为每5℃/10min。
实施例2
本发明实施例提供的石墨烯高灵敏度光电探测器的制备方法如图1所示,作为优选实施例,如图3所示,本发明实施例提供的利用电子束工艺在隔离层上覆盖石墨烯接触电极的方法包括:
S301,在隔离层上表面生长第一介质层;在所述第一介质层与石墨烯接触电极区对应的区域和所述隔离层的所述石墨烯接触电极区注入硅离子和/或铟离子;
S302,在所述第一介质层的上表面生长第二介质层;在所述第二介质层与所述第一区域对应的部分的上表面涂覆第二光刻胶层;
S303,通过干法刻蚀工艺分别去除所述第一介质层和所述第二介质层与所述石墨烯接触电极区对应的部分;通过电子束蒸发工艺在所述隔离层的上表面蒸发所述金属层;去除所述第二光刻胶层;
S304,分别去除所述第一介质层和所述第二介质层与所述石墨烯接触电极区对应的部分;在所述隔离层的所述石墨烯接触电极区的上表面生长金属层,得到覆盖石墨烯接触电极的隔离层。
实施例3
本发明实施例提供的石墨烯高灵敏度光电探测器的制备方法如图1所示,作为优选实施例,如图4所示,本发明实施例提供的碳量子点溶液的制备方法的方法包括:
S401,用体积比为1:1的无水乙醇和去离子水混合而成的溶液配置0.125M的维生素C溶液,得到透明反应前驱体溶液;
S402,将前驱体溶液加入到反应釜中,反应时间为10-12h,反应温度为230-260℃,得到深褐色产物;
S403,向上述深褐色产物中加入二氯甲烷,多次萃取,取上层水溶液并经过透析膜进行分离纯化,得到碳量子点溶液。
实施例4
本发明实施例提供的石墨烯高灵敏度光电探测器的制备方法如图1所示,作为优选实施例,如图5所示,本发明实施例提供的于铜箔基底上进行石墨烯薄膜制备的方法包括:
S501,利用盐酸与去离子水中分别清洗铜箔,对经过清洗的铜箔进行电化学抛光;将乙醇作为清洗剂,对经过抛光的铜箔进行超声波清洗;并利用氮气干燥经过超声波清洗的铜箔;
S502,将铜箔在通有氩气的化学气相淀积管式炉中加热至预设的生长温度;在铜箔保持在所述生长温度第一时长之后,向所述管式炉中通入氢气,对所述铜箔进行恒温退火处理;
S503,向所述管式炉中通入甲烷;在向所述管式炉中通入甲烷第二时长之后,停止向所述管式炉通入甲烷,并将所述铜箔的温度降低至预设的外延温度,即可得到石墨烯薄膜。
本发明实施例提供的步骤S502中,所述恒温退火处理的方法为:在管式在线退火炉内进行退火处理,所述退火温度为400-600℃,退火时间为0.2-0.6s,保护气氛为95%N2和5%H2
以上所述,仅为本发明较优的具体的实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种石墨烯高灵敏度光电探测器的制备方法,其特征在于,所述石墨烯高灵敏度光电探测器的制备方法包括以下步骤:
步骤一,于硬性衬底上刻蚀形成凹部,在脆性衬底上刻蚀与形成的凹部形状相同的凸部;分别对硬性衬底凹部内的和脆性衬底凸部的键合面进行抛光;
步骤二,将键合面放置于去离子水中超声清洗,在清洗后的键合面上涂布键合用的液体,将硬性衬底的凹部与脆性衬底的凸部对准,并将硬性衬底与脆性衬底贴合;
步骤三,在惰性气体气氛中在160-200℃退火200-220min,再在500-600℃退火10-20分钟;对已经键合的脆性衬底进行离子注入形成缺陷层,对进行离子注入后的已键合的衬底进行加热;
步骤四,保温直到脆性衬底从所述缺陷层剥离,将脆性衬底的一部分保留在硬性衬底上;对脆性衬底的断裂面进行抛光,即可得所述复合衬底;在制备得到的复合衬底上于700-800℃下氧化生长隔离层;
步骤五,在隔离层上表面生长第一介质层;在所述第一介质层与石墨烯接触电极区对应的区域和所述隔离层的所述石墨烯接触电极区注入硅离子和/或铟离子;在所述第一介质层的上表面生长第二介质层;在所述第二介质层与所述第一区域对应的部分的上表面涂覆第二光刻胶层;
步骤六,通过干法刻蚀工艺分别去除所述第一介质层和所述第二介质层与所述石墨烯接触电极区对应的部分;通过电子束蒸发工艺在所述隔离层的上表面蒸发所述金属层;去除所述第二光刻胶层;
步骤七,分别去除所述第一介质层和所述第二介质层与所述石墨烯接触电极区对应的部分;在所述隔离层的所述石墨烯接触电极区的上表面生长金属层,得到覆盖石墨烯接触电极的隔离层;
步骤八,用体积比为1:1的无水乙醇和去离子水混合而成的溶液配置0.125M的维生素C溶液,得到透明反应前驱体溶液;将前驱体溶液加入到反应釜中进行反应,得到深褐色产物;
步骤九,向所述深褐色产物中加入二氯甲烷,多次萃取,取上层水溶液并经过透析膜进行分离纯化,得到碳量子点溶液;将制备好的碳量子点溶液进行超声分散;通过旋涂的方法在覆盖石墨烯接触电极的隔离层上旋涂碳量子点;
步骤十,于铜箔基底上进行石墨烯薄膜的制备,并将制备的石墨烯薄膜转移覆盖于碳量子点层的表面;在石墨烯薄膜的表面光刻出反射层图形,采用电子束蒸发技术生长二氧化硅薄膜。
2.如权利要求1所述的石墨烯高灵敏度光电探测器的制备方法,其特征在于,步骤三中,所述离子为H、He中的一种或多种。
3.如权利要求1所述的石墨烯高灵敏度光电探测器的制备方法,其特征在于,步骤三中,所述加热的方法为:从80℃加热到400℃,升温速率为每5℃/10min。
4.如权利要求1所述的石墨烯高灵敏度光电探测器的制备方法,其特征在于,步骤八中,所述将前驱体溶液加入到反应釜中进行反应的条件为:设置反应时间为10-12h,反应温度为230-260℃。
5.如权利要求1所述的石墨烯高灵敏度光电探测器的制备方法,其特征在于,步骤十中,所述于铜箔基底上进行石墨烯薄膜的制备,包括:
(1)利用盐酸与去离子水中分别清洗铜箔,对经过清洗的铜箔进行电化学抛光;将乙醇作为清洗剂,对经过抛光的铜箔进行超声波清洗;并利用氮气干燥经过超声波清洗的铜箔;
(2)将铜箔在通有氩气的化学气相淀积管式炉中加热至预设的生长温度;在铜箔保持在所述生长温度第一时长之后,向所述管式炉中通入氢气,对所述铜箔进行恒温退火处理;
(3)向所述管式炉中通入甲烷;在向所述管式炉中通入甲烷第二时长之后,停止向所述管式炉通入甲烷,并将所述铜箔的温度降低至预设的外延温度,即可得到石墨烯薄膜。
6.如权利要求5所述的石墨烯高灵敏度光电探测器的制备方法,其特征在于,步骤(2)中,所述恒温退火处理的方法为:在管式在线退火炉内进行退火处理,所述退火温度为400-600℃,退火时间为0.2-0.6s,保护气氛为95%N2和5%H2
7.如权利要求1所述的石墨烯高灵敏度光电探测器的制备方法,其特征在于,步骤十中,所述将制备的石墨烯薄膜转移覆盖于碳量子点层的表面,包括:
(1)将石墨烯薄膜表面均匀涂覆一层聚甲基丙烯酸甲酯薄膜,放入刻蚀溶液中6小时腐蚀去除铜箔,保留由聚甲基丙烯酸甲酯支撑的石墨烯薄膜;
(2)将聚甲基丙烯酸甲酯支撑的石墨烯薄膜用丙酮清洗后转移到碳量子点层的表面;
(3)用乙醇和异丙醇去除聚甲基丙烯酸甲酯。
8.一种应用如权利要求1~7任意一项所述的石墨烯高灵敏度光电探测器的制备方法制备得到的石墨烯高灵敏度光电探测器,其特征在于,所述石墨烯高灵敏度光电探测器包括:
复合衬底、隔离层、石墨烯接触电极、碳量子点、石墨烯薄膜及抗反射层;
所述隔离层位于复合衬底上;所述电极位于所述隔离层上;
所述碳量子点位于电极上;所述石墨烯薄膜位于电极上;
所述石墨烯薄膜表面覆盖有抗反射层。
9.如权利要求8所述的石墨烯高灵敏度光电探测器,其特征在于,所述复合衬底由硬质衬底和脆性衬底通过键合形成;所述硬质衬底为由二氧化硅构成,所述脆性衬底由InP或Ge构成。
10.如权利要求8所述的石墨烯高灵敏度光电探测器,其特征在于,所述抗反射层为由二氧化硅组成的透明薄膜。
CN202011554686.0A 2020-12-24 2020-12-24 一种石墨烯高灵敏度光电探测器及其制备方法 Active CN112701173B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011554686.0A CN112701173B (zh) 2020-12-24 2020-12-24 一种石墨烯高灵敏度光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011554686.0A CN112701173B (zh) 2020-12-24 2020-12-24 一种石墨烯高灵敏度光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN112701173A true CN112701173A (zh) 2021-04-23
CN112701173B CN112701173B (zh) 2022-03-01

Family

ID=75510028

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011554686.0A Active CN112701173B (zh) 2020-12-24 2020-12-24 一种石墨烯高灵敏度光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN112701173B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851548A (zh) * 2021-09-27 2021-12-28 苏州微光电子融合技术研究院有限公司 石墨烯/量子点红外探测器及其制备方法
CN113998666A (zh) * 2021-10-21 2022-02-01 北京理工大学 一种可抗超大应变的高灵敏全石墨烯人造电子皮肤
CN115020516A (zh) * 2022-06-10 2022-09-06 云南师范大学 一种基于柔性石墨烯的光电探测装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110233173A (zh) * 2018-03-05 2019-09-13 中国科学技术大学 一种多功能器件及其制备方法
US20200006588A1 (en) * 2017-01-30 2020-01-02 Ohio University Electrochemical UV Sensor Using Carbon Quantum Dots
CN111223943A (zh) * 2020-01-17 2020-06-02 中国科学院上海技术物理研究所 一种基于碳量子点和石墨烯的光电探测器及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200006588A1 (en) * 2017-01-30 2020-01-02 Ohio University Electrochemical UV Sensor Using Carbon Quantum Dots
CN110233173A (zh) * 2018-03-05 2019-09-13 中国科学技术大学 一种多功能器件及其制备方法
CN111223943A (zh) * 2020-01-17 2020-06-02 中国科学院上海技术物理研究所 一种基于碳量子点和石墨烯的光电探测器及制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851548A (zh) * 2021-09-27 2021-12-28 苏州微光电子融合技术研究院有限公司 石墨烯/量子点红外探测器及其制备方法
CN113998666A (zh) * 2021-10-21 2022-02-01 北京理工大学 一种可抗超大应变的高灵敏全石墨烯人造电子皮肤
CN113998666B (zh) * 2021-10-21 2023-06-23 北京理工大学 一种可抗超大应变的高灵敏全石墨烯人造电子皮肤
CN115020516A (zh) * 2022-06-10 2022-09-06 云南师范大学 一种基于柔性石墨烯的光电探测装置

Also Published As

Publication number Publication date
CN112701173B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
CN112701173B (zh) 一种石墨烯高灵敏度光电探测器及其制备方法
US4873118A (en) Oxygen glow treating of ZnO electrode for thin film silicon solar cell
CN107369763B (zh) 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法
AU712220B2 (en) Photovoltaic device and its method of preparation
CN109216509A (zh) 一种叉指型背接触异质结太阳电池制备方法
CN111341875B (zh) 一种石墨烯/二硒化钯/硅异质结自驱动光电探测器
US9548404B2 (en) Method for fabricating anti-reflection film with anti-PID effect
KR102120147B1 (ko) 태양 전지의 제조 방법 및 태양 전지
CN104157720B (zh) 一种混合结构的石墨烯硅基雪崩光电探测器及制备方法
US8900674B2 (en) Method of coating a substrate
CN112993075B (zh) 一种含有插层的石墨烯/硅肖特基结光电探测器及制备工艺
WO2022126933A1 (zh) 波长选择性响应的光电探测器的制备方法
CN103594302B (zh) 一种GaAs纳米线阵列光电阴极及其制备方法
CN109841691A (zh) 一种氧化钼薄膜制备方法及以氧化钼薄膜作为空穴传输层的硅异质结太阳电池
CN103219398A (zh) 光电转换装置
CN111139449A (zh) 氧化锌基透明电极光电探测器及其制备方法
EP3591717A1 (en) Solar cell, solar cell module, and solar cell manufacturing method
CN110707176B (zh) 一种超宽频带的薄膜光电探测器件及其制备方法
JP5754411B2 (ja) 太陽電池の製造方法
He et al. Plasma-enhanced chemical vapor-deposited SiN and liquid-phase-deposited SiO2 stack double-layer anti-reflection films for multi-crystalline solar cells
KR101083374B1 (ko) 태양전지 및 그 제조방법
CN114497279B (zh) 一种高性能光电探测器的制备方法
CN113140641B (zh) 一种柔性二维材料光探测器阵列及其制作方法
TW201339333A (zh) 光電元件及其製造方法
CN110359022B (zh) 一种优化载流子传导层电荷分离效率的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant