CN112531065B - 用于红外光电的铅盐薄膜结构及其制备方法 - Google Patents

用于红外光电的铅盐薄膜结构及其制备方法 Download PDF

Info

Publication number
CN112531065B
CN112531065B CN202011528130.4A CN202011528130A CN112531065B CN 112531065 B CN112531065 B CN 112531065B CN 202011528130 A CN202011528130 A CN 202011528130A CN 112531065 B CN112531065 B CN 112531065B
Authority
CN
China
Prior art keywords
lead
lead salt
film
salt
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011528130.4A
Other languages
English (en)
Other versions
CN112531065A (zh
Inventor
周大华
李云杰
黄德萍
冯双龙
杨俊�
孙泰
史浩飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Institute of Green and Intelligent Technology of CAS
Original Assignee
Chongqing Institute of Green and Intelligent Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Institute of Green and Intelligent Technology of CAS filed Critical Chongqing Institute of Green and Intelligent Technology of CAS
Priority to CN202011528130.4A priority Critical patent/CN112531065B/zh
Publication of CN112531065A publication Critical patent/CN112531065A/zh
Application granted granted Critical
Publication of CN112531065B publication Critical patent/CN112531065B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明属于光电子器件领域,具体涉及一种用于红外光电的复合结构铅盐薄膜及其制备方法。基底、物理气相沉积法制备的铅盐晶粒层、化学法制备的小晶粒铅盐;所述铅盐晶粒层覆在所述基底上,铅盐晶粒之间存在缝隙;所述小晶粒铅盐嵌入所述缝隙之中;所述铅盐薄膜为硫化铅或硒化铅;所述基底为石英衬底或蓝宝石衬底或含氧化层硅片;所述制备方法是通过物理气相沉积法及化学法相结合而制成。本发明提供的复合结构铅盐薄膜结构更加致密,均匀性高;退火处理后的复合结构铅盐薄膜作为光电探测器噪声小,比探测率高,制备方法耗时短,工艺简单。

Description

用于红外光电的铅盐薄膜结构及其制备方法
技术领域
本发明属于光电子器件领域,具体涉及一种复合结构铅盐薄膜及其制备方法。
背景技术
光电探测器是将光信号转为电信号的一种电子器件,在人眼不可见的紫外和红外波段,以及人力无法企及的如夜间暗场、高温高危环境、不间断监视等场合和场景中具有重要的应用。红外探测器实现红外波段的光电探测,目前有光子型和光热型两种原理。光子型红外探测器响应速度快,光热型红外探测器响应波段宽,各具优点。
铅盐(PbS/PbSe)作为一种具有NaCl结构的窄禁带半导体材料,具有良好的光电效应、量子效率高、噪声低等优点,因此被广泛用于制造红外探测器、光发射器、太阳能电池等半导体器件。红外辐射下,铅盐薄膜电导率发生变化,产生光电流,从而实现红外探测。其中尤其是硒化铅薄膜使用甚广,硒化铅探测器的优势在于室温工作,尤其是西班牙Centro deInvestigacio′ny Desarrollo de la Armada实现硒化铅阵列相机以后,红外探测领域科学家对它的热情被再次点燃。
随着近年来薄膜材料的广泛研究与应用,关于铅盐薄膜材料的制备研究已有不少报道,其制备工艺主要有化学浴沉积法、电化学沉积法、真空蒸镀法、溅射沉积法和原子层沉积法等。目前用于红外探测的铅盐薄膜主要通过两种途径制备,一是化学水浴法,如参考文献J.Electrochem.Soc.1980,Volume 127,Issue 2,Pages 277-283;二是通过物理气相沉积法,如参考文献Thin Solid Films 317,(1998),Page 425–428。以上两种方法均以实现硒化铅光电探测器的产业化。我国在硒化铅探测器的研究上已有相关自主产权,如CN200610156551.2司俊杰发明的“制备红外探测器光敏铅盐薄膜的方法”,以及CN201510199477.1原子健发明的“一种中红外探测器及其制备方法”。
然而,在制备铅盐红外相机的发展过程中,目前的铅盐材料制备方法上仍然有着较大的瓶颈:1、气相沉积法可以制备较大面积的铅盐薄膜,但其材料结构疏松,使得光电器件噪声高,比探测率低;2、化学水浴法制备的铅盐结构致密,但是需要将基底较长时间浸泡于酸/碱性溶液中,且薄膜均匀性难以控制,这对带读出电路的芯片制造极为不利。
因此,本发明针对以上制备方法的局限,提出物理气相沉积和化学水浴法相结合的方法,获得大面积且结构致密的铅盐薄膜。本发明同单纯气相沉积法制备的铅盐薄膜相比,结构更加致密,电信号噪声更小;又克服了单纯水浴法铅盐薄膜生长耗时长,制备均匀性较低的缺点。因此,利用本发明的光敏薄膜在制造高性能的室温型硫化铅或硒化铅红外阵列相机方面极具潜力。根据之前的调查,尚未找到相关文献公开利用物理气相沉积和化学水浴法相结合的方法进行制备铅盐薄膜。
发明内容
有鉴于此,本发明目的在于提供一种复合结构铅盐薄膜。该复合结构铅盐薄膜由比较疏松的晶体结构与小颗粒晶体结构相互镶嵌而成,结构致密,致使电信号噪声更小,均匀性较高。
所述铅盐晶粒层覆在所述基底上,铅盐晶粒之间存在缝隙;
所述小晶粒铅盐嵌入所述缝隙之中;
所述铅盐为硫化铅或硒化铅;
所述基底为石英衬底或蓝宝石衬底或含氧化层硅片。
进一步,所述复合结构铅盐薄膜还包括钝化层,由硫化锌、二氧化硅、氟化硅中的一种制备而成;所述钝化层与所述铅盐晶粒层贴合。
本发明目的在于还提供一种前述的复合结构铅盐薄膜的制备方法。该制备方法先是通过物理气相沉积制备疏松有间隙的铅盐晶粒层,然后以此为基底利用化学水浴法制备小颗粒铅盐晶粒镶嵌在铅盐晶粒层的缝隙之间,最终形成结构紧致的复合结构铅盐薄膜。本发明同单纯气相沉积法制备的铅盐薄膜相比,结构更加致密,电信号噪声更小;又克服了单纯水浴法铅盐薄膜生长耗时长,制备均匀性较低的缺点。该制备方法可以获得致密的大面积铅盐红外光电薄膜。
所述制备方法包括以下步骤:
(1)物理气相沉积法在所述基底上以多晶硫化铅或硒化铅为原材料沉积铅盐晶粒层得部件a;
(2)将部件a浸入含铅盐反应溶液中,制得复合结构铅盐薄膜;
所述铅盐反应溶液为混合溶液内发生反应能生成所述铅盐的溶液。
进一步,步骤(1)中所述物理气相沉积法包括但不限于真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜和分子束外延。
所述铅盐为硫化铅时,步骤(2)中所述的含铅盐反应溶液由醋酸铅、硫脲和氢氧化钾水溶液组成;所述铅盐为硒化铅时,步骤(2)中所述的铅盐反应溶液由硒代硫酸钠溶液、醋酸铅溶液、氢氧化钾水溶液和水溶性淀粉溶液组成。
优选地,对混合溶液进行加热,加热温度为60-80℃。
再优选地,所述加热为1-3小时。
再优选地,所述加热为水浴加热。
进一步,前述制备方法制得的复合结构铅盐薄膜进行退火处理;所述退火处理温度为100-250℃,退火处理时间为1-3小时。
具体地,所述退火处理即将以上复合结构的铅盐薄膜置于加热炉中,加热温度100-250摄氏度,加热管中通上氧气/氮气/氩气流动气氛,退火时间1-3小时。
进一步,在退火之前,采用定制的金属掩模版和夹具对复合结构铅盐薄膜进行加工得到想要的图案。
进一步,对退火处理之后的复合结构铅盐薄膜进行钝化,所述钝化具体为:将退火处理后的复合结构铅盐薄膜晶粒层一面镀上硫化锌或二氧化硅或氟化硅。
优选地,所述钝化的工艺为磁控溅射或热蒸镀技术。
具体地,本制备方法总体为:首先,在洁净的基底上通过物理气相沉积法制备铅盐薄膜,然而该方法导致薄膜多孔疏松的结构。其次,通过化学水浴法生长铅盐晶粒,这些晶粒可以围绕已有气相沉积的铅盐为晶核生长,填补前期薄膜孔隙。以上两步制备的铅盐薄膜更为致密,且缩短了水浴法的生长时间,并经过退火处理和钝化工艺,即得到性能优异的铅盐复合结构的红外光敏薄膜。
本发明目的在于还提供一种退火并钝化后或退火后的复合结构硒化铅或硫化铅薄膜。
铅盐薄膜都必须经过合适的退火处理工艺,方可表现出红外光电探测性能。钝化是防止经过退火处理制备的复合结构硒化铅或硫化铅薄膜光电材料被氧化影响光电效应。
进一步,所述经过退火处理的复合结构硫化铅薄膜探测器响应波段在1-4.5um;或经过退火处理的所述复合结构硒化铅薄膜探测器响应波段在1.5-5um。
本发明目的在于提供一种前述的复合结构铅盐薄膜或前述的经过退火工艺的制备方法制备的复合结构铅盐薄膜在红外光电探测器和红外相机中的应用。前述的铅盐薄膜经过退火处理后具备红外光电探测性能,具有光电响应。
本发明制备的铅盐薄膜经过退火处理或者退火处理后再进行钝化处理后,结构致密,降低了硒化铅或硫化铅探测器的低频噪声,提高了比探测率,而且可应用于制造铅盐红外相机的芯片。
本发明有益效果在于:
(1)本发明提供的复合结构硒化铅或硫化铅薄膜结构致密,生长耗时短,均匀性较高。
(2)本发明提供的经退火处理后的复合结构硒化铅或硫化铅薄膜结构致密的特征,克服了单纯物理法制备铅盐薄膜结构酥松的问题,降低了硒化铅或硫化铅探测器的低频噪声,提高了比探测率,是用于制造硒化铅或硫化铅探测器的良好光电材料。
(3)本发明提供放入复合结构硒化铅或硫化铅薄膜结构的均匀性高的特征,克服了其他方法像素间不均匀的问题,使得基于该材料的发展大面阵红外相机极具潜力。
附图说明
图1为物理气相沉积法制备的铅盐薄膜结构示意图。
图2为物理气相沉积法与化学水浴法结合制备的复合结构硒化铅或硫化铅薄膜结构示意图。
图3为经过钝化的复合结构硒化铅或硫化铅薄膜结构示意图。
图4为本发明经过退火钝化的复合结构硒化铅薄膜噪声测试结果图。
图5为本发明经过退火钝化的复合结构硒化铅薄膜制备的光电探测器件的光电响应测试结果图。
图1-图3中,其中1-基底;2-物理气相沉积法制备的疏松结构的铅盐晶粒层;3-化学法生长的小晶粒铅盐;4-钝化层。
具体实施方式
所举实施例是为了更好地对本发明进行说明,但并不是本发明的内容仅局限于所举实施例。所以熟悉本领域的技术人员根据上述发明内容对实施方案进行非本质的改进和调整,仍属于本发明的保护范围。
实施例1复合结构铅盐薄膜结构
参照图1和图2,本发明提供一种复合结构铅盐薄膜,1为基底,2物理气相沉积法制备的疏松结构的铅盐晶粒层,3为化学法生长的小晶粒铅盐;
其中,铅盐晶粒层覆在基底上,铅盐晶粒之间存在缝隙;
其中,小晶粒铅盐嵌入铅盐晶粒层的铅盐晶粒之间缝隙之中;
其中,铅盐为硫化铅或硒化铅;
其中,基底为石英衬底或蓝宝石衬底或含氧化层硅片。
参照图3,4为钝化层,在复合结构铅盐薄膜进行退火处理后加上一层钝化层,钝化层与硒化铅晶粒层贴合;钝化层由硫化锌、二氧化硅、氟化硅中的一种制备而成。
实施例2复合结构硒化铅薄膜的制备
(1)物理气相沉积
石英衬底切成规则尺寸(如4*2.5cm2),清洗干净,将多片石英置于夹具,放在气相沉积炉中;
在坩埚中加入多晶硒化铅,关闭炉堂,抽真空至10-4Pa级;
升温加热坩埚,熔解硒化铅致其挥发;
根据膜厚仪厚度参数,硒化铅薄膜厚度为0.9-1.1um厚度;
关闭加热电源,充入氮气至常压,打开炉子,取出带硒化铅薄膜的石英片。
(2)化学水浴
采用99.99%纯度的硒粉(5g)和99%纯度亚硫酸钠(7.98g)及高纯水600mL配置硒代硫酸钠溶液,搅拌24小时,使其充分反应,形成0.1mol/L的硒代硫酸钠溶液;
利用如上所述的硒代硫酸钠溶液,醋酸铅溶液(0.2mol/L),氢氧化钾水溶液和可溶性淀粉溶液配制溶液。其中硒代硫酸钠溶液和醋酸铅溶液按Se:Pb=1:1的化学计量比配比,如上述制备的硒代硫酸钠溶液100mL,醋酸铅溶液50mL,可溶性淀粉0.5g的溶液50mL,最后用氢氧化钾溶液调节Ph值至8;
将上述的有气相沉积硒化铅薄膜的石英片置于上述混合溶液中;
磁粒子搅拌该溶液,溶液加热到60-80摄氏度,逐渐在先前沉积的硒化铅颗粒表面和间隙处生成新的硒化铅产物;
待反应2小时,取出石英衬底,此时石英衬底上附着了物理气相沉积法和化学水浴法生成的复合结构硒化铅薄膜。
(3)刻蚀
采用定制的金属掩模版和夹具,将上述石英衬底上的硒化铅薄膜置于刻蚀炉中刻蚀,形成1*1.5cm2,2*2.5cm2的规则图案;
(4)退火
将上述刻蚀后的石英片置于加热炉中退火,退火温度设置为200摄氏度,通上氮气:氧气为4:1的气体,加热2小时;
将退火的芯片置于金属掩模版及夹具中,磁控溅射形成电极,使得露出的硒化铅薄膜为1*1cm2和2*2cm2。
(5)钝化
上述步骤处理后的芯片,磁控溅射二氧化硅薄膜200nm,作为钝化层。
实施例3产品测试
通过实施例2逐步加工形成的芯片,即可用于点焊封装,形成性能优良的硒化铅探测器。
对该硒化铅探测器进行噪声测试和光电响应测试,噪声测试结果如图4所示;并采用500K的黑体光源,其光电响应测试结果如图5所示。
结果表明,该器件噪声极低,同已有市场产品相比,本发明的铅盐探测器噪声低1-2数量级,比探测率达5.5*1010Jones,比国外同类产品Laser Components公司硒化铅探测器(1.8*1010Jones)高约200%,比索雷博公司同类硒化铅产品(2.5*109Jones)高10倍以上。特别是,本发明器件并没有牺牲响应时间的性能参数,充分表明了本设计和制备方法的可靠性。
同样的,经过本发明设计的硫化铅薄膜光电探测器,封装过后室温下测试500K黑体响应比探测率达2.0*1011Jones,比国外同类产品高50%以上(Laser componests,1.1*1011Jones)。
无论硫化铅或者硒化铅薄膜探测器,本发明设计的薄膜结构比原有方法都更加致密,所以噪声电压更下,可能是比探测率性能参数大幅提高的原因。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换(如诸多参数如薄膜尺寸,薄膜厚度,水浴法生长时间,电极材料,钝化层材料及厚度),而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (8)

1.一种复合结构铅盐薄膜的制备方法,其特征在于,
所述复合结构铅盐薄膜包括:基底、物理气相沉积法制备的铅盐晶粒层、化学水浴法制备的小晶粒铅盐;
所述铅盐晶粒层覆在所述基底上,铅盐晶粒之间存在缝隙;
所述小晶粒铅盐嵌入所述缝隙之中;
所述铅盐为硫化铅或硒化铅;
所述基底为石英衬底或蓝宝石衬底或含氧化层硅片;
所述制备方法包括以下步骤:(1)物理气相沉积法在所述基底上以多晶硫化铅或硒化铅为原材料沉积铅盐晶粒层得部件a;(2)将部件a浸入含铅盐反应溶液中,得到复合结构铅盐薄膜;
所述含铅盐反应溶液为混合溶液内发生反应能生成所述铅盐的溶液。
2.根据权利要求1所述的制备方法,其特征在于,所述铅盐为硫化铅时,步骤(2)中所述的含铅盐反应溶液由醋酸铅、硫脲和氢氧化钾水溶液组成;或所述铅盐为硒化铅时,步骤(2)中所述的含铅盐反应溶液由硒代硫酸钠溶液、醋酸铅溶液、氢氧化钾水溶液和水溶性淀粉溶液组成。
3.根据权利要求2所述制备方法,其特征在于,对含铅盐反应溶液加热,加热温度为60-80℃。
4.根据权利要求3所述的制备方法,其特征在于,加热1-3小时。
5.根据权利要求2-4任一所述的制备方法,其特征在于,对步骤(2)中得到的复合结构铅盐薄膜进行退火处理;所述退火处理温度为100-250℃,退火处理时间为1-3小时。
6.根据权利要求5所述的制备方法,其特征在于,对退火处理后的复合结构铅盐薄膜进行钝化;所述钝化具体为:将退火处理后的复合结构铅盐薄膜晶粒层一面镀上硫化锌或二氧化硅或氟化硅。
7.权利要求5或6所述的制备方法制备的复合结构铅盐薄膜,其特征在于,由复合结构硫化铅薄膜制备成的探测器响应波段在1-4.5um;或由复合结构硒化铅薄膜制备成的探测器响应波段在1.5-5um。
8.权利要求7所述的复合结构铅盐薄膜在红外光电探测器或红外相机中的应用。
CN202011528130.4A 2020-12-22 2020-12-22 用于红外光电的铅盐薄膜结构及其制备方法 Active CN112531065B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011528130.4A CN112531065B (zh) 2020-12-22 2020-12-22 用于红外光电的铅盐薄膜结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011528130.4A CN112531065B (zh) 2020-12-22 2020-12-22 用于红外光电的铅盐薄膜结构及其制备方法

Publications (2)

Publication Number Publication Date
CN112531065A CN112531065A (zh) 2021-03-19
CN112531065B true CN112531065B (zh) 2021-06-29

Family

ID=75002313

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011528130.4A Active CN112531065B (zh) 2020-12-22 2020-12-22 用于红外光电的铅盐薄膜结构及其制备方法

Country Status (1)

Country Link
CN (1) CN112531065B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113345972A (zh) * 2021-03-22 2021-09-03 江苏大学 一种分层多晶硒化铅光电薄膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1852920A1 (en) * 2004-12-29 2007-11-07 Ministerio De Defensa Method of treating polycrystalline lead selenide infrared detectors
CN101792930A (zh) * 2009-10-16 2010-08-04 电子科技大学 一种(200)择优取向硫化铅薄膜的制备方法
CN102308393A (zh) * 2007-12-13 2012-01-04 泰克尼昂研究开发基金有限公司 包含第ⅳ-ⅵ族半导体核-壳纳米晶的光伏电池
CN110379873A (zh) * 2019-07-30 2019-10-25 纳晶科技股份有限公司 一种量子点探测器
CN111129198A (zh) * 2020-01-10 2020-05-08 中国科学院重庆绿色智能技术研究院 一种石墨烯/硫化铅红外探测器及其制备方法
CN111705297A (zh) * 2020-06-12 2020-09-25 大连理工大学 高性能晶圆级硫化铅近红外光敏薄膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1852920A1 (en) * 2004-12-29 2007-11-07 Ministerio De Defensa Method of treating polycrystalline lead selenide infrared detectors
CN102308393A (zh) * 2007-12-13 2012-01-04 泰克尼昂研究开发基金有限公司 包含第ⅳ-ⅵ族半导体核-壳纳米晶的光伏电池
CN101792930A (zh) * 2009-10-16 2010-08-04 电子科技大学 一种(200)择优取向硫化铅薄膜的制备方法
CN110379873A (zh) * 2019-07-30 2019-10-25 纳晶科技股份有限公司 一种量子点探测器
CN111129198A (zh) * 2020-01-10 2020-05-08 中国科学院重庆绿色智能技术研究院 一种石墨烯/硫化铅红外探测器及其制备方法
CN111705297A (zh) * 2020-06-12 2020-09-25 大连理工大学 高性能晶圆级硫化铅近红外光敏薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
" Enhancement of photodetection by PbSe quantum dots on atomic-layered GeS devices";Li, Yuzhi;《JOURNAL OF PHYSICS D-APPLIED PHYSICS》;20200925;全文 *

Also Published As

Publication number Publication date
CN112531065A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
US5948176A (en) Cadmium-free junction fabrication process for CuInSe2 thin film solar cells
CN107369763B (zh) 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法
JP4055053B2 (ja) 化合物薄膜太陽電池およびその製造方法
US5112410A (en) Cadmium zinc sulfide by solution growth
CN109037374B (zh) 基于NiO/Ga2O3的紫外光电二极管及其制备方法
Kampmann et al. Electrodeposition of CIGS on metal substrates
CN109244246B (zh) 一种基于拓扑绝缘体硒化铋电极的宽波段光电探测器
US11201254B2 (en) (GaMe)2O3 ternary alloy material, its preparation method and application in solar-blind ultraviolet photodetector
Chu et al. Improved UV-sensing of Au-decorated ZnO nanostructure MSM photodetectors
CN112531065B (zh) 用于红外光电的铅盐薄膜结构及其制备方法
McCandless Thermochemical and kinetic aspects of cadmium telluride solar cell processing
Wang et al. Solar-blind ultraviolet photodetectors based on Ta-doped β-Ga2O3 heteroepitaxial films
CN112054074B (zh) 光电探测器阵列及其制备方法、光电探测器及其制备方法
Xu et al. Recent advances in Ga-based solar-blind photodetectors
Delekar et al. Synthesis and characterization of Cd0. 7Pb0. 3Se thin films for photoelectrochemical solar cell
Sakalley et al. Cu3N thin film synthesized by selective in situ substrate heating during high power impulse magnetron sputtering for augmenting UV photodetection
CN109524491B (zh) 具有ZnTe过渡层的GaN-CdZnTe复合结构组件、应用及其制备方法
CN108258081B (zh) CdZnTe薄膜和AlN/CdZnTe基紫外光探测器制备方法及应用
Lam et al. Characteristics of metal–semiconductor–metal ultraviolet photodetectors based on pure ZnO/amorphous IGZO thin-film structures
JP2014130858A (ja) 光電変換素子および光電変換素子のバッファ層の製造方法
CN113054055A (zh) 一种基于SnSe/SnO2多层球壳/Si异质结的自驱动光电探测器及其制备方法
Hegazy et al. Preparation and characterization of copper zinc tin sulfide-selenide thin films using a single target RF sputtering method
CN109616535B (zh) 基于m面BeMgZnO薄膜的自发极化增强型光电探测器及其制备方法
CN113140641B (zh) 一种柔性二维材料光探测器阵列及其制作方法
TWI750549B (zh) 一種製備氮化鋁-氧化鋅紫外光檢測電極之方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant