CN113140641B - 一种柔性二维材料光探测器阵列及其制作方法 - Google Patents

一种柔性二维材料光探测器阵列及其制作方法 Download PDF

Info

Publication number
CN113140641B
CN113140641B CN202110405178.4A CN202110405178A CN113140641B CN 113140641 B CN113140641 B CN 113140641B CN 202110405178 A CN202110405178 A CN 202110405178A CN 113140641 B CN113140641 B CN 113140641B
Authority
CN
China
Prior art keywords
flexible transparent
dimensional material
substrate
cover plate
transparent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110405178.4A
Other languages
English (en)
Other versions
CN113140641A (zh
Inventor
许自强
刘立巍
王业亮
侯延辉
黄泽平
杨涵
张全震
张腾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202110405178.4A priority Critical patent/CN113140641B/zh
Publication of CN113140641A publication Critical patent/CN113140641A/zh
Application granted granted Critical
Publication of CN113140641B publication Critical patent/CN113140641B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Radiation Pyrometers (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本发明提供了一种柔性二维材料光探测器阵列及其制作方法,能够在室温和大气环境下能稳定工作。本发明的柔性二维材料光探测器阵列,其中的二维材料NbSe2通常存在三棱柱结构(2H相)或八面体结构(1T相),2H相为半金属,1T相为莫特绝缘体,生长的大面积或体材料通常是2H相,2H相的半金属薄膜因其光电导特性适合作为光电器件的光敏层材料,且相比于体材料具有较低的暗电流,对波长为532nm到808nm光谱范围内的光照具有响应。

Description

一种柔性二维材料光探测器阵列及其制作方法
技术领域
本发明属于二维材料光探测器技术领域,具体涉及一种柔性二维材料光探测器阵列及其制作方法。
背景技术
光探测器是可以将光信号(承载能量的电磁辐射)转换成精确的电信号(通常是光电流和光电压)的器件,而高性能的光探测技术无论在科学或是工业上均是非常重要的,在视频成像、光通信、火灾监测、生物医学成像、环境监测、空间探测、安防、夜视和运动检测等领域有着广泛的应用。目前,市场上的光探测器大多是基于块体的晶体硅组装而成,这一类光探测器可以工作在可见光以及近红外光范围;另外还有基于三维材料的光探测器例如:硅/锗(Si/Ge)异质结或Ⅲ-Ⅴ族半导体合金(铟镓砷InGaAS等),此类光探测器则可以工作在1100nm以外的光波长区域。这些光探测器通常组装在刚性基底上,并在我们的日常生活中有着重要的应用,例如数码相机、火灾监测、生物分析以及军事。
2004年物理学家通过机械剥离法成功制备出石墨烯(graphene)开启了研究二维材料的大门。就它们的特殊性质而言,许多二维材料的能带结构都与其层数相关。从实用的观点上看,层状二维材料相比于块体材料拥有若干优势。
然而,二维层状材料(two-dimenSional layered materialS,2DLMS)的制备和器件性能方面仍然面临很多共同的挑战:如何获得高质量和均匀性的材料;如何控制晶体的取向、厚度和形貌;如何优化器件结构;如何实现片上集成;如何使光敏性最大化;如何提高可重复性。二维材料虽然有着令人期盼的卓越性质,但环境稳定性差、器件化后性能无法维持,在大气环境中容易发生氧化分解,吸附杂质等。因此,对基于二维材料的器件进行封装来提高器件的稳定性和使用寿命是必要的。对于柔性光敏器件的封装还应该考虑封装材料的透光性,柔性及绝缘性。
发明内容
有鉴于此,本发明提供了一种柔性二维材料光探测器阵列及其制作方法,能够在室温和大气环境下能稳定工作。
为实现上述目的,本发明的一种柔性二维材料光探测器阵列,结构从下到上依次为:柔性透明衬底、电极阵列、二维材料光敏层以及柔性透明绝缘封装盖板;其中,底层的柔性透明衬底的面积大于顶层的柔性透明绝缘封装盖板的面积。
其中,所述电极阵列为叉指状透明电极阵列。
其中,衬底与盖板之间通过环氧树脂-聚酰亚胺胶粘剂连接密封。
本发明还提供了一种柔性二维材料光探测器阵列的制作方法,包括以下步骤:
步骤S1、制备底层柔性透明衬底及顶层柔性透明封装盖板;
步骤S2、在底层柔性透明衬底上沉积透明导电薄膜;
步骤S3、将沉积在底层柔性透明衬底上的透明导电薄膜刻蚀成器件设计的相应规格的电极阵列;
步骤S4、在刻蚀好的底层柔性透明衬底上的电极阵列上沉积二维材料光敏层;
步骤S5、覆盖顶层柔性透明绝缘封装盖板并通过连接材料与底层柔性透明衬底连接,将中间的二维材料光敏层完全密封,将电极阵列局部密封。
其中,步骤S1具体为:
将抛光处理的改性聚酰亚胺薄膜厚度为20μm,裁剪成底层柔性透明衬底和顶层柔性透明绝缘封装盖板,其中所述衬底面积为3.5cm×3cm,所述盖板面积为2.5cm×2.5cm。
裁剪好的改性聚酰亚胺薄膜采用依次为:无水乙醇超声清洗10分钟,去离子水超声清洗10分钟,循环以上两个清洗步骤3次,然后放在清洗干净的玻璃培养皿中备用。
其中,步骤S2具体过程为:
在底层柔性透明衬底改性聚酰亚胺薄膜上沉积导电薄膜,采用直流磁控溅射法沉积氧化铟锡厚度为100nm,溅射功率100W,沉积气压0.4Pa。
其中,步骤S3具体过程为:
采用光刻工艺,在衬底上的ITO薄膜上涂一层1-2微米厚的光刻胶,在光刻显影后露出待刻蚀的ITO薄膜用硝酸刻蚀,将衬底上的ITO薄膜刻蚀为长为150μm,宽为11μm,间距为4μm的叉指状电极阵列。
其中,步骤S4具体过程为:
在刻蚀好的导电薄膜ITO叉指状电极阵列上沉积二维材料光敏层,采用脉冲激光沉积三棱柱结构的二硒化铌二维材料光敏层,厚度为18nm,面积为1.75cm×1cm的矩形,矩形中心与衬底矩形的中心重合。
其中,所述步骤4具体如下:
a、聚酰亚胺衬底及刻蚀好的ITO电极阵列被固定在一个旋转支架上,所述旋转支架可进行加热及温度监控,平行于NbSe2纯度99.9%的靶材距离为6cm;
b、在上一步的支架上的样品上面覆盖一个有面积为1.75cm×1cm的矩形通孔的金属薄片掩模版;
c、将沉积腔抽真空到1.0×10-4Pa的基压下,用波长为248nm,脉冲时间20nS的脉冲KrF准分子激光器对靶材进行轰击;
用一个紫外透明透镜将激光束聚焦到靶材表面的一个3mm2的区域上,每个脉冲激光能量恒定为120mJ,频率为3Hz,共15000个脉冲,衬底温度保持在400℃;
在PLD过程中,流动的Ar以50Sccm的流量作为背景气体引入系统,衬底支架以12rpm的转速旋转,工作压强维持在30Pa;
沉积后,系统在100Pa的气压下自然冷却几个小时至室温。
其中,步骤S5具体过程为:
a、采用真空转移设备在5×10-4Pa下将脉冲激光沉积了2H-NbSe2的器件阵列转移到充满氩气的手套箱内进行封装;
b、将盖板和装有环氧树脂胶的密封瓶,装有聚酰亚胺类固化剂的密封瓶及两个移液枪一起通过过渡腔传入充满氩气的手套箱内;
c、分别用两支移液枪吸取环氧树脂胶及聚酰亚胺类固化剂按体积比为2:1在培养皿内混合均匀形成环氧树脂-聚酰亚胺胶粘剂,再均匀涂抹于底层柔性透明衬底距离边沿0.8cm到0.5cm,形成环形条;
d、覆盖顶层柔性透明绝缘封装盖板并使其边沿与环氧树脂-聚酰亚胺胶粘剂充分接触;
f、将封装好的样品放在密封盒里传出手套箱,传入干燥箱进行交联固化,具体为:室温→80℃持续1h→110℃持续1h→120℃持续0.5h→150℃持续1h→170℃持续0.75h→室温。
有益效果:
本发明的柔性二维材料光探测器阵列,其中的二维材料NbSe2通常存在三棱柱结构(2H相)或八面体结构(1T相),2H相为半金属,1T相为莫特绝缘体,生长的大面积或体材料通常是2H相,2H相的半金属薄膜因其光电导特性适合作为光电器件的光敏层材料,且相比于体材料具有较低的暗电流,对波长为532nm到808nm光谱范围内的光照具有响应。
本发明的柔性二维材料光探测器阵列,采用商用生产工艺成熟的改性的聚酰亚胺薄膜作为底层透明衬底及顶层透明绝缘封装材料。改性的聚酰亚胺薄膜的高透光性,优越的机械性能及绝缘性使器件具有柔性,提高了器件的采光性;封装后使器件能在大气环境下使用,同时增长了器件的使用寿命。采用叉指状电极阵列提高了器件面积的使用效率,容错率及生产的良品率。采用二维材料作为光敏层,避免了体材料的局限性,如光吸收系数低、载流子移动性差、成本高、脆性严重以及由悬挂键引起的界面缺陷。
本发明的制作方法,具体过程为制备底层柔性透明衬底及顶层柔性透明封装盖板,在底层柔性透明衬底上沉积导电薄膜,将上一步沉积在底层柔性透明衬底上的导电薄膜刻蚀成器件设计的相应规格的电极图案阵列,在上一步刻蚀好的底层柔性透明衬底上的电极阵列上沉积二维材料光敏层,覆盖顶层柔性透明绝缘封装盖板并通过连接材料与底层柔性透明衬底连接将中间的二维材料光敏层完全密封及电极局部密封。其中,采用直流磁控溅射法沉积高导电性,高透光率的ITO薄膜;采用脉冲激光沉积,这种薄膜生长方法是简单的,无前体的,从而导致其具有高效率和低污染的优点。集中的高能脉冲激光使产生的羽流具有高活度。因此,来自羽流的原子可以在衬底上自由迁移,这导致了高均匀性和大的生长薄膜面积,同时被轰击的高能原子有利于降低生长温度以适用于柔性衬底的较低温沉积。
附图说明
图1为本发明的光刻工艺刻蚀后的电极阵列示意图。
图2为本发明的脉冲激光沉积二维材料光敏层后的示意图。
图3为本发明的涂上环氧树脂-聚酰亚胺胶粘剂后的示意图。
图4为本发明的器件阵列封装后的俯视示意图。
图5为本发明的器件阵列封装后的正视示意图。
图6为本发明的器件阵列封装后的侧视示意图。
其中,1-改性的聚酰亚胺薄膜衬底,2-直流磁控溅射法沉积的ITO薄膜,3-脉冲激光沉积的NbSe2光敏层,4-环氧树脂-聚酰亚胺胶粘剂,5-改性的聚酰亚胺薄膜封装盖板。
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
本发明的一种柔性二维材料光探测器阵列,结构从下到上依次为:柔性透明衬底、叉指状透明电极阵列、二维材料光敏层以及柔性透明绝缘封装盖板。其中,底层的柔性透明衬底的面积大于顶层的柔性透明绝缘封装盖板的面积,以方便封装及引出电极,衬底与盖板之间通过环氧树脂-聚酰亚胺胶粘剂连接密封。
本发明的一种柔性二维材料光探测器阵列的制作方法,包括如下步骤:
步骤S1、制备底层柔性透明衬底及顶层柔性透明封装盖板;
步骤S2、在底层柔性透明衬底上沉积透明导电薄膜;
步骤S3、将沉积在底层柔性透明衬底上的透明导电薄膜刻蚀成器件设计的相应规格的电极图案阵列;
步骤S4、在刻蚀好的底层柔性透明衬底上的电极阵列上沉积二维材料光敏层;
步骤S5、覆盖顶层柔性透明绝缘封装盖板并通过连接材料与底层柔性透明衬底连接,将中间的二维材料光敏层完全密封,将电极局部密封。
其中,步骤S1具体为:
将购买的高透光性和机械性能优越的抛光处理的改性聚酰亚胺薄膜厚度为20μm,裁剪成底层柔性透明衬底如图1中的标注1改性的聚酰亚胺薄膜衬底面积为3.5cm×3cm,顶层柔性透明绝缘封装盖板如图4中的标注5改性的聚酰亚胺薄膜封装盖板面积为2.5cm×2.5cm。
裁剪好的改性聚酰亚胺薄膜采用依次为:无水乙醇超声清洗10分钟,去离子水超声清洗10分钟,循环以上两个清洗步骤3次,然后放在清洗干净的玻璃培养皿中备用。
步骤S2具体过程为:
在底层柔性透明衬底改性聚酰亚胺薄膜上沉积导电薄膜,采用直流磁控溅射法沉积氧化铟锡(Indium tin oxide,ITO)厚度为100nm,溅射功率100W,沉积气压0.4Pa。
步骤S3具体过程为:
将沉积在底层柔性透明衬底改性聚酰亚胺薄膜上的导电薄膜ITO刻蚀成器件设计的相应规格的电极图案阵列,采用光刻工艺,在衬底上的ITO薄膜上涂一层1-2微米厚的光刻胶,在光刻显影后露出待刻蚀的ITO薄膜用硝酸刻蚀,将衬底上的ITO薄膜刻蚀为长为150μm,宽为11μm,间距为4μm的叉指状电极阵列。
除去剩余的光刻胶,得到如图1所示的图案。两端大块的ITO面积均为0.75cm×1.5cm的矩形,其长边与衬底矩形的短边重合且中点重合。中间叉指状电极阵列的总覆盖面积为1.5cm×0.75cm的矩形,中心与衬底矩形的中心重合。最后得到的叉指状电极阵列如图1中的标注2直流磁控溅射法沉积的ITO薄膜。
步骤S4具体过程为:
在刻蚀好的导电薄膜ITO叉指状电极阵列上沉积二维材料光敏层,采用脉冲激光沉积三棱柱结构(2H相)的二硒化铌(NbSe2)二维材料光敏层,厚度为18nm,面积为1.75cm×1cm的矩形,矩形中心与衬底矩形的中心重合,如图2中标注的3脉冲激光沉积的NbSe2光敏层。具体如下:
a、聚酰亚胺衬底及刻蚀好的ITO电极阵列被固定在一个旋转支架上,旋转支架可进行加热及温度监控,平行于NbSe2纯度99.9%的靶材距离为6cm;
b、在上一步的支架上的样品上面覆盖一个有面积为1.75cm×1cm的矩形通孔的金属薄片掩模版;
c、将沉积腔抽真空到1.0×10-4Pa的基压下,用波长为248nm,脉冲时间20nS的脉冲KrF准分子激光器对靶材进行轰击。用一个紫外透明透镜将激光束聚焦到靶材表面的一个3mm2的区域上,每个脉冲激光能量恒定为120mJ,频率为3Hz,共15000个脉冲,衬底温度保持在400℃。在PLD过程中,流动的Ar以50Sccm的流量作为背景气体引入系统,衬底支架以12rpm的转速旋转,工作压强维持在30Pa。沉积后,系统在100Pa的气压下自然冷却几个小时至室温。
步骤S5具体过程为:
覆盖顶层柔性透明绝缘盖板并通过连接材料与底层柔性透明衬底连接将中间的二维材料光敏层完全密封及电极局部密封。具体如下:
a、采用真空转移设备(SuitcaSe)在高真空下5×10-4Pa将脉冲激光沉积了2H-NbSe2的器件阵列转移到充满氩气的手套箱内进行封装;
b、将清洗干净放在培养皿中的剪裁好的顶层柔性透明绝缘封装盖板如图4中的标注5面积为2.5cm×2.5cm的改性聚酰亚胺薄膜和装有环氧树脂胶的密封瓶,装有聚酰亚胺类固化剂的密封瓶及两个移液枪一起通过过渡腔传入充满氩气的手套箱内;
c、分别用两支移液枪吸取环氧树脂胶及聚酰亚胺类固化剂按体积比为2:1在培养皿内混合均匀形成环氧树脂-聚酰亚胺胶粘剂,再均匀涂抹于底层柔性透明衬底距离边沿0.8cm到0.5cm,形成如图3中标注的4环氧树脂-聚酰亚胺胶粘剂的环形条;
d、覆盖顶层柔性透明绝缘封装盖板并使其边沿与环氧树脂-聚酰亚胺胶粘剂充分接触;
f、将封装好的样品放在密封盒里传出手套箱,传入干燥箱进行交联固化,具体为:室温→80℃持续1h→110℃持续1h→120℃持续0.5h→150℃持续1h→170℃持续0.75h→室温。
最终封装完成的器件俯视示意图如图4、图5和图6所示,图4为本发明的器件阵列封装后的俯视示意图,图5为本发明的器件阵列封装后的正视示意图,图6为本发明的器件阵列封装后的侧视示意图。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种柔性二维材料光探测器阵列的制作方法,其特征在于,包括以下步骤:
步骤S1、制备底层柔性透明衬底及顶层柔性透明封装盖板;
步骤S2、在底层柔性透明衬底上沉积透明导电薄膜;
步骤S3、将沉积在底层柔性透明衬底上的透明导电薄膜刻蚀成器件设计的相应规格的电极阵列;
步骤S4、在刻蚀好的底层柔性透明衬底上的电极阵列上沉积二维材料光敏层;
步骤S5、覆盖顶层柔性透明绝缘封装盖板并通过连接材料与底层柔性透明衬底连接,将中间的二维材料光敏层完全密封,将电极阵列局部密封;
步骤S4具体过程为:
在刻蚀好的导电薄膜ITO叉指状电极阵列上沉积二维材料光敏层,采用脉冲激光沉积三棱柱结构的二硒化铌二维材料光敏层,厚度为18nm,面积为1.75cm×1cm的矩形,矩形中心与衬底矩形的中心重合;
所述步骤S4具体如下:
a、聚酰亚胺衬底及刻蚀好的ITO电极阵列被固定在一个旋转支架上,所述旋转支架可进行加热及温度监控,平行于NbSe2纯度99.9%的靶材距离为6cm;
b、在上一步的支架上的样品上面覆盖一个有面积为1.75cm×1cm的矩形通孔的金属薄片掩模版;
c、将沉积腔抽真空到1.0×10-4Pa的基压下,用波长为248nm,脉冲时间20nS的脉冲KrF准分子激光器对靶材进行轰击;
用一个紫外透明透镜将激光束聚焦到靶材表面的一个3mm2的区域上,每个脉冲激光能量恒定为120mJ,频率为3Hz,共15000个脉冲,衬底温度保持在400℃;
在PLD过程中,流动的Ar以50Sccm的流量作为背景气体引入系统,衬底支架以12rpm的转速旋转,工作压强维持在30Pa;
沉积后,系统在100Pa的气压下自然冷却几个小时至室温。
2.如权利要求1所述的柔性二维材料光探测器阵列的制作方法,其特征在于,步骤S1具体为:
将抛光处理的改性聚酰亚胺薄膜厚度为20μm,裁剪成底层柔性透明衬底和顶层柔性透明绝缘封装盖板,其中所述衬底面积为3.5cm×3cm,所述盖板面积为2.5cm×2.5cm;
裁剪好的改性聚酰亚胺薄膜采用依次为:无水乙醇超声清洗10分钟,去离子水超声清洗10分钟,循环以上两个清洗步骤3次,然后放在清洗干净的玻璃培养皿中备用。
3.如权利要求1所述的柔性二维材料光探测器阵列的制作方法,其特征在于,步骤S2具体过程为:
在底层柔性透明衬底改性聚酰亚胺薄膜上沉积导电薄膜,采用直流磁控溅射法沉积氧化铟锡厚度为100nm,溅射功率100W,沉积气压0.4Pa。
4.如权利要求1所述的柔性二维材料光探测器阵列的制作方法,其特征在于,步骤S3具体过程为:
采用光刻工艺,在衬底上的ITO薄膜上涂一层1-2微米厚的光刻胶,在光刻显影后露出待刻蚀的ITO薄膜用硝酸刻蚀,将衬底上的ITO薄膜刻蚀为长为150μm,宽为11μm,间距为4μm的叉指状电极阵列。
5.如权利要求1所述的柔性二维材料光探测器阵列的制作方法,其特征在于,步骤S5具体过程为:
a、采用真空转移设备在5×10-4Pa下将脉冲激光沉积了2H-NbSe2的器件阵列转移到充满氩气的手套箱内进行封装;
b、将盖板和装有环氧树脂胶的密封瓶,装有聚酰亚胺类固化剂的密封瓶及两个移液枪一起通过过渡腔传入充满氩气的手套箱内;
c、分别用两支移液枪吸取环氧树脂胶及聚酰亚胺类固化剂按体积比为2:1在培养皿内混合均匀形成环氧树脂-聚酰亚胺胶粘剂,再均匀涂抹于底层柔性透明衬底距离边沿0.8cm到0.5cm,形成环形条;
d、覆盖顶层柔性透明绝缘封装盖板并使其边沿与环氧树脂-聚酰亚胺胶粘剂充分接触;
f、将封装好的样品放在密封盒里传出手套箱,传入干燥箱进行交联固化,具体为:室温→80℃持续1h→110℃持续1h→120℃持续0.5h→150℃持续1h→170℃持续0.75h→室温。
6.一种采用如权利要求1-5任意一项所述方法制作的柔性二维材料光探测器阵列,其特征在于,结构从下到上依次为:柔性透明衬底、电极阵列、二维材料光敏层以及柔性透明绝缘封装盖板;其中,底层的柔性透明衬底的面积大于顶层的柔性透明绝缘封装盖板的面积;
所述电极阵列为叉指状透明电极阵列;
衬底与盖板之间通过环氧树脂-聚酰亚胺胶粘剂连接密封。
CN202110405178.4A 2021-04-15 2021-04-15 一种柔性二维材料光探测器阵列及其制作方法 Active CN113140641B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110405178.4A CN113140641B (zh) 2021-04-15 2021-04-15 一种柔性二维材料光探测器阵列及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110405178.4A CN113140641B (zh) 2021-04-15 2021-04-15 一种柔性二维材料光探测器阵列及其制作方法

Publications (2)

Publication Number Publication Date
CN113140641A CN113140641A (zh) 2021-07-20
CN113140641B true CN113140641B (zh) 2022-08-23

Family

ID=76812863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110405178.4A Active CN113140641B (zh) 2021-04-15 2021-04-15 一种柔性二维材料光探测器阵列及其制作方法

Country Status (1)

Country Link
CN (1) CN113140641B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109585489B (zh) * 2018-11-09 2021-05-11 北京纳米能源与系统研究所 柔性光电探测器阵列及其制备方法
CN110333010B (zh) * 2019-04-10 2021-07-06 绍兴文理学院元培学院 一种叉指型大面积柔性阵列传感器及其制备方法
CN111564509B (zh) * 2020-06-16 2022-02-15 山东大学 一种全氧化物柔性光电探测器及其制备方法与应用

Also Published As

Publication number Publication date
CN113140641A (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
Ravindiran et al. Status review and the future prospects of CZTS based solar cell–A novel approach on the device structure and material modeling for CZTS based photovoltaic device
CN107507876B (zh) 一种β-Ga2O3基日盲紫外光电探测器阵列及其制备方法
CN107369763B (zh) 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法
CN111341875B (zh) 一种石墨烯/二硒化钯/硅异质结自驱动光电探测器
CN109244246B (zh) 一种基于拓扑绝缘体硒化铋电极的宽波段光电探测器
US4673770A (en) Glass sealed silicon membrane solar cell
KR20120052310A (ko) 태양 전지 전면 컨택트 도핑
JP2005508569A (ja) 薄膜赤外線透過性導体
WO2022126933A1 (zh) 波长选择性响应的光电探测器的制备方法
CN111564509B (zh) 一种全氧化物柔性光电探测器及其制备方法与应用
CN103227230A (zh) 一种侧向生长ZnMgO纳米线日盲区紫外探测器及其制备方法
CN113314672A (zh) 一种钙钛矿太阳能电池及其制备方法
US8461481B2 (en) Methods and apparatus for reducing variations in the laser intensity during scribing a photovoltaic device
CN113140641B (zh) 一种柔性二维材料光探测器阵列及其制作方法
CN102628161A (zh) 用于制造半导体膜和光伏装置的方法
CN115295676B (zh) 一种高光响应Te/MoS2异质结光探测器及制备方法
CN112531065B (zh) 用于红外光电的铅盐薄膜结构及其制备方法
US20140261668A1 (en) Growth of cigs thin films on flexible glass substrates
CN113193069A (zh) 一种hBN/BAlN异质结紫外探测器及其制备方法
KR101783784B1 (ko) 태양전지 모듈 및 그의 제조방법
KR101306459B1 (ko) 태양광 발전장치 및 이의 제조방법
CN109560161B (zh) 基于m面ZnOS薄膜的自发极化增强型光电探测器及其制备方法
CN109560162B (zh) 一种基于非极性a面ZnOS薄膜的光电探测器及其制备方法
CN108183144A (zh) 一种提高碲化镉薄膜太阳电池测试准确性的激光刻划技术
KR100833517B1 (ko) 광전 물질 및 그의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Xu Ziqiang

Inventor after: Liu Liwei

Inventor after: Wang Yeliang

Inventor after: Hou Yanhui

Inventor after: Huang Zeping

Inventor after: Yang Han

Inventor after: Zhang Quanzhen

Inventor after: Zhang Teng

Inventor before: Xu Ziqiang

Inventor before: Liu Liwei

Inventor before: Wang Yeliang

Inventor before: Hou Yanhui

Inventor before: Huang Zeping

Inventor before: Yang Han

Inventor before: Zhang Quanzhen

Inventor before: Zhang Teng

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant