CN113054055A - 一种基于SnSe/SnO2多层球壳/Si异质结的自驱动光电探测器及其制备方法 - Google Patents

一种基于SnSe/SnO2多层球壳/Si异质结的自驱动光电探测器及其制备方法 Download PDF

Info

Publication number
CN113054055A
CN113054055A CN202110258297.1A CN202110258297A CN113054055A CN 113054055 A CN113054055 A CN 113054055A CN 202110258297 A CN202110258297 A CN 202110258297A CN 113054055 A CN113054055 A CN 113054055A
Authority
CN
China
Prior art keywords
snse
film layer
sno
metal
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110258297.1A
Other languages
English (en)
Inventor
凌翠翠
冯冰心
侯志栋
曹敏
张拓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN202110258297.1A priority Critical patent/CN113054055A/zh
Publication of CN113054055A publication Critical patent/CN113054055A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于光探测技术领域,具体涉及一种自驱动光电探测器,该自驱动光电探测器,由上至下依次包括导电银胶点电极、金属钯前电极、硒化锡纳米薄膜层、二氧化锡多层球壳结构薄膜层、硅单晶基底和金属铟背电极。二氧化锡多层球壳结构薄膜层通过水热法、煅烧法、丝网印刷技术等方法制备,硒化锡薄膜层由直流磁控溅射技术制备,器件表现出良好的自驱动光探测性能,稳定性好,从紫外到近红外区域都具有响应特性。

Description

一种基于SnSe/SnO2多层球壳/Si异质结的自驱动光电探测器 及其制备方法
技术领域
本发明属于光探测技术领域,具体涉及一种自驱动光电探测器及其制备方法。
技术背景
光信号到电信号的转换是现在日常生活中许多技术的核心,光电探测器就是通过光电效应实现这一光电转换的电子器件。它的一些应用已经趋于成熟,例如视频成像、光学信息、生物成像、夜视仪等。随着应用的需求和发展,对于光电探测中更快的响应、更宽的波长响应范围,以及灵活性,高效性等要求也越来越高。[Inorg.Chem.Front.,2019,6,1968]金属氧化物具有优异的耐热性、抗毒性和稳定性等,并且无毒、廉价、容易制备,二氧化锡(SnO2)作为一种优秀的透明导电半导体氧化物,具有超宽的禁带宽度,SnO2材料制成的纳米结构对紫外光具有较好的吸收,在可见和红外区域也具有良好的透光性,因此在光电领域具有较高的应用价值。但由于其载流子的分离、复合率高,导致其光谱响应较差,这极大的限制了SnO2在光学领域的应用。因此拓宽其光谱响应范围、降低其载流子的复合速率,与此同时保持SnO2在光电探测中的稳定性,是当前研究的重难点。[Advanced ElectronicMaterials,2019:1901048.]通过水热法、煅烧法等手段制备出SnO2多层球壳结构,这一多层球壳结构存在丰富的空腔,可以对光线进行多次折射和反射,可以提高探测器的光线吸收能力。
硒化锡(SnSe)作为一种窄带隙的二维半导体材料,对太阳光谱具有较宽范围的吸收,从紫外到近红外区域都具有良好的光响应特性,在宽光带光电探测器领域具有广阔的应用前景。[Ceramics International,45,2019,13275-13282]将SnSe与SnO2相结合,有望提高SnO2基光电探测器在近红外区域的光响应特性。
发明内容
本发明的目的在于提供一种具有自驱动光响应功能,且周期性好的SnSe/SnO2多层球壳/Si异质结的自驱动光电探测器及其制备方法,可以提高目前SnO2基自驱动光电探测器在近红外区域的光电探测性能。
本发明为实现上述目的所要解决的技术问题是,通过水热法、煅烧法、丝网印刷法、磁控溅射法等方法,提高光电探测器的性能,即通过水热法、煅烧法、丝网印刷技术等在硅基底表面制备SnO2多层球壳结构薄膜层,再通过磁控溅射法在SnO2表面溅射SnSe薄膜层,以获得具有优异性能的自驱动光电探测器。
本发明为实现上述目的所采用的技术方案是,一种基于SnSe/SnO2多层球壳/Si异质结的自驱动光电探测器,其特征在于,所制备探测器为层状结构,由上至下依次包括导电银胶点电极、金属Pd前电极、SnSe纳米薄膜层、SnO2多层球壳结构薄膜层、Si单晶基底和金属In背电极。
本发明所阐述的一种基于SnSe/SnO2多层球壳/Si异质结的自驱动光电探测器的制备方法,其特征在于包括以下步骤:
(1)切出所需大小Si片,分别用离子水、丙酮、无水乙醇依次清洗,去除表面污染物;
(2)对清洗完成后的Si基底进行干燥;
(3)将10.27克蔗糖溶解于60毫升去离子水中,磁力搅拌5~10分钟至蔗糖溶解,把蔗糖溶液倒入100毫升聚四氟乙烯反应釜内衬中进行水热反应,在180~200摄氏度下反应4~6小时,自然冷却至室温;
(4)将步骤(3)得到的黑色产物用去离子水和无水乙醇交替进行真空抽滤6~8次,将固体产物置于60~70摄氏度的恒温干燥箱中干燥3~4小时,再次用无水乙醇进行抽滤,再干燥12~24小时;
(5)取步骤(4)干燥后的碳球,研磨备用,将0.12克氢氧化钠溶于60毫升去离子水,磁力搅拌5~10分钟得到氢氧化钠溶液,用电子天平称取2~3克碳球溶于氢氧化钠溶液,静置碱化5~6小时,用去离子水对碱化碳球抽滤3至4次,置于60~70摄氏度的恒温干燥箱中12~24小时;
(6)称取25克~30克五水四氯化锡晶体溶于20毫升去离子水和20毫升无水乙醇的混合溶液,磁力搅拌至晶体完全溶解,称取步骤(5)得到的样品1克,置于四氯化锡溶液中超声分散20分钟,随后放置于磁力搅拌器搅拌5小时,样品用去离子水真空抽滤3至4次,置于60~70摄氏度的恒温干燥箱中12~24小时;
(7)取步骤(6)的黑色产物研磨均匀,分散至石英舟置于马弗炉中煅烧,在空气气氛中以每分钟1摄氏度的升温速率升温至500摄氏度,保温2小时,自然冷却至室温;
(8)取3~4克乙基纤维素缓慢加入20毫升无水乙醇中,磁力搅拌30~40小时;
(9)取0.1~0.2克步骤(8)溶胀后的乙基纤维素、0.3克松油醇、步骤(7)得到的SnO2白色粉末,1毫升乙酸,1毫升乙醇置于大小合适的研钵中研磨1小时,用250目~350目的丝网印刷板将浆料刮涂在Si片上,刮涂2至3次,每次刮涂之间将样品置于60~70摄氏度干燥箱中干燥10分钟;
(10)取步骤(9)的样品置于马弗炉煅烧,以每分钟2摄氏度的升温速率升至450摄氏度,450摄氏度下保温2小时,冷却至室温;
(11)将步骤(10)得到的样品放入磁控溅射仪的溅射室,在氩气环境下,采用直流磁控溅射技术,通过电离出的氩离子轰击SnSe靶材,在SnO2多壳球层结构薄膜层表面溅射SnSe薄膜,所用SnSe靶材纯度为99.9%,背景真空为5×10-4帕斯卡,氩气气氛维持1.0帕斯卡,溅射功率为10瓦,靶基距为50毫米,薄膜的沉积温度为450摄氏度,所有样品溅射完成后在450摄氏度下退火30分钟,随后冷却至室温;
(12)将步骤(11)得到的样品取出,并在SnSe薄膜层表面覆盖正方形掩膜片,将样品放入磁控溅射仪的溅射室;选取直流磁控溅射技术,利用电离出的氩离子轰击金属Pd靶材,在SnSe薄膜层表面沉积金属Pd前电极;所用靶材为金属Pd靶,靶材纯度为99.9%;氩气气压维持5.0帕斯卡,靶基距为50毫米,Pd电极的沉积温度为室温,金属Pd前电极厚度为5~15纳米;
(13)在pd前电极滴涂导电银胶,在Si基底面涂覆In电极,并引出金属Cu导线,完成器件的制备。
优选的,步骤(1)中,所述硅基底为n型硅单晶基底,尺寸为10毫米×10毫米,电阻率为0.1~1欧姆·厘米。
优选的,步骤(3)中,所述水热反应温度为200摄氏度,反应时间为4小时。
优选的,步骤(12)中,所述掩模片为不锈钢材质,厚度为0.1毫米,尺寸为12毫米×12毫米,孔径尺寸为5毫米×5毫米。
优选的,步骤(13)中,所述金属In电极所用原料In的纯度为99.5%,金属Pd前电极上金属In电极大小和厚度分别为1毫米×1.5毫米和1毫米,Si基底上金属In电极大小和厚度均分别为10毫米×10毫米和2毫米,Cu导线直径为0.1毫米。
经上述步骤所制光电探测器在室温,无外加偏压下具有光响应特性,可实现从紫外到近红外的光探测,器件有优异的稳定性和周期重复性,本发明所涉及的光电探测器及制备方法无毒、成本低廉、光响应性能显著,可广泛应用于光电探测器领域。
附图说明
图1为所制备器件光电探测性能测量的结构示意图。
图2为所制备器件的对数伏安特性曲线。
图3为所制备器件在无外加偏压时器件对不同光功率密度光的响应性能。
图4为所制备器件在无外加偏压时在不同波长单色光照射下对应的响应度(R)、灵敏度(S)、探测度(D*)。
具体实施方式
本发明利用水热法、煅烧法,丝网印刷等方法,在Si半导体基底上制备SnO2多层球壳结构薄膜层,通过磁控溅射法在SnO2表面溅射SnSe薄膜层,再通过直流磁控溅射技术沉积金属Pd前电极,分别在Pd前电极上滴涂导电银胶点电极以及Si基底背面压制金属In电极并分别连接金属导线,形成器件,当光照射到器件时,由于光电效应以及内建电场的存在,器件可以实现自驱动光响应。
下面结合实施例和附图,对本发明进行详细说明。
本发明是一种基于SnSe/SnO2多层球壳/Si异质结的自驱动光电探测器,包括SnSe薄膜层、SnO2多层球壳结构薄膜层和Si半导体基底。
进一步地说,在SnSe薄膜层表面溅射Pd前电极时,表面覆盖有掩模片,掩模片位于SnSe薄膜层与金属Pd前电极之间,掩模片所用材料为不锈钢,厚度为0.1毫米,尺寸为12毫米×12毫米,中心是5毫米×5毫米正方形孔径;金属Pd前电极是利用直流磁控溅射技术制备的,厚度为5~15纳米。
上述器件的制备方法,具体包括以下步骤:
(1)切出所需大小Si片,分别用离子水、丙酮、无水乙醇依次清洗,去除表面污染物;
(2)对清洗完成后的Si基底进行干燥;
(3)将10.27克蔗糖溶解于60毫升去离子水中,磁力搅拌5~10分钟至蔗糖溶解,把蔗糖溶液倒入100毫升聚四氟乙烯反应釜内衬中进行水热反应,在180~200摄氏度下反应4~6小时,自然冷却至室温;
(4)将步骤(3)得到的黑色产物用去离子水和无水乙醇交替进行真空抽滤6~8次,将固体产物置于60~70摄氏度的恒温干燥箱中干燥3~4小时,再次用无水乙醇进行抽滤,再干燥12~24小时;
(5)取步骤(4)干燥后的碳球,研磨备用,将0.12克氢氧化钠溶于60毫升去离子水,磁力搅拌5~10分钟得到氢氧化钠溶液,用电子天平称取2~3克碳球溶于氢氧化钠溶液,静置碱化5~6小时,用去离子水对碱化碳球抽滤3至4次,置于60~70摄氏度的恒温干燥箱中12~24小时;
(6)称取25克~30克五水四氯化锡晶体溶于20毫升去离子水和20毫升无水乙醇的混合溶液,磁力搅拌至晶体完全溶解,称取步骤(5)得到的样品1克,置于四氯化锡溶液中超声分散20分钟,随后放置于磁力搅拌器搅拌5小时,样品用去离子水真空抽滤3至4次,置于60~70摄氏度的恒温干燥箱中12~24小时;
(7)取步骤(6)的黑色产物研磨均匀,分散至石英舟置于马弗炉中煅烧,在空气气氛中以每分钟1摄氏度的升温速率升温至500摄氏度,保温2小时,自然冷却至室温;
(8)取3~4克乙基纤维素缓慢加入20毫升无水乙醇中,磁力搅拌30~40小时;
(9)取0.1~0.2克步骤(8)溶胀后的乙基纤维素、0.3克松油醇、步骤(7)得到的SnO2白色粉末,1毫升乙酸,1毫升乙醇置于大小合适的研钵中研磨1小时,用250目~350目的丝网印刷板将浆料刮涂在Si片上,刮涂2至3次,每次刮涂之间将样品置于60~70摄氏度干燥箱中干燥10分钟;
(10)步骤(9)的样品置于马弗炉煅烧,以每分钟2摄氏度的升温速率升至450摄氏度,450摄氏度下保温2小时,冷却至室温;
(11)将步骤(10)得到的样品放入磁控溅射仪的溅射室,在氩气环境下,采用直流磁控溅射技术,通过电离出的氩离子轰击SnSe靶材,在SnO2多壳球层结构薄膜层表面溅射SnSe薄膜,所用SnSe靶材纯度为99.9%,背景真空为5×10-4帕斯卡,氩气气氛维持1.0帕斯卡,溅射功率为10瓦,靶基距为50毫米,薄膜的沉积温度为450摄氏度,所有样品溅射完成后在450摄氏度下退火30分钟,随后冷却至室温;
(12)将步骤(11)得到的样品取出,并在SnSe薄膜层表面覆盖正方形掩膜片,将样品放入磁控溅射仪的溅射室;选取直流磁控溅射技术,利用电离出的氩离子轰击金属Pd靶材,在SnSe薄膜层表面沉积金属Pd前电极;所用靶材为金属Pd靶,靶材纯度为99.9%;氩气气压维持5.0帕斯卡,靶基距为50毫米,Pd电极的沉积温度为室温,金属Pd前电极厚度为5~15纳米;
(13)在pd前电极滴涂导电银胶,在Si基底面涂覆In电极,并引出金属Cu导线,完成器件的制备。
下面结合性能测量结果进一步说明本发明的效果:
图1为所制备器件光电探测性能测量的结构示意图。
图2为所制备器件的对数伏安特性曲线,结果表明器件具有半导体特性以及光伏效应。
图3为所制备器件在无外加偏压时器件对不同光功率密度光的响应性能,结果表明,在无外加偏压时,器件表现出稳定性,并且光电流随光功率密度的增大而增大,说明该器件的自驱动性能优异。
图4为所制备器件在无外加偏压时在不同波长单色光照射下对应的响应度(R)、灵敏度(S)、探测度(D*),结果表明,器件在波长从紫外到近红外范围的光的照射下都具有光响应,说明该器件可以进行宽光带光探测。

Claims (8)

1.一种基于SnSe/SnO2多层球壳/Si异质结的自驱动光电探测器,特征在于:包括导电银胶点电极、金属Pd前电极、SnSe纳米薄膜层、SnO2多层球壳结构薄膜层、Si单晶基底和金属In背电极。
2.根据权利要求1所述的自驱动光电探测器,SnO2多层球壳结构薄膜层置于Si基底表面,SnSe纳米薄膜层置于SnO2多层球壳薄膜层表面,金属Pd前电极在SnSe纳米薄膜层表面,导电银胶点电极滴涂于Pd前电极表面,金属In电极压制于Si基底表面。
3.根据权利要求1-2任一所述的自驱动光电探测器,其特征在于:所述Si基底为n型Si单晶基底,尺寸为10毫米×10毫米,电阻率为0.1~1欧姆·厘米。
4.根据权利要求1-3任一所述的自驱动光电探测器,其特征在于:SnSe薄膜层的厚度为50~100纳米,SnO2多层球壳结构薄膜层的厚度为1~2微米,Si层的厚度为0.5~2毫米。
5.一种基于SnSe/SnO2多层球壳/Si异质结的自驱动光电探测器的制备方法,其特征在于包括以下步骤:
(1)切出所需大小Si片,分别用离子水、丙酮、无水乙醇依次清洗,去除表面污染物;
(2)对清洗完成后的Si基底进行干燥;
(3)将10.27克蔗糖溶解于60毫升去离子水中,磁力搅拌5~10分钟至蔗糖溶解,把蔗糖溶液倒入100毫升聚四氟乙烯反应釜内衬中进行水热反应,在180~200摄氏度下反应4~6小时,自然冷却至室温;
(4)将步骤(3)得到的黑色产物用去离子水和无水乙醇交替进行真空抽滤6~8次,将固体产物置于60~70摄氏度的恒温干燥箱中干燥3~4小时,再次用无水乙醇进行抽滤,再干燥12~24小时;
(5)取步骤(4)干燥后的碳球,研磨备用,将0.12克氢氧化钠溶于60毫升去离子水,磁力搅拌5~10分钟得到氢氧化钠溶液,用电子天平称取2~3克碳球溶于氢氧化钠溶液,静置碱化5~6小时,用去离子水对碱化碳球抽滤3至4次,置于60~70摄氏度的恒温干燥箱中12~24小时;
(6)称取25克~30克五水四氯化锡晶体溶于20毫升去离子水和20毫升无水乙醇的混合溶液,磁力搅拌至晶体完全溶解,称取步骤(5)得到的样品1克,置于四氯化锡溶液中超声分散20分钟,随后放置于磁力搅拌器搅拌5小时,样品用去离子水真空抽滤3至4次,置于60~70摄氏度的恒温干燥箱中12~24小时;
(7)取步骤(6)的黑色产物研磨均匀,分散至石英舟置于马弗炉中煅烧,在空气气氛中以每分钟1摄氏度的升温速率升温至500摄氏度,保温2小时,自然冷却至室温;
(8)取3~4克乙基纤维素缓慢加入20毫升无水乙醇中,磁力搅拌30~40小时;
(9)取0.1~0.2克步骤(8)溶胀后的乙基纤维素、0.3克松油醇、步骤(7)得到的SnO2白色粉末,1毫升乙酸,1毫升乙醇置于大小合适的研钵中研磨1小时,用250目~350目的丝网印刷板将浆料刮涂在Si片上,刮涂2至3次,每次刮涂之间将样品置于60~70摄氏度干燥箱中干燥10分钟;
(10)取步骤(9)的样品置于马弗炉煅烧,以每分钟2摄氏度的升温速率升至450摄氏度,450摄氏度下保温2小时,冷却至室温;
(11)将步骤(10)得到的样品放入磁控溅射仪的溅射室,在氩气环境下,采用直流磁控溅射技术,通过电离出的氩离子轰击SnSe靶材,在SnO2多壳球层结构薄膜层表面溅射SnSe薄膜,所用SnSe靶材纯度为99.9%,背景真空为5×10-4帕斯卡,氩气气氛维持1.0帕斯卡,溅射功率为10瓦,靶基距为50毫米,薄膜的沉积温度为450摄氏度,所有样品溅射完成后在450摄氏度下退火30分钟,随后冷却至室温;
(12)将步骤(11)得到的样品取出,并在SnSe薄膜层表面覆盖正方形掩膜片,将样品放入磁控溅射仪的溅射室;选取直流磁控溅射技术,利用电离出的氩离子轰击金属Pd靶材,在SnSe薄膜层表面沉积金属Pd前电极;所用靶材为金属Pd靶,靶材纯度为99.9%;氩气气压维持5.0帕斯卡,靶基距为50毫米,Pd电极的沉积温度为室温,金属Pd前电极厚度为5~15纳米;
(13)在pd前电极滴涂导电银胶,在Si基底面涂覆In电极,并引出金属Cu导线,完成器件的制备。
6.一种基于SnSe/SnO2多层球壳/Si异质结的自驱动光电探测器,其特征在于:所述光电探测器件在无外加偏压下,对波长从紫外到近红外范围的光的照射都具有光响应。
7.根据权利要求5所述的一种基于SnSe/SnO2多层球壳/Si异质结的自驱动光电探测器的制备方法,其特征在于:步骤(12)中,所述掩模片为不锈钢材质,厚度为0.1毫米,尺寸为12毫米×12毫米,孔径尺寸为5毫米×5毫米。
8.根据权利要求5所述的一种基于SnSe/SnO2多层球壳/Si异质结的自驱动光电探测器的制备方法,其特征在于:步骤(13)中,所述金属In电极所用原料In的纯度为99.5%,金属Pd前电极上金属In电极大小和厚度分别为1毫米×1.5毫米和1毫米,Si基底上金属In电极大小和厚度均分别为10毫米×10毫米和2毫米,Cu导线直径为0.1毫米。
CN202110258297.1A 2021-03-10 2021-03-10 一种基于SnSe/SnO2多层球壳/Si异质结的自驱动光电探测器及其制备方法 Pending CN113054055A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110258297.1A CN113054055A (zh) 2021-03-10 2021-03-10 一种基于SnSe/SnO2多层球壳/Si异质结的自驱动光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110258297.1A CN113054055A (zh) 2021-03-10 2021-03-10 一种基于SnSe/SnO2多层球壳/Si异质结的自驱动光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN113054055A true CN113054055A (zh) 2021-06-29

Family

ID=76510888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110258297.1A Pending CN113054055A (zh) 2021-03-10 2021-03-10 一种基于SnSe/SnO2多层球壳/Si异质结的自驱动光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN113054055A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114300568A (zh) * 2021-10-22 2022-04-08 中国石油大学(华东) 一种具有室温超快红外响应的SnSe纳米棒阵列异质结器件及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474245A (zh) * 2013-09-22 2013-12-25 中国科学院过程工程研究所 一种染料敏化太阳能电池用氧化锡薄膜电极材料及其制备方法
CN104183823A (zh) * 2014-08-29 2014-12-03 华中师范大学 基于三维碳球框架结构的SnO2、MnO或Mn3O4基复合材料及其制备方法
CN109742179A (zh) * 2019-02-26 2019-05-10 中国石油大学(华东) 一种基于硒化锡/硅异质结的光电探测器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474245A (zh) * 2013-09-22 2013-12-25 中国科学院过程工程研究所 一种染料敏化太阳能电池用氧化锡薄膜电极材料及其制备方法
CN104183823A (zh) * 2014-08-29 2014-12-03 华中师范大学 基于三维碳球框架结构的SnO2、MnO或Mn3O4基复合材料及其制备方法
CN109742179A (zh) * 2019-02-26 2019-05-10 中国石油大学(华东) 一种基于硒化锡/硅异质结的光电探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王文奇: "SnO2空心纳米球合成与表面修饰及光电性能研究", 《中国优秀博硕士学位论文全文数据库》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114300568A (zh) * 2021-10-22 2022-04-08 中国石油大学(华东) 一种具有室温超快红外响应的SnSe纳米棒阵列异质结器件及其制备方法
CN114300568B (zh) * 2021-10-22 2024-03-26 中国石油大学(华东) 一种具有室温超快红外响应的SnSe纳米棒阵列异质结器件及其制备方法

Similar Documents

Publication Publication Date Title
CN107369763B (zh) 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法
CN107919409B (zh) 一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器及其制备方法
CN105304747B (zh) 基于ZnO纳米棒/CH3NH3PbI3/MoO3结构的自驱动光电探测器及其制备方法
WO2009145418A1 (en) Bulk heterojunction solar cell and method of manufacturing the same
JP2001504281A (ja) 光起電力装置とその製造方法
CN108767028B (zh) 基于氧化镓异质结结构的柔性日盲紫外探测器及其制备方法
CN109360862B (zh) 基于ZnO纳米棒/Si异质结的自驱动光电探测器及制备方法
CN103069045B (zh) 透明导电膜的制造方法以及薄膜太阳能电池的制造方法
Chen et al. Photoelectrical and low-frequency noise characteristics of ZnO nanorod photodetectors prepared on flexible substrate
CN111525033B (zh) 一种反向介孔钙钛矿太阳能电池结构及其制备方法
CN111864080A (zh) 一种二维有机无机杂化钙钛矿晶体光电探测器及其制备方法
CN113054055A (zh) 一种基于SnSe/SnO2多层球壳/Si异质结的自驱动光电探测器及其制备方法
CN111244194A (zh) 一种基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器
CN108735826B (zh) 一种玻璃纤维基柔性氧化镓纳米阵列日盲紫外探测器及其制备方法
CN104183665A (zh) 基于p-型ZnSe纳米线/n-型Si异质结的光电探测器的制备方法
CN111446324A (zh) 一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器及其制备方法
CN112531065B (zh) 用于红外光电的铅盐薄膜结构及其制备方法
CN106353277B (zh) 一种基于铜钪氧红外透明导电膜的气体吸收池
CN112071652B (zh) 一种三维刺猬状ZnO/SnO2异质结构及其制备方法与其在紫外探测器中的应用
KR102531001B1 (ko) 청색광을 수광 또는 발광하는 페로브스카이트 할로겐화물 박막 및 이의 제조방법 및 이를 이용한 전자소자
CN113066888A (zh) 一种基于In2S3纳米片阵列/Si金字塔阵列异质结的自驱动光电探测器
CN113517359A (zh) 一种中波、长波红外透明导电薄膜材料及其制备方法
WO2014136562A1 (ja) 化合物半導体超微粒子、超微粒子薄膜及び光電変換デバイス
CN111952376A (zh) 一种氧化锌微米线紫外探测器及其制备方法
CN112310242A (zh) PbS薄膜的敏化方法、红外光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210629

WD01 Invention patent application deemed withdrawn after publication